The Bryological Times Number 119 May 2006
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Translocation and Transport
Glime, J. M. 2017. Nutrient Relations: Translocation and Transport. Chapt. 8-5. In: Glime, J. M. Bryophyte Ecology. Volume 1. 8-5-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 17 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 8-5 NUTRIENT RELATIONS: TRANSLOCATION AND TRANSPORT TABLE OF CONTENTS Translocation and Transport ................................................................................................................................ 8-5-2 Movement from Older to Younger Tissues .................................................................................................. 8-5-6 Directional Differences ................................................................................................................................ 8-5-8 Species Differences ...................................................................................................................................... 8-5-8 Mechanisms of Transport .................................................................................................................................... 8-5-9 Source to Sink? ............................................................................................................................................ 8-5-9 Enrichment Effects ..................................................................................................................................... 8-5-10 Internal Transport -
Lehman Caves Management Plan
National Park Service U.S. Department of the Interior Great Basin National Park Lehman Caves Management Plan June 2019 ON THE COVER Photograph of visitors on tour of Lehman Caves NPS Photo ON THIS PAGE Photograph of cave shields, Grand Palace, Lehman Caves NPS Photo Shields in the Grand Palace, Lehman Caves. Lehman Caves Management Plan Great Basin National Park Baker, Nevada June 2019 Approved by: James Woolsey, Superintendent Date Executive Summary The Lehman Caves Management Plan (LCMP) guides management for Lehman Caves, located within Great Basin National Park (GRBA). The primary goal of the Lehman Caves Management Plan is to manage the cave in a manner that will preserve and protect cave resources and processes while allowing for respectful recreation and scientific use. More specifically, the intent of this plan is to manage Lehman Caves to maintain its geological, scenic, educational, cultural, biological, hydrological, paleontological, and recreational resources in accordance with applicable laws, regulations, and current guidelines such as the Federal Cave Resource Protection Act and National Park Service Management Policies. Section 1.0 provides an introduction and background to the park and pertinent laws and regulations. Section 2.0 goes into detail of the natural and cultural history of Lehman Caves. This history includes how infrastructure was built up in the cave to allow visitors to enter and tour, as well as visitation numbers from the 1920s to present. Section 3.0 states the management direction and objectives for Lehman Caves. Section 4.0 covers how the Management Plan will meet each of the objectives in Section 3.0. -
2.10 Meesia Longiseta HEDW. Code: 1389 Anhang: II
2.10 Meesia longiseta HEDW. Code: 1389 Anhang: II KLAUS WEDDELING, GERHARD LUDWIG & MONIKA HACHTEL, Bonn Namen: D: Langstieliges Schwanenhalsmoos, Langstieliges Meesemoos, Gestreckte Langborste E: Long-stalked Thread Moss, Long-shafted Swan Moss, F: – Systematik/Taxonomie: Bryophyta, Bryopsida, Bryidae, Splachnales, Meesiaceae. Synonyme: Amblyodon longisetus (HEDW.) P. BEAUV. Kennzeichen/Artbestimmung: Meesia longiseta ist ein 4–8 (–10) cm hohes, akrokarpes, unverzweigtes Laubmoos von grün-schwärzlicher Färbung. Die Art wächst in lockeren, weichen Rasen (Abb. 2.9). Das Stämmchen ist bis in die Spitze wurzelhaarig und im Moose Querschnitt dreikantig. Die Blättchen sind mehr oder weniger deutlich in 3 oder 6 Rei- hen angeordnet und vom Stämmchen abgespreizt. Die 2–3,5 mm langen, spitzen Blätt- chen laufen deutlich am Stämmchen herab, sind oberwärts gekielt, ganzrandig oder an der Spitze etwas gezähnt. Ihre deutlich entwickelte Rippe endet unterhalb der Blattspitze. Der Blattrand ist flach. Die Laminazellen sind rechteckig bis rhombisch und etwa 14 µm breit. Die rötlichen, gedrehten Seten der synözischen Art können über 10 cm lang wer- den. Die langbirnenförmige, aufrechte Kapsel hat einen deutlichen Hals. Bei der Spo- renreife im Juni und Juli werden die mit 36–44 µm Durchmesser recht großen Sporen frei- gesetzt. Die Chromosomenzahl ist nicht bekannt (FRITSCH 1991). Differenzierende Merkmale zu den ähnlichen Arten Meesia uliginosa und M. hexasticha sind der nicht ein- gerollte Blattrand, die kleineren Sporen und der Rippenquerschnitt mit kleinen, inneren Zellen (zusammengestellt nach CRUM & ANDERSON 1981, FRAHM 1979, LIMPRICHT 1895). Abbildungen der Art finden sich bei CRUM & ANDERSON (1981, Fig. 296, 297, S. 628, 629: Blättchen, Blattspitze, Habitus, Kapsel) und FRAHM (1979, Fig. -
