Calma Glaucoides: a Study in Adaptation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CEPHALOPODS 688 Cephalopods
click for previous page CEPHALOPODS 688 Cephalopods Introduction and GeneralINTRODUCTION Remarks AND GENERAL REMARKS by M.C. Dunning, M.D. Norman, and A.L. Reid iving cephalopods include nautiluses, bobtail and bottle squids, pygmy cuttlefishes, cuttlefishes, Lsquids, and octopuses. While they may not be as diverse a group as other molluscs or as the bony fishes in terms of number of species (about 600 cephalopod species described worldwide), they are very abundant and some reach large sizes. Hence they are of considerable ecological and commercial fisheries importance globally and in the Western Central Pacific. Remarks on MajorREMARKS Groups of CommercialON MAJOR Importance GROUPS OF COMMERCIAL IMPORTANCE Nautiluses (Family Nautilidae) Nautiluses are the only living cephalopods with an external shell throughout their life cycle. This shell is divided into chambers by a large number of septae and provides buoyancy to the animal. The animal is housed in the newest chamber. A muscular hood on the dorsal side helps close the aperture when the animal is withdrawn into the shell. Nautiluses have primitive eyes filled with seawater and without lenses. They have arms that are whip-like tentacles arranged in a double crown surrounding the mouth. Although they have no suckers on these arms, mucus associated with them is adherent. Nautiluses are restricted to deeper continental shelf and slope waters of the Indo-West Pacific and are caught by artisanal fishers using baited traps set on the bottom. The flesh is used for food and the shell for the souvenir trade. Specimens are also caught for live export for use in home aquaria and for research purposes. -
Common Name: Chiton Class: Polyplacophora
Common Name: Chiton Class: Polyplacophora Scrapes algae off rock with radula 8 Overlapping Plates Phylum? Mollusca Class? Gastropoda Common name? Brown sea hare Class? Scaphopoda Common name? Tooth shell or tusk shell Mud Tentacle Foot Class? Gastropoda Common name? Limpet Phylum? Mollusca Class? Bivalvia Class? Gastropoda Common name? Brown sea hare Phylum? Mollusca Class? Gastropoda Common name? Nudibranch Class? Cephalopoda Cuttlefish Octopus Squid Nautilus Phylum? Mollusca Class? Gastropoda Most Bivalves are Filter Feeders A B E D C • A: Mantle • B: Gill • C: Mantle • D: Foot • E: Posterior adductor muscle I.D. Green: Foot I.D. Red Gills Three Body Regions 1. Head – Foot 2. Visceral Mass 3. Mantle A B C D • A: Radula • B: Mantle • C: Mouth • D: Foot What are these? Snail Radulas Dorsal HingeA Growth line UmboB (Anterior) Ventral ByssalC threads Mussel – View of Outer Shell • A: Hinge • B: Umbo • C: Byssal threads Internal Anatomy of the Bay Mussel A B C D • A: Labial palps • B: Mantle • C: Foot • D: Byssal threads NacreousB layer Posterior adductorC PeriostracumA muscle SiphonD Mantle Byssal threads E Internal Anatomy of the Bay Mussel • A: Periostracum • B: Nacreous layer • C: Posterior adductor muscle • D: Siphon • E: Mantle Byssal gland Mantle Gill Foot Labial palp Mantle Byssal threads Gill Byssal gland Mantle Foot Incurrent siphon Byssal Labial palp threads C D B A E • A: Foot • B: Gills • C: Posterior adductor muscle • D: Excurrent siphon • E: Incurrent siphon Heart G F H E D A B C • A: Foot • B: Gills • C: Mantle • D: Excurrent siphon • E: Incurrent siphon • F: Posterior adductor muscle • G: Labial palps • H: Anterior adductor muscle Siphon or 1. -
