In Comparison with Lymnaea Stagnalis (Linnaeus, 1758) K
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CEPHALOPODS 688 Cephalopods
click for previous page CEPHALOPODS 688 Cephalopods Introduction and GeneralINTRODUCTION Remarks AND GENERAL REMARKS by M.C. Dunning, M.D. Norman, and A.L. Reid iving cephalopods include nautiluses, bobtail and bottle squids, pygmy cuttlefishes, cuttlefishes, Lsquids, and octopuses. While they may not be as diverse a group as other molluscs or as the bony fishes in terms of number of species (about 600 cephalopod species described worldwide), they are very abundant and some reach large sizes. Hence they are of considerable ecological and commercial fisheries importance globally and in the Western Central Pacific. Remarks on MajorREMARKS Groups of CommercialON MAJOR Importance GROUPS OF COMMERCIAL IMPORTANCE Nautiluses (Family Nautilidae) Nautiluses are the only living cephalopods with an external shell throughout their life cycle. This shell is divided into chambers by a large number of septae and provides buoyancy to the animal. The animal is housed in the newest chamber. A muscular hood on the dorsal side helps close the aperture when the animal is withdrawn into the shell. Nautiluses have primitive eyes filled with seawater and without lenses. They have arms that are whip-like tentacles arranged in a double crown surrounding the mouth. Although they have no suckers on these arms, mucus associated with them is adherent. Nautiluses are restricted to deeper continental shelf and slope waters of the Indo-West Pacific and are caught by artisanal fishers using baited traps set on the bottom. The flesh is used for food and the shell for the souvenir trade. Specimens are also caught for live export for use in home aquaria and for research purposes. -
Common Name: Chiton Class: Polyplacophora
Common Name: Chiton Class: Polyplacophora Scrapes algae off rock with radula 8 Overlapping Plates Phylum? Mollusca Class? Gastropoda Common name? Brown sea hare Class? Scaphopoda Common name? Tooth shell or tusk shell Mud Tentacle Foot Class? Gastropoda Common name? Limpet Phylum? Mollusca Class? Bivalvia Class? Gastropoda Common name? Brown sea hare Phylum? Mollusca Class? Gastropoda Common name? Nudibranch Class? Cephalopoda Cuttlefish Octopus Squid Nautilus Phylum? Mollusca Class? Gastropoda Most Bivalves are Filter Feeders A B E D C • A: Mantle • B: Gill • C: Mantle • D: Foot • E: Posterior adductor muscle I.D. Green: Foot I.D. Red Gills Three Body Regions 1. Head – Foot 2. Visceral Mass 3. Mantle A B C D • A: Radula • B: Mantle • C: Mouth • D: Foot What are these? Snail Radulas Dorsal HingeA Growth line UmboB (Anterior) Ventral ByssalC threads Mussel – View of Outer Shell • A: Hinge • B: Umbo • C: Byssal threads Internal Anatomy of the Bay Mussel A B C D • A: Labial palps • B: Mantle • C: Foot • D: Byssal threads NacreousB layer Posterior adductorC PeriostracumA muscle SiphonD Mantle Byssal threads E Internal Anatomy of the Bay Mussel • A: Periostracum • B: Nacreous layer • C: Posterior adductor muscle • D: Siphon • E: Mantle Byssal gland Mantle Gill Foot Labial palp Mantle Byssal threads Gill Byssal gland Mantle Foot Incurrent siphon Byssal Labial palp threads C D B A E • A: Foot • B: Gills • C: Posterior adductor muscle • D: Excurrent siphon • E: Incurrent siphon Heart G F H E D A B C • A: Foot • B: Gills • C: Mantle • D: Excurrent siphon • E: Incurrent siphon • F: Posterior adductor muscle • G: Labial palps • H: Anterior adductor muscle Siphon or 1. -
The Cephalopoda