Prescribed Fire Decreases Lichen and Bryophyte Biomass and Alters Functional Group Composition in Pacific Northwest Prairies Author(S): Lalita M
Prescribed Fire Decreases Lichen and Bryophyte Biomass and Alters Functional Group Composition in Pacific Northwest Prairies Author(s): Lalita M. Calabria, Kate Petersen, Sarah T. Hamman and Robert J. Smith Source: Northwest Science, 90(4):470-483. Published By: Northwest Scientific Association DOI: http://dx.doi.org/10.3955/046.090.0407 URL: http://www.bioone.org/doi/full/10.3955/046.090.0407 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Lalita M. Calabria1, Kate Petersen,The Evergreen State College, 2700 Evergreen Parkway NW, Olympia, Washington 98505 Sarah T. Hamman, The Center for Natural Lands Management, 120 Union Ave SE #215, Olympia, Washington 98501 and Robert J. Smith, Department of Botany and Plant Pathology, 2082 Cordley Hall, Oregon State University, Corvallis, Oregon 97331 Prescribed Fire Decreases Lichen and Bryophyte Biomass and Alters Functional Group Composition in Pacific Northwest Prairies Abstract The reintroduction of fire to Pacific Northwest prairies has been useful for removing non-native shrubs and supporting habitat for fire-adapted plant and animal species. -
Bryophyte Life Cycle
MARCH 2016LEARNING | VELD & FLORA ABOUT BIODIVERSITY Veld & Flora MARCHFACTSHEET: 2016 | VELD MOSS & FLORA 24 25 3. BRYOPHYTE LIFE CYCLE Gametophyte (n) UNDERSTANDING THE GERMINATION MALE ALTERNATION OF GENERATIONS The way that almost all land plants reproduce is by means of two distinct, alternating life forms, a sexual phase that produces and releases gametes or sex cells and allows fertilisation, and a dispersal phase – both of which are adaptations to an essentially waterless environment. The sexual phase is known as the GAMETOPHYTE or haploid spores (n) generation and the dispersal phase is the SPOROPHYTE or diploid (2n) generation. Mature gametophyte plants produce haploid sex cells (egg and sperm) in sex organs (the male antheridia and female archegonia). These sex cells (also called gametes) fuse during fertilisation to form a diploid (2n) zygote which COPING OUT OF WATER grows, by means of mitosis (that results in two daughter cells each having Sperm (n) the same number and kind of chromosomes as the parent cell), into a new released Bryophytes, which include moss, are primitive plants that give us some idea sporophyte plant. The diploid sporophyte produces haploid (n) spores (i.e. from male of how the first plants that ventured onto land coped with their new waterless FEMALE each spore has a single set of chromosomes) by means of the process environment. They share many features with other plants, but differ in some of cell division called meiosis. Meiosis results in four daughter cells each ways – such as the lack of an effective vascular system (specialised tissue for with half the number of chromosomes of the parent cell. -
Phylogeny and Classification of Lejeuneaceae Subtribe Cheilolejeuneinae (Marchantiophyta) Based on Nuclear and Plastid Molecular Markers
Cryptogamie, Bryologie, 2015, 36 (4): 313-333 © 2015 Adac. Tous droits réservés Phylogeny and classification of Lejeuneaceae subtribe Cheilolejeuneinae (Marchantiophyta) based on nuclear and plastid molecular markers Wen YE a,b, S. Robbert GRADSTEIN c, A. Jonathan SHAW d, Blanka SHAW d, Boon-Chuan HO e, Alfons SCHÄFER-VErwIMP f, Tamás PÓCS g, Jochen HEINRICHS h & Rui-Liang ZHU b* aKey Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Xingke Road 723, Tianhe District, Guangzhou 510650, P. R. China bDepartment of Biology, School of Life Sciences, East China Normal University, 3663 Zhong Shan North Road, Shanghai 200062, P. R. China cMuséum National d’Histoire Naturelle, Dept. Systématique et Evolution, Case Postale 39, 57 rue Cuvier, 75231 Paris cedex 05, France dBiology Department, Duke University, Box 90338 Durham, NC 27708, USA eSingapore Botanic Gardens, 1 Cluny Road, Singapore 259569, Republic of Singapore fMittlere Letten 11, 88634 Herdwangen-Schönach, Germany gBiology Institute of Eszterházy College, Eger, Pf. 43, H-3301, Hungary hDepartment of Biology I, University of Munich (LMU), Systematic Botany and Mycology, GeoBio-Center, Menzinger Strasse 67, 80638 Munich, Germany Abstract – Cheilolejeuneinae is an early diverging lineage of Lejeuneaceae tribe Lejeuneeae with a pantropical distribution. The current phylogeny and classification of this subtribe is based on morphological and limited-sampling molecular studies. Here we present a molecular phylogeny of Cheilolejeuneinae and related lineages based on maximum parsimony and maximum likelihood analyses, as well as Bayesian inference of two chloroplast regions (trnL-F, trnG) and the nuclear ribosomal ITS1-5.8S-ITS2 region, to test the monophyly of this subtribe, and to re-evaluate the infrageneric classification of Cheilolejeunea. -
