A Boundary Value Problem for Quasilinear Hyperbolic Systems In

Total Page:16

File Type:pdf, Size:1020Kb

A Boundary Value Problem for Quasilinear Hyperbolic Systems In ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze LAMBERTO CESARI A boundary value problem for quasilinear hyperbolic systems in the Schauder canonic form Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 4e série, tome 1, no 3-4 (1974), p. 311-358 <http://www.numdam.org/item?id=ASNSP_1974_4_1_3-4_311_0> © Scuola Normale Superiore, Pisa, 1974, tous droits réservés. L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ A Boundary Value Problem for Quasilinear Hyperbolic Systems in the Schautder Canonic Form (*). LAMBERTO CESARI (**) 1. - Introduction. In the present paper we take into consideration the following Schauder canonic form of quasilinear hyperbolic systems in a slab 1. = ~x ~0 c x c a] . Thus, whenever the m X m matrix [Aii] is the identity matrix, system (1.1) reduces to the Lax-Courant ca- nonic form Instead of usual Cauchy data at x = 0, we shall take into considera- tion here more general types of boundary data (I, II, III below). I. For instance, we may assume that certain functions y E .Err i = 1, ... , m, and an integer m’, 0 c m’ m, are assigned, and we may re- (*) This research was partially supported by AFOSR Research Project 71-2122 at the University of Michigan. (**) University of Michigan, Ann Arbor. Pervenuto alla Redazione il 24 Gennaio 1974 e in forma definitiva il 5 Otto- bre 1974. 312 quest that For m’= m (as well as for m’= 0) we have the usual Cauchy problem. we assume II. More generally,y may that certain numbers ~0~~ and functions i = 1, - - ., m, are assigned, and we may request that III. In a more general setting, we may assume that certain numbers ai, 0 c az c a, functions ~~ (y), YEEr, i = 1, ... , m, and an mXm matrix [bi3(y), E are det and we that il j:--:: 1, ..., m],9 y Er, assigned, (bii) :A 0, may request If is the identity matrix, then this boundary condition III reduces = = = a = to II. If furthermorel ai 0 f or i 1~ ..., m’, ai f or i m’ -~- 1, ..., m, then we have problem I. In the present paper we prove a theorem of existence, uniqueness, and continuous dependence upon the data, for Schauder hyperbolic systems (1.1) with boundary conditions III when both the matrix [Aij] and the matrix have « dominant » main diagonal. Thus, problems I and II the identity matrix) for system (1.2) ([Aii] the identity matrix) are always included. In § 2 we give a new proof with needed estimates of the existence theorem for the Cauchy problem for Schauder’s system (1.1), proof based on Banach’s fixed point theorem (see [7, 8] for a previous proof). In §3 we then prove the existence theorem for system (1.1) with boundary condi- tions III (thus, including boundary conditions I and II). The proof is also based on Banach’s fixed point theorem, and on the precise estimates obtained in § 2. We proved a slightly simpler theorem in [1, 3] for systems (1.2) with boundary conditions III (problems I and II being always included). When the « dominant main diagonal condition » is not satisfied, the conclusions of the same theorems may not hold, as simple counterexamples show [2]. Since we obtain the solution as the fixed point of transformations which are contractions in the uniform topology, the usual iterative method is uniformly convergent to the unique solution. 313 The boundary value problems under consideration, in the present gen- erality, are new. However, problem I, for very particular systems, was considered by O. Niccoletti [11 ], and aspects of these problems were discussed anew later by different authors (see e.g. [12-21]). Leaving aside Goursat problems and analogous ones, let us mention here that boundary value problems for linear symmetric systems have been studied by Friedrichs [9] and Sarason [13]. Finally, various periodicity requirements as boundary value problems for canonic forms of nonlinear hyperbolic systems in the plane, including the wave equation, have been stu- died by a number of authors, in particular by Cesari [5] and Hale [10] making use of alternative methods (see these two papers for further references). 