Shell Morphology, Radula and Genital Structures of New Invasive Giant African Land
bioRxiv preprint doi: https://doi.org/10.1101/2019.12.16.877977; this version posted December 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Shell Morphology, Radula and Genital Structures of New Invasive Giant African Land 2 Snail Species, Achatina fulica Bowdich, 1822,Achatina albopicta E.A. Smith (1878) and 3 Achatina reticulata Pfeiffer 1845 (Gastropoda:Achatinidae) in Southwest Nigeria 4 5 6 7 8 9 Alexander B. Odaibo1 and Suraj O. Olayinka2 10 11 1,2Department of Zoology, University of Ibadan, Ibadan, Nigeria 12 13 Corresponding author: Alexander B. Odaibo 14 E.mail :[email protected] (AB) 15 16 17 18 1 bioRxiv preprint doi: https://doi.org/10.1101/2019.12.16.877977; this version posted December 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 19 Abstract 20 The aim of this study was to determine the differences in the shell, radula and genital 21 structures of 3 new invasive species, Achatina fulica Bowdich, 1822,Achatina albopicta E.A. 22 Smith (1878) and Achatina reticulata Pfeiffer, 1845 collected from southwestern Nigeria and to 23 determine features that would be of importance in the identification of these invasive species in 24 Nigeria. -
A Radical Solution: the Phylogeny of the Nudibranch Family Fionidae
RESEARCH ARTICLE A Radical Solution: The Phylogeny of the Nudibranch Family Fionidae Kristen Cella1, Leila Carmona2*, Irina Ekimova3,4, Anton Chichvarkhin3,5, Dimitry Schepetov6, Terrence M. Gosliner1 1 Department of Invertebrate Zoology, California Academy of Sciences, San Francisco, California, United States of America, 2 Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden, 3 Far Eastern Federal University, Vladivostok, Russia, 4 Biological Faculty, Moscow State University, Moscow, Russia, 5 A.V. Zhirmunsky Instutute of Marine Biology, Russian Academy of Sciences, Vladivostok, Russia, 6 National Research University Higher School of Economics, Moscow, Russia a11111 * [email protected] Abstract Tergipedidae represents a diverse and successful group of aeolid nudibranchs, with approx- imately 200 species distributed throughout most marine ecosystems and spanning all bio- OPEN ACCESS geographical regions of the oceans. However, the systematics of this family remains poorly Citation: Cella K, Carmona L, Ekimova I, understood since no modern phylogenetic study has been undertaken to support any of the Chichvarkhin A, Schepetov D, Gosliner TM (2016) A Radical Solution: The Phylogeny of the proposed classifications. The present study is the first molecular phylogeny of Tergipedidae Nudibranch Family Fionidae. PLoS ONE 11(12): based on partial sequences of two mitochondrial (COI and 16S) genes and one nuclear e0167800. doi:10.1371/journal.pone.0167800 gene (H3). Maximum likelihood, maximum parsimony and Bayesian analysis were con- Editor: Geerat J. Vermeij, University of California, ducted in order to elucidate the systematics of this family. Our results do not recover the tra- UNITED STATES ditional Tergipedidae as monophyletic, since it belongs to a larger clade that includes the Received: July 7, 2016 families Eubranchidae, Fionidae and Calmidae. -
The Cephalopoda