NHBSS 041 2E Hilton Proced
NAT. NAT. HIST. BUL L. SIAM Soc. 41: 75-92 , 1993 PROCEDURES IN THAI ETHNOMYCOLOGY Roger N. Hilton* and Pannee Dhitaphichit** CONTENTS Page Page 守,守戸、 Introduction Introduction Jζ The The Nature of Fungi Fり勺 Mycological Mycological Literature 守fF 勾f。。。。凸ツ口ツ勺 Early Early R釘 ords Collecting Collecting 勺F Romanization Romanization of Local Languages 守''巧 Fungi Fungi as Food /0000000000 Fungi Fungi as Food 島10difiers 4q4 Poisonous Poisonous Fungi 勾 Medicinal Medicinal Fungi 3ζJζJ Hallucinogenic Hallucinogenic Fungi Fungus Fungus Structural Material Club Club heads. Fungal felt. Rhizomorph skirts. Miscellaneous Miscellaneous 0δ0606ζUζU00 References References Appendix Appendix INTRODUCTION In In assessing biological resources of rural communities anthropologists have paid due attention attention to plants and to animals. The sCIences of ethnobotany and ethnozoology are well- established. established. However , the third kingdom of living things , the Fungi , has been neglected. This This is partly because its prominent members are more evanescent than plants and animals. But a contributing factor is the unfamiliarity of these organisms , so that untrained field investigators investigators have no idea how to set about collecting and naming them. This paper is designed designed to give some of the uses to which fungi are known to be put , to explain how to collect collect them ,and to draw attention to publications that may be used. Formerly * Formerly Botany Department ,University of Westem Australia. Present address: 62 Viewway ,Nedlands , W.A. W.A. 6009 ,Australia. 判 Department of Applied Biology , King Mongku t' s Institute of Technology ,Ladkrabang ,Bangkok 10520 75 75 76 ROOER N. HILTON AND PANNEE DHITAPHICHIT It It could provide a background for looking into the references to fungi in the literature of of Southeast Asia. -
Bryological Times
The Bryological Times Volume 145 China – Australia International – In This Issue – Workshop for Karst Bryology in Guizhou, China, 3 rd – 7th August China – Australia International Workshop for Karst Bryology in Guizhou, China ........ 1 Alison Downing | Macquarie Another field-observation of a possible springtail-mediated moss sperm transfer University | Sydney, Australia | [email protected] ................................................................................. 5 At the bicentennial of Richard Spruce's Pina (Josephine) Milne | Royal birth ....................................................................... 6 Botanic Garden | Melbourne, IAB awardees ..................................................... 9 Australia | [email protected] Bryophyte Inventory for Rainy Pass ....... 10 The World Heritage listed South China Karst Curso-taller sobre hepáticas tropicales 11 2 encompasses about 550,000 km of subtropical to Report from the recipient of the 2017 tropical karst in Guizhou, Guangxi, Yunnan and Stanley Greene Award: Ecophysiological Chongqing provinces. The karst terrain includes specialization to climate .............................. 12 tower, cone and pinnacle karst, together with News from Australasia ................................. 13 massive caves, natural bridges, deep gorges, enormous sinkholes, karst waterfalls and News from the Spanish Bryological disappearing streams. Mountain slopes and peaks Society ............................................................... 14 are clothed in dark green -
Integrated Phylogenomic Analyses Reveal Recurrent Ancestral Large
bioRxiv preprint doi: https://doi.org/10.1101/603191; this version posted April 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Integrated phylogenomic analyses reveal recurrent ancestral large-scale 2 duplication events in mosses 3 4 Bei Gao1,2, Moxian Chen2,3, Xiaoshuang Li4, Yuqing Liang4,5, Daoyuan Zhang4, Andrew J. Wood6, Melvin J. Oliver7*, 5 Jianhua Zhang2,3,8* 6 7 1School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China. 8 2State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China. 9 3Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China. 10 4Key Laboratory of Biogeography and Bioresources, Xinjiang Institute of Ecology and Geography, Chinese Academy of 11 Sciences, Urumqi 830011, China. 12 5University of Chinese Academy of Sciences, Beijing 100049, China. 13 6Department of Plant Biology, Southern Illinois University-Carbondale, Carbondale, IL 62901-6509, USA. 14 7USDA-ARS-Plant Genetic Research Unit, University of Missouri, Columbia, MO 65211, USA. 15 8Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China. 16 17 *Correspondence: Jianhua Zhang: [email protected] and Melvin J. Oliver: [email protected] 18 19 20 Summary 21 • Mosses (Bryophyta) are a key group occupying important phylogenetic position for understanding land plant 22 (embryophyte) evolution. The class Bryopsida represents the most diversified lineage and contains more than 95% of the 23 modern mosses, whereas the other classes are by nature species-poor. -