2. - The main existence theorem for the Cauchy problem. We consider here quasilinear hyperbolic systems of the Schauder canonic form. Thus, x is a scalar, y = ( yl , ... , yr ) is an r-vector, and z(x, y ) = - (z1, ..., z~) is the m-vector of unknown functions zi(x, Y1’ ..., Y.), i=1, ..., m. We denote by jyj = Max, BYkB the norm of y in Er and by lzl = magi Izil the norm of z in Em. We consider first the Cauchy problem for the differential system in an infinite strip with initial data THEOREM I (an existence theorem for the Cauchy Problem (2.1), (2.2)). Let Ia denote an interval and, if is a given constant, let S~ also denote the interval [- Q, Q]m c Em. Let = be continuous functions on Ai j(x, y, z), 1, ..., m, Ia. ao &#x3E; 0, with in for some constant ,u, and let us assume that there are constants C ~ 0 and a function E L1[0, ao], such that, for all (x, y, z), (x, y, z), (x, y, z) E Iae X Er = we and all i, j 1, ..., m, have 21 - Annali della Scuola lVorm. Sup. di Pisa 314 = Let y, z), Y7 0)7 ~ 1, ..., m, k = 1, ..., r, be functions defined in Ia.xErxQ, measurable in x for every (y, z), continuous in (y, z) for every x, and let us assume that there are nonnegative functions m(x), I(x), n(x), E all E 0 x ao,7 m, l, n , II .Ll [o, ao],7 such that, for (x, y, z), (x, y, z ) we have E I a X Er X S2, i = 1, ..., m, k = 1, ..., r, Let y E Er, i = 1, ..., m, be given functions continuous in Er, and let us assume that there are constants c~, A, 0 o c~ C S~, ~l ~ 0, such that, for all and i == 1, ..., m, we have Then, for a sufficiently small, 0 there are a constant Q &#x3E; 0, a function x(x) E .Ll[o, a], and functions z(x, y) = z(x, yl, all E ..., yr) =(zl, ... zm), continuous in such that for (x, y), (x, y), (x, y) C-IaxEr9 and i = 1, ... , m, we have satisfying (2.2) everywhere in Er and satisfying (2.1) a.e. in Da . Further- more, z(x, y) is unique and depends continuously on (qJ1’ ..., qJm) in the classes which are described in the proof below. PROOF. The proof is divided into parts (a),..., (g). (a) Choice of constants p, Q, f unction X, and estimates for a. As usual we denote by otij the cofactor of Åij in the m x m matrix divided by Since relations (2.3-5) yield analogous relations for the elements (Xij. Thus, there are constants C’, and a 0, such that for all (xy,z), (x, y, z), and i, j = 1, ... , m, we have 315 Note that the functions z), y, z) are absolutely continuous in each single variable x, yh, zs with Analogously, the functions (!ik(X, y, z), y, z) are absolutely continuous in each yh and in each zs with For every we define the following constants: Let us choose constants Let us take and, for every a, We first can choose4 sufficiently small so that 316 and we denote by A the constant 2 - (I - L,(l + Q))-1, so that 1 and certainly We shall have to impose on a further limitations from above. Though this could well be done at this stage, we prefer to mention the further restrictions on the size of a as need comes in the course of the argument. (b) The classes ~o and ~1. We denote by Da and 1,, the regions Let Ko be the set of all systems of continuous functions gik in L1a satisfying the following conditions Thus, each function gik is absolutely continuous in ~ for every (x, y), and we have the set of all systems Then relations (2.21-23) become 317 Thus, fori we have that is, the functions hik are uniformly bounded in Also Finally, for the r-vector functions we also have Note that jlo is a subset of the Banach spaceI with norm We also consider the set Ki of all systems of continuous bounded functions zi in Da satisfying the following conditions E = m. for all (x, y), (x, 9), (x, y) Da, i 1, ..., Thus, each zi is absolutely continuous in z for every y, Lipschitzian in y for every x, and we have 318 we also have for all (x, y), (x, y), (~, y) E Da . Here, is a subset of the Banach space with norm (c) The transformation Tz. For every fixed ZEX1, let us consider the transformation T~ defined on Ko, say G = Txg, or - [Gi.], by taking Note that the functions G ik are obviously continuous, and that for all used here inequalities 319 By comparison of (2.34-36) with (2.21-23) we conclude that G = belongs to Ko .