Carl Chun THE CEPHALOPO PART I: OEGOPSIDA PART II: MYOPSIDA, OCTOPODA ATLAS Carl Chun THE CEPHALOPODA NOTE TO PLATE LXVIII Figure 7 should read Figure 8 Figure 9 should read Figure 7 GERMAN DEEPSEA EXPEDITION 1898-1899. VOL. XVIII SCIENTIFIC RESULTS QF THE GERMAN DEEPSEA EXPEDITION ON BOARD THE*STEAMSHIP "VALDIVIA" 1898-1899 Volume Eighteen UNDER THE AUSPICES OF THE GERMAN MINISTRY OF THE INTERIOR Supervised by CARL CHUN, Director of the Expedition Professor of Zoology , Leipzig. After 1914 continued by AUGUST BRAUER Professor of Zoology, Berlin Carl Chun THE CEPHALOPODA PART I: OEGOPSIDA PART II: MYOPSIDA, OCTOPODA ATLAS Translatedfrom the German ISRAEL PROGRAM FOR SCIENTIFIC TRANSLATIONS Jerusalem 1975 TT 69-55057/2 Published Pursuant to an Agreement with THE SMITHSONIAN INSTITUTION and THE NATIONAL SCIENCE FOUNDATION, WASHINGTON, D.C. Since the study of the Cephalopoda is a very specialized field with a unique and specific terminology and phrase- ology, it was necessary to edit the translation in a technical sense to insure that as accurate and meaningful a represen- tation of Chun's original work as possible would be achieved. We hope to have accomplished this responsibility. Clyde F. E. Roper and Ingrid H. Roper Technical Editors Copyright © 1975 Keter Publishing House Jerusalem Ltd. IPST Cat. No. 05452 8 ISBN 7065 1260 X Translated by Albert Mercado Edited by Prof. O. Theodor Copy-edited by Ora Ashdit Composed, Printed and Bound by Keterpress Enterprises, Jerusalem, Israel Available from the U. S. DEPARTMENT OF COMMERCE National Technical Information Service Springfield, Va. 22151 List of Plates I Thaumatolampas diadema of luminous o.rgans 95 luminous organ 145 n.gen.n.sp. -
Diversity of Norwegian Sea Slugs (Nudibranchia): New Species to Norwegian Coastal Waters and New Data on Distribution of Rare Species
Fauna norvegica 2013 Vol. 32: 45-52. ISSN: 1502-4873 Diversity of Norwegian sea slugs (Nudibranchia): new species to Norwegian coastal waters and new data on distribution of rare species Jussi Evertsen1 and Torkild Bakken1 Evertsen J, Bakken T. 2013. Diversity of Norwegian sea slugs (Nudibranchia): new species to Norwegian coastal waters and new data on distribution of rare species. Fauna norvegica 32: 45-52. A total of 5 nudibranch species are reported from the Norwegian coast for the first time (Doridoxa ingolfiana, Goniodoris castanea, Onchidoris sparsa, Eubranchus rupium and Proctonotus mucro- niferus). In addition 10 species that can be considered rare in Norwegian waters are presented with new information (Lophodoris danielsseni, Onchidoris depressa, Palio nothus, Tritonia griegi, Tritonia lineata, Hero formosa, Janolus cristatus, Cumanotus beaumonti, Berghia norvegica and Calma glau- coides), in some cases with considerable changes to their distribution. These new results present an update to our previous extensive investigation of the nudibranch fauna of the Norwegian coast from 2005, which now totals 87 species. An increase in several new species to the Norwegian fauna and new records of rare species, some with considerable updates, in relatively few years results mainly from sampling effort and contributions by specialists on samples from poorly sampled areas. doi: 10.5324/fn.v31i0.1576. Received: 2012-12-02. Accepted: 2012-12-20. Published on paper and online: 2013-02-13. Keywords: Nudibranchia, Gastropoda, taxonomy, biogeography 1. Museum of Natural History and Archaeology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway Corresponding author: Jussi Evertsen E-mail: [email protected] IntRODUCTION the main aims. -