4.4 Biological Resources
4.4 BIOLOGICAL RESOURCES INTRODUCTION This section describes the existing biological resources that occur or have the potential to occur within the Project Area and vicinity. In addition, a description of applicable regulations is provided. The analysis evaluates the potential impacts to biological resources that could occur in association with the development of property in the commercial districts and the implementation of the Mobility Element. The Land Use Element/Zoning Code Amendments would modify the development regulations and no specific projects are proposed at this time. Likewise, the roadway and trail alignments are conceptual in nature. Therefore, the analysis is evaluated at a program‐level. With a programmatic study, such as this EIR, subsequent projects carried out under the proposed Land Use Element/ Zoning Code Amendments and Mobility Element Update may warrant site specific biological assessments and surveys once plans have been prepared. 1. ENVIRONMENTAL SETTING a. Regulatory Framework As part of the proposed Project’s review and approval there are a number of performance criteria and standard conditions that must be met. These include compliance with all of the terms, provisions, and requirements of applicable laws that relate to Federal, State, and local regulating agencies for impacts to biological resources. The following provides an overview of the applicable regulations with regard to the biological resources that may be present within the Project Area. (1) Federal (a) Migratory Bird Treaty Act The Migratory Bird Treaty Act (MBTA) protects individuals as well as any part, nest, or eggs of any bird listed as migratory. In practice, Federal permits issued for activities that potentially impact migratory birds typically have conditions that require pre‐disturbance surveys for nesting birds. -
AMBRA1 Controls Plant Development and Senescence in Physcomitrella Patens
Presentation type: Oral Presentation, Poster Presentation (underline the preferred type) AMBRA1 controls plant development and senescence in Physcomitrella patens. Alessandro Alboresi1, Jessica Ceccato1, Tomas Morosinotto1, Luisa Dalla Valle1. The first one should be the presenting/corresponding author (underlined) 1Dipartimento di Biologia, Università di Padova, Via Ugo Bassi 58/B, 35121, Padova ([email protected]; [email protected]; [email protected]) Autophagy is a universal mechanism that in plants control development, resistance to stresses and starvation. The role of autophagy is possible thanks to the programmed degradation of cell material that is delivered to the vacuole where hydrolases and proteases are localized. So far, many autophagy-related proteins (ATGs) have been identified. Some of them are universal, some are either specific to animals, plants or yeast. ATG protein complexes govern autophagosome initiation, nucleation, expansion, and maturation. In particular, the regulation of nucleation by the ATG6 (Beclin-1 in mammals) complex has not been well defined in plants. Here we described the study of the Activating Molecule in Beclin 1-Regulated Autophagy (AMBRA1) protein, recently identified in mice and then characterized in our department in zebrafish and in the non-vertebrate chordate Botryllus schlosseri. In animals AMBRA1 is a positive regulator of autophagy that binds Beclin-1 upon autophagic stimuli. AMBRA1 is a large intrinsically disordered protein, able to bind other regulatory partners involved in cell processes such as autophagy, apoptosis, cell proliferation, development and cancer. AMBRA1 sequence was found in plant genomes and we are studying its function in Physcomitrella patens where two lowly expressed genes are present, AMBRA1a and AMBRA1b. -
Evolution and Networks in Ancient and Widespread Symbioses Between Mucoromycotina and Liverworts
This is a repository copy of Evolution and networks in ancient and widespread symbioses between Mucoromycotina and liverworts. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/150867/ Version: Published Version Article: Rimington, WR, Pressel, S, Duckett, JG et al. (2 more authors) (2019) Evolution and networks in ancient and widespread symbioses between Mucoromycotina and liverworts. Mycorrhiza, 29 (6). pp. 551-565. ISSN 0940-6360 https://doi.org/10.1007/s00572-019-00918-x Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Mycorrhiza (2019) 29:551–565 https://doi.org/10.1007/s00572-019-00918-x ORIGINAL ARTICLE Evolution and networks in ancient and widespread symbioses between Mucoromycotina and liverworts William R. Rimington1,2,3 & Silvia Pressel2 & Jeffrey G. Duckett2 & Katie J. Field4 & Martin I. Bidartondo1,3 Received: 29 May 2019 /Accepted: 13 September 2019 /Published online: 13 November 2019 # The Author(s) 2019 Abstract Like the majority of land plants, liverworts regularly form intimate symbioses with arbuscular mycorrhizal fungi (Glomeromycotina).