Recommended publications
  • Mauro Picone Eimatematici Polacchi
    Matematici 21-05-2007 17:02 Pagina 3 ACCADEMIA POLACCA DELLE SCIENZE BIBLIOTECA E CENTRO0 DI STUDI A ROMA CONFERENZE 121 Mauro Picone e i Matematici Polacchi 1937 ~ 1961 a cura di Angelo Guerraggio, Maurizio Mattaliano, Pietro Nastasi ROMA 2007 Matematici 21-05-2007 17:02 Pagina 4 Pubblicato da ACCADEMIA POLACCA DELLE SCIENZE BIBLIOTECA E CENTRO DI STUDI A ROMA vicolo Doria, 2 (Palazzo Doria) 00187 Roma tel. +39 066792170 fax +39 066794087 e-mail: [email protected] www.accademiapolacca.it ISSN 0208-5623 © Accademia Polacca delle Scienze Biblioteca e Centro di Studi a Roma Matematici 21-05-2007 17:02 Pagina 5 indice ^ INTRODUZIONE EL˚BIETA JASTRZ¢BOWSKA MAURO PICONE: UN SINCERO AMICO ANGELO GUERRAGGIO,MAURIZIO DELLA POLONIA E DEI SUOI MATEMATICI MATTALIANO,PIETRO NASTASI MAURO PICONE E I MATEMATICI POLACCHI Matematici 21-05-2007 17:02 Pagina 7 INTRODUZIONE « ENIRE a parlare di matematica a Varsavia, è come portare vasi a Samo», scrisse Mauro Picone settant’anni fa (in una lettera a S. Ma- zurkiewicz del 10 dicembre 1937), facendo eco al proverbio po- Vlacco sull’inutilità di portare legna nel bosco. Quest’affermazione mostra in modo eloquente quanto all’epoca fosse rinomata in Italia la scuo- la matematica polacca, capeggiata da Wac∏aw Sierpiƒski. Era del resto ugualmente tenuta in grande considerazione anche nel resto del mondo, durante il ventennio tra le due guerre. Il presente volume delle Conferenze dell’Accademia Polacca delle Scien- ze di Roma contiene una documentazione eccezionale e di grande interesse riguardante gli stretti contatti intercorsi alla metà del secolo scorso tra i ma- tematici italiani – in particolare il loro più insigne rappresentante del tempo, il già ricordato Mauro Picone – e i matematici polacchi nel corso di quasi 25 anni.
    [Show full text]
  • L' Addio a Un Grande Matematico
    CAPITOLO 1 L' ADDIO A UN GRANDE MATEMATICO Si riportano i discorsi pronunciati il 27 ottobre 1996 nel cortile della Scuola Normale Superiore di Pisa, in occasione del commiato accademico. Nello stesso giorno, presso la Chiesa di S. Frediano (Pisa) si `e tenuto il fu- nerale, officiato dal teologo Severino Dianich; il giorno dopo presso la Basilica di S. Croce (Lecce) il funerale `e stato officiato dall' Arcivescovo di Lecce, Cosmo Francesco Ruppi. 1.1 DISCORSO DI L. MODICA Intervento di Luciano Modica, allievo di De Giorgi e Rettore dell' Universita` di Pisa. Confesso che quando Franco Bassani e Luigi Radicati mi hanno chiesto di prendere la parola oggi durante questo triste e solenne commiato acca- demico da Ennio De Giorgi, la mia prima reazione `e stata quella di tirarmi indietro, temendo che l' empito della commozione e dei ricordi dell' allie- vo sopraffacessero la partecipazione, certo commossa, ma necessariamente composta, di chi qui `e chiamato da Rettore a rappresentare l' Ateneo pisa- no e la sua comunita` di studenti e docenti. Se poi ho accettato, non `e stato perch´e, sono sicuro di superare questo timore, ma perch´e spero che tutti voi familiari, allievi, amici di Ennio, saprete comprendere e scusare l' emotivita` da cui forse non riusciro` ad evitare che sia pervaso il tono delle mie parole. Perch´e la vostra presenza in questo cortile, le cui soavi linee architettoniche tanto Ennio ha amato e che rimangono per tanti dei presenti indissolubil- mente legate alla loro giovinezza, non ha nulla del dovere accademico, se 2 L' ADDIO A UN GRANDE MATEMATICO non i suoi aspetti spirituali piu` alti, mentre invece vuole manifestare la ri- conoscenza e l' affetto tutti umani verso una persona accanto a cui abbiamo avuto il privilegio di trascorrere un periodo piu` o meno lungo, ma sempre indimenticabile, della nostra vita.