Carl Chun THE CEPHALOPO PART I: OEGOPSIDA PART II: MYOPSIDA, OCTOPODA ATLAS Carl Chun THE CEPHALOPODA NOTE TO PLATE LXVIII Figure 7 should read Figure 8 Figure 9 should read Figure 7 GERMAN DEEPSEA EXPEDITION 1898-1899. VOL. XVIII SCIENTIFIC RESULTS QF THE GERMAN DEEPSEA EXPEDITION ON BOARD THE*STEAMSHIP "VALDIVIA" 1898-1899 Volume Eighteen UNDER THE AUSPICES OF THE GERMAN MINISTRY OF THE INTERIOR Supervised by CARL CHUN, Director of the Expedition Professor of Zoology , Leipzig. After 1914 continued by AUGUST BRAUER Professor of Zoology, Berlin Carl Chun THE CEPHALOPODA PART I: OEGOPSIDA PART II: MYOPSIDA, OCTOPODA ATLAS Translatedfrom the German ISRAEL PROGRAM FOR SCIENTIFIC TRANSLATIONS Jerusalem 1975 TT 69-55057/2 Published Pursuant to an Agreement with THE SMITHSONIAN INSTITUTION and THE NATIONAL SCIENCE FOUNDATION, WASHINGTON, D.C. Since the study of the Cephalopoda is a very specialized field with a unique and specific terminology and phrase- ology, it was necessary to edit the translation in a technical sense to insure that as accurate and meaningful a represen- tation of Chun's original work as possible would be achieved. We hope to have accomplished this responsibility. Clyde F. E. Roper and Ingrid H. Roper Technical Editors Copyright © 1975 Keter Publishing House Jerusalem Ltd. IPST Cat. No. 05452 8 ISBN 7065 1260 X Translated by Albert Mercado Edited by Prof. O. Theodor Copy-edited by Ora Ashdit Composed, Printed and Bound by Keterpress Enterprises, Jerusalem, Israel Available from the U. S. DEPARTMENT OF COMMERCE National Technical Information Service Springfield, Va. 22151 List of Plates I Thaumatolampas diadema of luminous o.rgans 95 luminous organ 145 n.gen.n.sp. -
Planorbidae) from New Mexico
FRONT COVER—See Fig. 2B, p. 7. Circular 194 New Mexico Bureau of Mines & Mineral Resources A DIVISION OF NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY Pecosorbis, a new genus of fresh-water snails (Planorbidae) from New Mexico Dwight W. Taylor 98 Main St., #308, Tiburon, California 94920 SOCORRO 1985 iii Contents ABSTRACT 5 INTRODUCTION 5 MATERIALS AND METHODS 5 DESCRIPTION OF PECOSORBIS 5 PECOSORBIS. NEW GENUS 5 PECOSORBIS KANSASENSIS (Berry) 6 LOCALITIES AND MATERIAL EXAMINED 9 Habitat 12 CLASSIFICATION AND RELATIONSHIPS 12 DESCRIPTION OF MENETUS 14 GENUS MENETUS H. AND A. ADAMS 14 DESCRIPTION OF MENETUS CALLIOGLYPTUS 14 REFERENCES 17 Figures 1—Pecosorbis kansasensis, shell 6 2—Pecosorbis kansasensis, shell removed 7 3—Pecosorbis kansasensis, penial complex 8 4—Pecosorbis kansasensis, reproductive system 8 5—Pecosorbis kansasensis, penial complex 9 6—Pecosorbis kansasensis, ovotestis and seminal vesicle 10 7—Pecosorbis kansasensis, prostate 10 8—Pecosorbis kansasensis, penial complex 10 9—Pecosorbis kansaensis, composite diagram of penial complex 10 10—Pecosorbis kansasensis, distribution map 11 11—Menetus callioglyptus, reproductive system 15 12—Menetus callioglyptus, penial complex 15 13—Menetus callioglyptus, penial complex 16 14—Planorbella trivolvis lenta, reproductive system 16 Tables 1—Comparison of Menetus and Pecosorbis 13 5 Abstract Pecosorbis, new genus of Planorbidae, subfamily Planorbulinae, is established for Biomphalaria kansasensis Berry. The species has previously been known only as a Pliocene fossil, but now is recognized in the Quaternary of the southwest United States, and living in the Pecos Valley of New Mexico. Pecosorbis is unusual because of its restricted distribution and habitat in seasonal rock pools. Most similar to Menetus, it differs in having a preputial organ with an external duct, no spermatheca, and a penial sac that is mostly eversible. -
Monda Y , March 22, 2021
NATIONAL SHELLFISHERIES ASSOCIATION Program and Abstracts of the 113th Annual Meeting March 22 − 25, 2021 Global Edition @ http://shellfish21.com Follow on Social Media: #shellfish21 NSA 113th ANNUAL MEETING (virtual) National Shellfisheries Association March 22—March 25, 2021 MONDAY, MARCH 22, 2021 DAILY MEETING UPDATE (LIVE) 8:00 AM Gulf of Maine Gulf of Maine Gulf of Mexico Puget Sound Chesapeake Bay Monterey Bay SHELLFISH ONE HEALTH: SHELLFISH AQUACULTURE EPIGENOMES & 8:30-10:30 AM CEPHALOPODS OYSTER I RESTORATION & BUSINESS & MICROBIOMES: FROM SOIL CONSERVATION ECONOMICS TO PEOPLE WORKSHOP 10:30-10:45 AM MORNING BREAK THE SEA GRANT SHELLFISH ONE HEALTH: EPIGENOMES COVID-19 RESPONSE GENERAL 10:45-1:00 PM OYSTER I RESTORATION & & MICROBIOMES: FROM SOIL TO THE NEEDS OF THE CONTRIBUTED I CONSERVATION TO PEOPLE WORKSHOP SHELLFISH INDUSTRY 1:00-1:30 PM LUNCH BREAK WITH SPONSOR & TRADESHOW