Phylum MOLLUSCA
285 MOLLUSCA: SOLENOGASTRES-POLYPLACOPHORA Phylum MOLLUSCA Class SOLENOGASTRES Family Lepidomeniidae NEMATOMENIA BANYULENSIS (Pruvot, 1891, p. 715, as Dondersia) Occasionally on Lafoea dumosa (R.A.T., S.P., E.J.A.): at 4 positions S.W. of Eddystone, 42-49 fm., on Lafoea dumosa (Crawshay, 1912, p. 368): Eddystone, 29 fm., 1920 (R.W.): 7, 3, 1 and 1 in 4 hauls N.E. of Eddystone, 1948 (V.F.) Breeding: gonads ripe in Aug. (R.A.T.) Family Neomeniidae NEOMENIA CARINATA Tullberg, 1875, p. 1 One specimen Rame-Eddystone Grounds, 29.12.49 (V.F.) Family Proneomeniidae PRONEOMENIA AGLAOPHENIAE Kovalevsky and Marion [Pruvot, 1891, p. 720] Common on Thecocarpus myriophyllum, generally coiled around the base of the stem of the hydroid (S.P., E.J.A.): at 4 positions S.W. of Eddystone, 43-49 fm. (Crawshay, 1912, p. 367): S. of Rame Head, 27 fm., 1920 (R.W.): N. of Eddystone, 29.3.33 (A.J.S.) Class POLYPLACOPHORA (=LORICATA) Family Lepidopleuridae LEPIDOPLEURUS ASELLUS (Gmelin) [Forbes and Hanley, 1849, II, p. 407, as Chiton; Matthews, 1953, p. 246] Abundant, 15-30 fm., especially on muddy gravel (S.P.): at 9 positions S.W. of Eddystone, 40-43 fm. (Crawshay, 1912, p. 368, as Craspedochilus onyx) SALCOMBE. Common in dredge material (Allen and Todd, 1900, p. 210) LEPIDOPLEURUS, CANCELLATUS (Sowerby) [Forbes and Hanley, 1849, II, p. 410, as Chiton; Matthews. 1953, p. 246] Wembury West Reef, three specimens at E.L.W.S.T. by J. Brady, 28.3.56 (G.M.S.) Family Lepidochitonidae TONICELLA RUBRA (L.) [Forbes and Hanley, 1849, II, p. -
Planorbidae) from New Mexico
FRONT COVER—See Fig. 2B, p. 7. Circular 194 New Mexico Bureau of Mines & Mineral Resources A DIVISION OF NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY Pecosorbis, a new genus of fresh-water snails (Planorbidae) from New Mexico Dwight W. Taylor 98 Main St., #308, Tiburon, California 94920 SOCORRO 1985 iii Contents ABSTRACT 5 INTRODUCTION 5 MATERIALS AND METHODS 5 DESCRIPTION OF PECOSORBIS 5 PECOSORBIS. NEW GENUS 5 PECOSORBIS KANSASENSIS (Berry) 6 LOCALITIES AND MATERIAL EXAMINED 9 Habitat 12 CLASSIFICATION AND RELATIONSHIPS 12 DESCRIPTION OF MENETUS 14 GENUS MENETUS H. AND A. ADAMS 14 DESCRIPTION OF MENETUS CALLIOGLYPTUS 14 REFERENCES 17 Figures 1—Pecosorbis kansasensis, shell 6 2—Pecosorbis kansasensis, shell removed 7 3—Pecosorbis kansasensis, penial complex 8 4—Pecosorbis kansasensis, reproductive system 8 5—Pecosorbis kansasensis, penial complex 9 6—Pecosorbis kansasensis, ovotestis and seminal vesicle 10 7—Pecosorbis kansasensis, prostate 10 8—Pecosorbis kansasensis, penial complex 10 9—Pecosorbis kansaensis, composite diagram of penial complex 10 10—Pecosorbis kansasensis, distribution map 11 11—Menetus callioglyptus, reproductive system 15 12—Menetus callioglyptus, penial complex 15 13—Menetus callioglyptus, penial complex 16 14—Planorbella trivolvis lenta, reproductive system 16 Tables 1—Comparison of Menetus and Pecosorbis 13 5 Abstract Pecosorbis, new genus of Planorbidae, subfamily Planorbulinae, is established for Biomphalaria kansasensis Berry. The species has previously been known only as a Pliocene fossil, but now is recognized in the Quaternary of the southwest United States, and living in the Pecos Valley of New Mexico. Pecosorbis is unusual because of its restricted distribution and habitat in seasonal rock pools. Most similar to Menetus, it differs in having a preputial organ with an external duct, no spermatheca, and a penial sac that is mostly eversible. -