    [Show full text]
  • Science and Fascism
    Science and Fascism Scientific Research Under a Totalitarian Regime Michele Benzi Department of Mathematics and Computer Science Emory University Outline 1. Timeline 2. The ascent of Italian mathematics (1860-1920) 3. The Italian Jewish community 4. The other sciences (mostly Physics) 5. Enter Mussolini 6. The Oath 7. The Godfathers of Italian science in the Thirties 8. Day of infamy 9. Fascist rethoric in science: some samples 10. The effect of Nazism on German science 11. The aftermath: amnesty or amnesia? 12. Concluding remarks Timeline • 1861 Italy achieves independence and is unified under the Savoy monarchy. Venice joins the new Kingdom in 1866, Rome in 1870. • 1863 The Politecnico di Milano is founded by a mathe- matician, Francesco Brioschi. • 1871 The capital is moved from Florence to Rome. • 1880s Colonial period begins (Somalia, Eritrea, Lybia and Dodecanese). • 1908 IV International Congress of Mathematicians held in Rome, presided by Vito Volterra. Timeline (cont.) • 1913 Emigration reaches highest point (more than 872,000 leave Italy). About 75% of the Italian popu- lation is illiterate and employed in agriculture. • 1914 Benito Mussolini is expelled from Socialist Party. • 1915 May: Italy enters WWI on the side of the Entente against the Central Powers. More than 650,000 Italian soldiers are killed (1915-1918). Economy is devastated, peace treaty disappointing. • 1921 January: Italian Communist Party founded in Livorno by Antonio Gramsci and other former Socialists. November: National Fascist Party founded in Rome by Mussolini. Strikes and social unrest lead to political in- stability. Timeline (cont.) • 1922 October: March on Rome. Mussolini named Prime Minister by the King.
    [Show full text]
  • Discrete Differential Geometry
    Oberwolfach Seminars Volume 38 Discrete Differential Geometry Alexander I. Bobenko Peter Schröder John M. Sullivan Günter M. Ziegler Editors Birkhäuser Basel · Boston · Berlin Alexander I. Bobenko John M. Sullivan Institut für Mathematik, MA 8-3 Institut für Mathematik, MA 3-2 Technische Universität Berlin Technische Universität Berlin Strasse des 17. Juni 136 Strasse des 17. Juni 136 10623 Berlin, Germany 10623 Berlin, Germany e-mail: [email protected] e-mail: [email protected] Peter Schröder Günter M. Ziegler Department of Computer Science Institut für Mathematik, MA 6-2 Caltech, MS 256-80 Technische Universität Berlin 1200 E. California Blvd. Strasse des 17. Juni 136 Pasadena, CA 91125, USA 10623 Berlin, Germany e-mail: [email protected] e-mail: [email protected] 2000 Mathematics Subject Classification: 53-02 (primary); 52-02, 53-06, 52-06 Library of Congress Control Number: 2007941037 Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>. ISBN 978-3-7643-8620-7 Birkhäuser Verlag, Basel – Boston – Berlin This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright
    [Show full text]
  • SUMMARY of PERSONNEL ACTIONS REGENTS AGENDA July 2013
    SUMMARY OF PERSONNEL ACTIONS REGENTS AGENDA July 2013 ANN ARBOR CAMPUS 1. Recommendations for approval of new appointments and promotions for regular associate and full professor ranks, with tenure. (1) Ayanian, John Z., M.D., professor of internal medicine, with tenure, Medical School, professor of health management and policy, without tenure, School of Public Health, and professor of public policy, without tenure, Gerald R. Ford School of Public Policy, effective September 1, 2013. (2) Dynarski, Susan M., promotion to professor of economics, without tenure, College of Literature, Science, and the Arts, effective September 1, 2013 (currently associate professor of economics, without tenure, College of Literature, Science, and the Arts, also professor of public policy, with tenure, Gerald R. Ford School of Public Policy, and professor of education, with tenure, School of Education.) (3) Gonzalez, Anita, professor of theatre and drama, with tenure, School of Music, Theatre & Dance, effective September 1, 2013. (4) Langland, Victoria, associate professor of history, with tenure, and associate professor of romance languages and literatures, with tenure, College of Literature, Science, and the Arts, effective September 1, 2013. (5) O’Rourke, Robert W., M.D., associate professor of surgery, with tenure, Medical School, effective August 1, 2013. (6) Rivas-Drake, Deborah, associate professor of psychology, with tenure, College of Literature, Science, and the Arts, and associate professor of education, with tenure, School of Education, effective September 1, 2013. (7) Shore, Susan E., Ph.D., promotion to professor of molecular and integrative physiology, without tenure, Medical School, and professor of biomedical engineering, without tenure, College of Engineering, and additional appointment as professor of otolaryngology-head and neck surgery, with tenure, Medical School, effective July 1, 2013 (also Joseph Hawkins Jr.