PRESENTATIONS PLENARY LECTURE: Roger Mann (Virginia Institute of Marine Science, USA) (LIVE) 1:30-2:30 PM Chesapeake Bay EASTERN OYSTER SHELLFISH ONE HEALTH: EPIGENOMES 2:30-3:45 PM GENOME CONSORTIUM BLUE CRABS VIBRIO RESTORATION & & MICROBIOMES: FROM SOIL WORKSHOP CONSERVATION TO PEOPLE WORKSHOP BLUE CRAB GENOMICS EASTERN OYSTER & TRANSCRIPTOMICS: SHELLFISH ONE HEALTH: EPIGENOMES 3:45–5:45 PM GENOME CONSORTIUM THE PROGRAM OF THE VIBRIO RESTORATION & & MICROBIOMES: FROM SOIL WORKSHOP BLUE CRAB GENOME CONSERVATION TO PEOPLE WORKSHOP PROJECT TUESDAY, MARCH 23, 2021 DAILY MEETING UPDATE (LIVE) 8:00 AM Gulf of Maine Gulf of Maine Gulf of Mexico Puget Sound -
Calma Glaucoides: a Study in Adaptation
Calma Glaucoides: A study in adaptation. By T. J. Evans, M.A. (Oxoii.), Lecturer in the Medical School, Guy's Hospital, London University. With Plate 11 and 3 Text-figures. A' DETAILED description of certain portions of the anatomy of a small British mollusc is here submitted, not so much as an extension of our knowledge of molluscan structure, as on account of the general biological interest of a unique metabolic type. Whilst retaining the shape and general structural plan of an ueolidiomorph Nudibranch, Calma presents a combination of important departures from that type which may all be directly or indirectly referred to its specialized diet, namely, the eggs and embryos of the smaller shore fishes. So close is the external resemblance to the Aeolid that Alder and Hancock originally (1, PI. xxii, letterpress) placed it in Cuvier's genus Eolis, whereas the modifications to be described are in some respects so great as to be comparable with those associated with a parasitic life. The genus has been recorded only from European waters, and contains Calma glaucoides of Alder and Hancock, commonly taken at Plymouth, Roscoff, and Concarneau, the Eolis albicans of Friele and Hansen (5) from the North Atlantic, and the Forestia mirabilis of Trinchese (9) from the Mediterranean. All three will probably be found on re-examination to belong to one species, C. glaucoides. At Roscoff, Hecht (6) found the animal feeding during June and July on developing eggs of Cottus, Lepadogaster and Liparis under stones, and in September in the swollen radical 440 T. J. EVANS sacs of Laminaria flexicaulis. -
Comparative Morphology of Early Stages of Ommastrephid Squids from the Mediterranean Sea
INTERUNIVERSITY MASTER OF AQUACULTURE 2011 – 2012 Comparative morphology of early stages of ommastrephid squids from the Mediterranean Sea Student GIULIANO PETRONI Tutor Dra. MERCÈ DURFORT Department of Cellular Biology , Faculty of Biology, University of Barcelona Principal Investigator Dr. ROGER VILLANUEVA (PI) Depart ment of renewable marine resources, Institut de Ciències del Mar, CSIC Research Institute Institut de Ciències del Mar, CSIC, Barcelona ABSTRACT Early life of oceanic squids is poorly known due to the difficulties in locating their pelagic egg masses in the wild or obtaining them under laboratory conditions. Recent in vitro fertilization techniques were used in this study to provide first comparative data of the early stages of the most important ommastrephid squid species from the Mediterranean Sea: Illex coindetii , Todaropsis eblanae and Todarodes sagittatus . Eggs, embryos and newly hatched paralarvae were described through development highlighting sizes and morphological differences between species. Duration of embryonic development in I. coindetii and T. eblanae was strictly correlated with temperature and egg size. Embryos of T. sagittatus were unable to reach hatchling stage and died during organogenesis. With the aim to distinguish rhynchoutheuthion larvae of I. coindetii and T. eblanae , particular attention was given to a few types of characters useful for species identification. The general structure of arm and proboscis suckers was described based on the presence of knobs on the chitinous ring. Chromatophore patterns on mantle and head were given for hatchlings of both species and showed some individual variation. A peculiar skin sculpture was observed under a binocular microscope on the external mantle surface of T. eblanae . SEM analysis revealed the presence of a network of hexagonal cells covered by dermal structures which may have a high taxonomic value. -