Monda Y , March 22, 2021
NATIONAL SHELLFISHERIES ASSOCIATION Program and Abstracts of the 113th Annual Meeting March 22 − 25, 2021 Global Edition @ http://shellfish21.com Follow on Social Media: #shellfish21 NSA 113th ANNUAL MEETING (virtual) National Shellfisheries Association March 22—March 25, 2021 MONDAY, MARCH 22, 2021 DAILY MEETING UPDATE (LIVE) 8:00 AM Gulf of Maine Gulf of Maine Gulf of Mexico Puget Sound Chesapeake Bay Monterey Bay SHELLFISH ONE HEALTH: SHELLFISH AQUACULTURE EPIGENOMES & 8:30-10:30 AM CEPHALOPODS OYSTER I RESTORATION & BUSINESS & MICROBIOMES: FROM SOIL CONSERVATION ECONOMICS TO PEOPLE WORKSHOP 10:30-10:45 AM MORNING BREAK THE SEA GRANT SHELLFISH ONE HEALTH: EPIGENOMES COVID-19 RESPONSE GENERAL 10:45-1:00 PM OYSTER I RESTORATION & & MICROBIOMES: FROM SOIL TO THE NEEDS OF THE CONTRIBUTED I CONSERVATION TO PEOPLE WORKSHOP SHELLFISH INDUSTRY 1:00-1:30 PM LUNCH BREAK WITH SPONSOR & TRADESHOW PRESENTATIONS PLENARY LECTURE: Roger Mann (Virginia Institute of Marine Science, USA) (LIVE) 1:30-2:30 PM Chesapeake Bay EASTERN OYSTER SHELLFISH ONE HEALTH: EPIGENOMES 2:30-3:45 PM GENOME CONSORTIUM BLUE CRABS VIBRIO RESTORATION & & MICROBIOMES: FROM SOIL WORKSHOP CONSERVATION TO PEOPLE WORKSHOP BLUE CRAB GENOMICS EASTERN OYSTER & TRANSCRIPTOMICS: SHELLFISH ONE HEALTH: EPIGENOMES 3:45–5:45 PM GENOME CONSORTIUM THE PROGRAM OF THE VIBRIO RESTORATION & & MICROBIOMES: FROM SOIL WORKSHOP BLUE CRAB GENOME CONSERVATION TO PEOPLE WORKSHOP PROJECT TUESDAY, MARCH 23, 2021 DAILY MEETING UPDATE (LIVE) 8:00 AM Gulf of Maine Gulf of Maine Gulf of Mexico Puget Sound -
Mollusca, Archaeogastropoda) from the Northeastern Pacific
Zoologica Scripta, Vol. 25, No. 1, pp. 35-49, 1996 Pergamon Elsevier Science Ltd © 1996 The Norwegian Academy of Science and Letters Printed in Great Britain. All rights reserved 0300-3256(95)00015-1 0300-3256/96 $ 15.00 + 0.00 Anatomy and systematics of bathyphytophilid limpets (Mollusca, Archaeogastropoda) from the northeastern Pacific GERHARD HASZPRUNAR and JAMES H. McLEAN Accepted 28 September 1995 Haszprunar, G. & McLean, J. H. 1995. Anatomy and systematics of bathyphytophilid limpets (Mollusca, Archaeogastropoda) from the northeastern Pacific.—Zool. Scr. 25: 35^9. Bathyphytophilus diegensis sp. n. is described on basis of shell and radula characters. The radula of another species of Bathyphytophilus is illustrated, but the species is not described since the shell is unknown. Both species feed on detached blades of the surfgrass Phyllospadix carried by turbidity currents into continental slope depths in the San Diego Trough. The anatomy of B. diegensis was investigated by means of semithin serial sectioning and graphic reconstruction. The shell is limpet like; the protoconch resembles that of pseudococculinids and other lepetelloids. The radula is a distinctive, highly modified rhipidoglossate type with close similarities to the lepetellid radula. The anatomy falls well into the lepetelloid bauplan and is in general similar to that of Pseudococculini- dae and Pyropeltidae. Apomorphic features are the presence of gill-leaflets at both sides of the pallial roof (shared with certain pseudococculinids), the lack of jaws, and in particular many enigmatic pouches (bacterial chambers?) which open into the posterior oesophagus. Autapomor- phic characters of shell, radula and anatomy confirm the placement of Bathyphytophilus (with Aenigmabonus) in a distinct family, Bathyphytophilidae Moskalev, 1978. -