    [Show full text]
  • GUIDO STAMPACCHIA Silvia Mazzone
    1 GUIDO STAMPACCHIA Silvia Mazzone 1. Formazione scientifica e prima attività di ricerca alla Scuola Normale Superiore di Pisa e all’Università di Napoli. Guido Stampacchia nasce a Napoli, nel quartiere Chiaia, il 26 marzo 1922 da Emanuele e Giulia Campagnano. Giulia, di religione ebraica,1 apparteneva ad una famiglia di origini fiorentine che aveva un laboratorio di biancheria ricamata a mano; gli Stampacchia, invece, erano una famiglia di origine leccese ed osservavano la religione valdese. Il papà, Emanuele, gestiva una fabbrica di ferramenta che sarà costretto a vendere al tempo della guerra in Etiopia, come conseguenza del suo rifiuto a prendere la tessera del partito fascista. Il giovane Guido riceve una educazione essenzialmente laica anche se, da bambino, insieme alle due sorelle frequenta la chiesa valdese. Egli consegue la maturità classica a 18 anni, nel 1940, al Liceo-Ginnasio Gian Battista Vico di Napoli riportando come unico voto di eccellenza 9 in matematica e fisica. Nonostante gli studi classici, aveva chiara l'intenzione di dedicarsi alla matematica e perciò aveva approfondito per suo conto la preparazione di matematica e di fisica studiando “i capisaldi del programma di Liceo Scientifico, cercando … di intravederne il processo logico”2. Nell’autunno del 1940 è ammesso come alunno interno alla Scuola Normale Superiore di Pisa, classe di Scienze, corso di laurea in matematica pura, essendo riuscito quinto al concorso3 e, nei tre anni successivi, supera brillantemente tutti gli esami previsti dal piano di studio assolvendo agli obblighi cui sono tenuti i normalisti. In particolare all’università ha come docenti Francesco Cecioni e Salvatore Cherubino per gli insegnamenti del primo biennio mentre il terzo anno frequenta il corso di Analisi superiore di Leonida Tonelli e quello di Teoria delle funzioni di Lamberto Cesari.
    [Show full text]
  • CARATTERIZZAZIONE ANALITICA DELLE SUPERFICIE CONTINUE DI AREA FINITA SECONDO LEBESGUE (1) Di LAMBERTO CESARI (Pisa)
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA Classe di Scienze LAMBERTO CESARI Caratterizzazione analitica delle superficie continue di area finita secondo Lebesgue Annali della Scuola Normale Superiore di Pisa, Classe di Scienze 2e série, tome 10, no 3-4 (1941), p. 253-295 <http://www.numdam.org/item?id=ASNSP_1941_2_10_3-4_253_0> © Scuola Normale Superiore, Pisa, 1941, tous droits réservés. L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » (http://www.sns.it/it/edizioni/riviste/annaliscienze/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ CARATTERIZZAZIONE ANALITICA DELLE SUPERFICIE CONTINUE DI AREA FINITA SECONDO LEBESGUE (1) di LAMBERTO CESARI (Pisa). Negli anni 1939-40 mi sono occupato, dietro suggerimento del mio Maestro L. TONELLI, del problema di caratterizzare analiticamente le superficie continue in forma parametrica che hanno area finita secondo LEBESGUE. Colgo l’occasione per ringraziare il prof. L. TONELLI dei suoi consigli e del suo incitamento e inoltre della fiducia che egli sempre ha saputo trasmettermi, grazie alla quale ho potuto concludere la prima parte delle mie ricerche, che qui raccolgo. Nel presente lavoro io stabilisco
    [Show full text]
  • Existence Theorems for Weak and Usual Optimal Solutions in Lagrange Problems with Unilateral Constraints
    EXISTENCE THEOREMS FOR WEAK AND USUAL OPTIMAL SOLUTIONS IN LAGRANGE PROBLEMS WITH UNILATERAL CONSTRAINTS. II. EXISTENCE THEOREMS FOR WEAK SOLUTIONSO BY LAMBERTO CESARI Introduction. In the present paper II we prove existence theorems for weak optimal solutions of nonparametric Lagrange problems with (or without) unilateral constraints. In paper I ([le] of the reference list) we considered arbitrary pairs x(0, «(f) of vector functions, u(t) measurable with values in Em, x(t) absolutely continuous with values in £„, and we discussed the existence of the absolute minimum of the functional I[x,u] = fo(t,x(t),u(t))dt, with side conditions represented by a differential system dx/dt =f(t,x(t),u(t)), ty^t = t2, with constraints (t,x(t))eA, u(t)eU(t,x(t)), ty.