Resistant Pseudosuccinea Columella Snails to Fasciola Hepatica (Trematoda) Infection in Cuba : Ecological, Molecular and Phenotypical Aspects Annia Alba Menendez
Comparative biology of susceptible and naturally- resistant Pseudosuccinea columella snails to Fasciola hepatica (Trematoda) infection in Cuba : ecological, molecular and phenotypical aspects Annia Alba Menendez To cite this version: Annia Alba Menendez. Comparative biology of susceptible and naturally- resistant Pseudosuccinea columella snails to Fasciola hepatica (Trematoda) infection in Cuba : ecological, molecular and phe- notypical aspects. Parasitology. Université de Perpignan; Instituto Pedro Kouri (La Havane, Cuba), 2018. English. NNT : 2018PERP0055. tel-02133876 HAL Id: tel-02133876 https://tel.archives-ouvertes.fr/tel-02133876 Submitted on 20 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Délivré par UNIVERSITE DE PERPIGNAN VIA DOMITIA En co-tutelle avec Instituto “Pedro Kourí” de Medicina Tropical Préparée au sein de l’ED305 Energie Environnement Et des unités de recherche : IHPE UMR 5244 / Laboratorio de Malacología Spécialité : Biologie Présentée par Annia ALBA MENENDEZ Comparative biology of susceptible and naturally- resistant Pseudosuccinea columella snails to Fasciola hepatica (Trematoda) infection in Cuba: ecological, molecular and phenotypical aspects Soutenue le 12 décembre 2018 devant le jury composé de Mme. Christine COUSTAU, Rapporteur Directeur de Recherche CNRS, INRA Sophia Antipolis M. Philippe JARNE, Rapporteur Directeur de recherche CNRS, CEFE, Montpellier Mme. -
The Morphology of the Nudibranchiate Mollusc Melibe (Syn. Chioraera) Leonina (Gould) by H
The Morphology of the Nudibranchiate Mollusc Melibe (syn. Chioraera) leonina (Gould) By H. P, Kjerschow Agersborg, B.S., M.S., M.A., Ph.D., Williams College, Williamstown, Massachusetts. With Plates 27 to 37. CONTENTS. PAGE I. INTRODUCTION ......-• 508 II. ACKNOWLEDGEMENTS ....... 509 III. ON THE STATUS OP CHIORAERA GOULD . • 509 IV. MELIBE LEONINA (S. CHIORAERA LEONINA GOUI-D) 512 1. The Head or Veil • .514 (1) The Cirrhi 515 (2) The Dorsal Tentacles or ' Rhinophores ' . 516 2. The Papillae or Epinotidia 521 3. The Foot 524 4. The Body-wall 528 (1) The Odoriferous Glands 528 (2) The Muscular System 520 5. The Visceral Cavity 531 6. The Alimentary Canal ...... 533 (1) The Buccal Cavity 533 a. Mandibles and Radula ..... 534 b. Buccal and Salivary Glands .... 535 (2) The Oesophagus 536 (3) The Stomach 537 a. Proventriculus ...... 537 6. Gizzard ....... 537 c. Pyloric Diverticulum ..... 541 (4) The Intestine 542 (5) The Liver 544 7. The Circulatory System 550 (1) The Pericardium ...... 551 (2) The Heart and the Arteries .... 553 (3) The Venous System 555 8. The Organs of Excretion ...... 555 (1) The Kidney 555 (2) The Ureter 556 (3) The Renal Syrinx 556 9. The Organs of Reproduction . .561 (1) The Hermaphrodite Gland, a New Type . 562 50S H. P. KJBRSCHOW AGEKSBORG PAGE (2) The Hermaphrodite Duct ..... 567 (3) The Oviduct 567 (4) The Ovispermatotheca ..... 568 (5) The Male Genital Duct 569 (6) The Mucous Gland 570 V. SUMMARY ......... 573 VI. LITERATI'HE CITED ........ 577 VII. NOTE TO EXPLANATION OF FIGURES .... 586 VIII. EXPLANATION OF PLATES 27-37 ..... 586 I. IXXUODUCTIOX. -
Biochemistry and Structure-Function Relationships in the Proteinaceous Egg Capsules of Busycotypus Canaliculatus