In Comparison with Lymnaea Stagnalis (Linnaeus, 1758) K
Anatomical and histological characterization of the gametogenesis of Radix balthica (linnaeus, 1758) in comparison with Lymnaea stagnalis (linnaeus, 1758) K. Abbaci, S. Joachirn, J. Garric, P. Boisseaux, J.M. Exbrayat, J.M. Porcher, O. Geffard To cite this version: K. Abbaci, S. Joachirn, J. Garric, P. Boisseaux, J.M. Exbrayat, et al.. Anatomical and histological characterization of the gametogenesis of Radix balthica (linnaeus, 1758) in comparison with Lymnaea stagnalis (linnaeus, 1758). Journal of Histology Histopathology, 2017, 4, pp.5. <10.7243/2055-091X-4-5>. <hal-01734875> HAL Id: hal-01734875 https://hal.archives-ouvertes.fr/hal-01734875 Submitted on 15 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Histology & Histopathology ISSN 2055-091X | Volume 4 | Article 5 Special Section | Histology of normal tissues | Original Research Open Access Anatomical and histological characterization of the gametogenesis of Radix balthica (linnaeus, 1758) in comparison with Lymnaea stagnalis (linnaeus, 1758) Khedidja Tair-Abbaci1*, Sandrine Joachim2, Jeanne Garric1, Paul Boisseaux1, Jean-Marie Exbrayat3, Jean-Marc Porcher2 and Olivier Geffard1 *Correspondence: [email protected] CrossMark ← Click for updates 1Irstea, UR MALY, Lyon-Villeurbanne center, 5 rue de la Doua, BP 32108, 69616 Villeurbanne Cedex, France. -
Survival After Nonlethal Shell Damage in the Gastropod Conus Sponsalis 1
Survival After Nonlethal Shell Damage in the Gastropod Conus sponsalis 1 EDITH ZIPSER and GEERAT J. VERMEIJ Department of Zoology, University of Maryland, College Park, Md. 20742 Abstract- Individuals in a population of Conus sponsalis Hwas s from Pago Bay , Guam , were marked and released in order to study the short-term consequences of artificially inflicted nonlethal shell damage ofa type frequently encountered in the field. Damage to the outer lip had no effect on short-term survival , and the size distribution of injured cones recovered 30 days after release was the same as that at the beginning of the experiment. We conclude that shell damage had no immediate effect on mortality . Repair frequency (number of scars per body whorl) is very low on small individuals and reaches the highest level (0.27) in snails longer than 2 l mm. Two size-dependent factors, growth rate and resistance to crushing , probably contribute to the size distribution of repaired shell injuries. Introduction Repaired injuries on the shells of gastropods record past nonlethal damage that in many cases was probably induced by would-be predators. Relatively high frequencies of repair have been observed in snails from tropical regions. A collection of Conus lividus from Hawaii, for example, contained individuals with as many as 4 scars on the body whorl; the frequency for the whole population was 1.2 scars per body whorl (Currey and Kohn , 1976). This level of damage is not unusual in the genus Conus or in many other tropical taxa (Vermeij , 1978, in preparation; Vermeij, Zipser, and Dudley, 1980).