£t£t2, and boundary conditions (ty,x(ty),t2,x(t2))eB, where A is a given closed subset of the ix-space Ey x £„, where B is a given closed subset of the f1x1i2x2-space £2„+2, and where U(t,x) denotes a given closed variable subset of the u-space E,„, depending on time t and space x. The set A may coincide with the whole space Ey x Em, and U may be fixed and coincide with the whole space Em. In the present paper II we discuss the same problem for weak (or generalized) solutions, introduced by R. V. Gamkrelidze [3] as measurable probability dis- tributions of usual solutions (chattering states), and by L. C. Young [14], E. J. McShane [5], J. Warga [12], and T.
    [Show full text]
  • Key Moments in the History of Numerical Analysis
    Key Moments in the History of Numerical Analysis Michele Benzi Department of Mathematics and Computer Science Emory University Atlanta, GA http://www.mathcs.emory.edu/ benzi ∼ Outline Part I: Broad historical outline • 1. The prehistory of Numerical Analysis 2. Key moments of 20th Century Numerical Analysis Part II: The early history of matrix iterations • 1. Iterative methods prior to about 1930 2. Mauro Picone and Italian applied mathematics in the Thirties 3. Lamberto Cesari's work on iterative methods 4. Gianfranco Cimmino and his method 5. Cimmino's legacy PART I Broad historical outline The prehistory of Numerical Analysis In contrast to more classical fields of mathematics, like Analysis, Number Theory or Algebraic Geometry, Numerical Analysis (NA) became an independent mathematical disci- pline only in the course of the 20th Century. This is perhaps surprising, given that effective methods of computing approximate numerical solutions to mathematical problems are already found in antiquity (well before Euclid!), and were especially prevalent in ancient India and China. While algorithmic mathematics thrived in ancient Asia, classical Greek mathematicians showed relatively little interest in it and cultivated Ge- ometry instead. Nevertheless, Archimedes (3rd Century BCE) was a master calculator. The prehistory of Numerical Analysis (cont.) Many numerical methods studied in introductory NA courses bear the name of great mathematicians including Newton, Euler, Lagrange, Gauss, Jacobi, Fourier, Chebyshev, and so forth. However, it should be kept in mind that well into the 19th Century, the distinction between mathematics and natural philosophy (including physics, chemistry, astronomy etc.) was almost non-existent. Scientific specialization is a modern phenomenon, and nearly all major mathematicians were also physicists and astronomers.
    [Show full text]
  • Area and Representation of Surfaces
    AREA AND REPRESENTATION OF SURFACES LAMBERTO CESARI What is surface and what is area? This question is not a trivial one, because study of the literature reveals that there are several relevant concepts of surface and area, just as there are several relevant concepts of curve and length (see [l, I J, II.5, V.4] ; numbers in square brackets refer to the bibliography at the end of this paper). These concepts are not only related to one another, but they are also related to the solution of many problems in which they play an essential part. My purpose is to discuss the connection of such con­ cepts with calculus of variations and to show how the slow develop­ ment of some of them is closely related to advances in calculus of variations. During the war years I succeeded in developing a complete theory for Fréchet surfaces and Lebesgue area, which was related to previous work of McShane and Radó. It was with great pleasure that I learned after the war that, at the same time and independently, Radó and other mathematicians in this country had developed a theory founded upon the same fundamental ideas. The results obtained are partly overlapping and partly complementary. This allows us to combine our results into a single theory. Now this parallel development is not due to chance, but rather to an underlying common aim that has been a constant guide in our respective efforts: the aim to obtain a more general basis for the theory of double integrals in parametric form in calculus of variations.