UNIVERSITY OF CALIFORNIA Santa Barbara Biochemistry and Structure-Function Relationships in the Proteinaceous Egg Capsules of Busycotypus canaliculatus A Dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Biochemistry and Molecular Biology by Stephen Scott Wasko Committee in charge: Professor J. Herbert Waite, Chair Professor James Cooper Professor Christopher Hayes Professor Frank Zok June 2010 UMI Number: 3428956 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Dissertation Publishing UMI 3428956 Copyright 2010 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. ProQuest® ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Biochemistry and Structure-Function Relationships in the Proteinaceous Egg Capsules of Busycotypus canaliculatus Copyright ©2010 by Stephen Scott Wasko iii ACKNOWLEDGEMENTS I would like to first thank my father, Stephen, for instilling in me from a young age a profound curiosity for how the natural world around me operates, from the tiniest minutia up through the largest overall picture. My mother, Lee, for keeping me grounded and focused so that I never lost track of the value of my work. And to both of them, as well as my sister, Laura, for their loving encouragement throughout the entire process of my life to date. -
Studies on the Structure and Parasitic Infection in the Cuttlefish
Egypt. J. Aquat. Biol. & Fish., Vol. 10, No.4: 211 – 231 (2006) ISSN 1110 –6131 STUDY OF THE MORPHOLOGY AND PARASITIC INFECTION OF THE CUTTLEFISH, SEPIA PHARAONIS EHRENBERG, 1831 (CEPHALOPODA: SEPIIDAE) IN THE MARINE WATER OFF KUWAIT Bahija E. Al-Behbehani Science Department , College of Basic Education, Public Authority for Applied Education and Training (PAAET), Kuwait [email protected] Keywords: Cuttlefish , Sepia pharaonis , morphology , anatomy , parasites. ABSTRACT n the present study, 200 adult specimens of the cuttlefish, Sepia I pharaonis (119 male and 81 female) were obtained from a Fish Market (Souq Sharaq, Capital –Governorate) in the State of Kuwait, during the period from January to June 2006. They were examined for external and internal parasites as well as their morphology and anatomy of the male and female specimens. No adult or larval stages of parasites were detected externally nor internally in the studied samples. The absence of parasitic infection in the studied cuttlefish was discussed. This is the first study so far dealing with the cuttlefish Sepia pharaonis morphology, anatomy and posible infection with parasites in the marine waters off Kuwait. INTRODUCTION Cephalopods play an important role in the marine ecosystem and are valuable to man as food and for biomedical utilization (Forsythe and Han1on, 1980; Forsythe, 1984; Hanlon and Forsythe, 1985). Although they are usually regarded as non-conventional resources, cephalopod stocks are of recent importance as international commercial fiheries (Boy1e, 1990). Total world catch reached 2.56 million tons in 1991. (F A O 1991). Besides, the value of cephalopods as important and reliable research animals, additional interest has also been developed in their mariculture potential (Hanlon et al., 1991). -
Western Central Pacific
FAOSPECIESIDENTIFICATIONGUIDEFOR FISHERYPURPOSES ISSN1020-6868 THELIVINGMARINERESOURCES OF THE WESTERNCENTRAL PACIFIC Volume2.Cephalopods,crustaceans,holothuriansandsharks FAO SPECIES IDENTIFICATION GUIDE FOR FISHERY PURPOSES THE LIVING MARINE RESOURCES OF THE WESTERN CENTRAL PACIFIC VOLUME 2 Cephalopods, crustaceans, holothurians and sharks edited by Kent E. Carpenter Department of Biological Sciences Old Dominion University Norfolk, Virginia, USA and Volker H. Niem Marine Resources Service Species Identification and Data Programme FAO Fisheries Department with the support of the South Pacific Forum Fisheries Agency (FFA) and the Norwegian Agency for International Development (NORAD) FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 1998 ii The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers and boundaries. M-40 ISBN 92-5-104051-6 All rights reserved. No part of this publication may be reproduced by any means without the prior written permission of the copyright owner. Applications for such permissions, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, via delle Terme di Caracalla, 00100 Rome, Italy. © FAO 1998 iii Carpenter, K.E.; Niem, V.H. (eds) FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. Volume 2. Cephalopods, crustaceans, holothuri- ans and sharks. Rome, FAO. 1998. 687-1396 p.