    [Show full text]
  • Curriculum Vitae Et Studiorum of Anna Martellotti
    Curriculum vitae et studiorum of Anna Martellotti Born in Perugia, on July, 11.th 1955 Institution: Mathematics and Informatics Department, University of Perugia; Address: Via Pascoli, 06123 PERUGIA, Italy. Phone: 0039-075-585-5041 Fax: 0039-075-585-5024 e-mail: [email protected] Languages: Fluent english, good french, basic german. Studies - Degree in Mathematics at the University of Perugia, 1978 (Dissertation: Sopra una definizione dell'Integrale Multiplo del Calcolo delle Variazioni alla Lebesgue-Serrin). Career - C.N.R. scholarship for undergraduate students (Perugia, 14.IV.1977 - 14.IV.1978). - National Institute for High Mathematics scholarship for postgraduate students (Rome, Istituto Nazionale di Alta Matematica F. Severi 1.XI.1978 - 30.IX.1979 and 15.XI.1979 - 14.XI.1980). - National Institute for High Mathematics research scholarship (Perugia 1.XII.1980 - 30.XI.1982) - Professore a contratto for Calculus I at the Engineering Faculty of Ancona University (1.XI.1982 - 1.X.1983). - Ricercatore (lecturer) in Mathematics at the University of Perugia (1.I.1984 - 27.I.1988). - Associate professor of Mathematics at the Engineering Faculty of Ancona University (28.I.1987 - 31.X.1991). - Associate professor of Mathematics at the University of Perugia (from 1.XI.1991) Teaching experience Undergraduate courses: Calculus 1 and Calculus 2, Statistics and Probability, Applied Mathematics in different Engi- neering faculties (Ancona, Terni, Perugia); Calculus for Life science students; Calculus 1 for Physics students; Calculus 1 and 2 for
    [Show full text]
  • Reduced Products and the Compactness Theorem Professor Anne C
    AMERICAN MATHEMATICAL SOCIETY Notices Edited by J. H. CURTISS tiiUIIIIIIIIIIIIUIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIUIIIIIItltftiiiiiiiiiiiiiiiiiiiiUIIIIIIIIUUUIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIINUIIIIIIIIIIIIIIU VOLUME 5, NUMBER 6 ISSUE NO. NOVEMBER 1958 ..................................................................................................................................................................34 Contents MEETINGS Calendar of Meetings ......•. , ..... , ... , . , . , . 616 Program of the November Meeting in Claremont ...... 617 Abstracts for the Meeting, pp. 671-681 Program of the November Meeting in Durham ........623 Abstracts for the Meeting, pp. 682-691 Program of the November Meeting in Evanston ....... 628 Abstracts for the Meeting, pp. 692-698 PRELIMINARY ANNOUNCEMENT OF MEETING ....•..... ,631 ACTIVITIES OF OTHER ASSOCIATIONS ...........•.... 634 NEWS ITEMS AND ANNOUNCEMENTS •...••••••••• , ••• 634 PERSONAL ITEMS ..... 639 LETTERS TO THE EDITOR 648 NEW PUBLICATIONS • , , •••••••••••••••••••••••••• 653 ABSTRACTS OF CONTRIBUTED PAPERS •.............. 660 Please send in abstracts of papers to be presented in person ell in advance of the deadline. Published by the Societ ':1 ANN ARBOR, MICHIGAN and PROVIDENCE, RHODE ISLAND Printed in the United States of America MEETINGS CALENDAR OF MEETINGS NOTE: This Calendar lists all of the meetings which have been approved by the Council up to the date at which this issue of the NOTICES was sent to press. The meeting dates which fall rather far in the future are subject
    [Show full text]