Moss Cell Walls: Structure and Biosynthesis Alison W

Total Page:16

File Type:pdf, Size:1020Kb

Moss Cell Walls: Structure and Biosynthesis Alison W University of Rhode Island DigitalCommons@URI Biological Sciences Faculty Publications Biological Sciences 2012 Moss cell walls: structure and biosynthesis Alison W. Roberts University of Rhode Island, [email protected] Eric M. Roberts See next page for additional authors Creative Commons License This work is licensed under a Creative Commons Attribution 3.0 License. Follow this and additional works at: https://digitalcommons.uri.edu/bio_facpubs Citation/Publisher Attribution Roberts AW, Roberts EM and Haigler CH (2012) Moss cell walls: structure and biosynthesis. Front. Plant Sci. 3:166. doi: 10.3389/ fpls.2012.00166 Available at: https://doi.org/10.3389/fpls.2012.00166 This Article is brought to you for free and open access by the Biological Sciences at DigitalCommons@URI. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. Authors Alison W. Roberts, Eric M. Roberts, and Candace H. Haigler This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/bio_facpubs/205 MINI REVIEW ARTICLE published: 19 July 2012 doi: 10.3389/fpls.2012.00166 Moss cell walls: structure and biosynthesis Alison W. Roberts1*, Eric M. Roberts2 and Candace H. Haigler3,4 1 Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA 2 Department of Biology, Rhodes Island College, Providence, RI, USA 3 Department of Crop Science, North Carolina State University, Raleigh, NC, USA 4 Department of Plant Biology, North Carolina State University, Raleigh, NC, USA Edited by: The genome sequence of the moss Physcomitrella patens has stimulated new research Seth DeBolt, University of Kentucky, examining the cell wall polysaccharides of mosses and the glycosyl transferases that syn- USA thesize them as a means to understand fundamental processes of cell wall biosynthesis Reviewed by: and plant cell wall evolution. The cell walls of mosses and vascular plants are composed of Vincent Bulone, Royal Institute of Technology, Sweden the same classes of polysaccharides, but with differences in side chain composition and Gregory Buda, Cornell University, USA structure. Similarly, the genomes of P.patens and angiosperms encode the same families *Correspondence: of cell wall glycosyl transferases, yet, in many cases these families have diversified inde- Alison W. Roberts, Department of pendently in each lineage. Our understanding of land plant evolution could be enhanced Biological Sciences, University of by more complete knowledge of the relationships among glycosyl transferase functional Rhode Island, 120 Flagg Road, Kingston, RI 02881, USA. diversification, cell wall structural and biochemical specialization, and the roles of cell walls e-mail: [email protected] in plant adaptation. As a foundation for these studies, we review the features of P.patens as an experimental system, analyses of cell wall composition in various moss species, recent studies that elucidate the structure and biosynthesis of cell wall polysaccharides in P. patens, and phylogenetic analysis of P. patens genes potentially involved in cell wall biosynthesis. Keywords: cell wall, polysaccharide, cellulose, cellulose synthesis complex, glycosyl transferase, moss, Physcomitrella patens MOSS BIOLOGY AND EVOLUTION by diploid sporophytes, which develop from eggs fertilized by The common ancestor of land plants is believed to have resem- swimming sperm at the gametophore apex (Schumaker and bled extant mosses in having a biphasic life cycle with a dominant Dietrich, 1998). haploid gametophyte and rudimentary adaptations for tolerating Although structurally simple, moss gametophytes contain dif- the aerial environment. Because they have retained these charac- ferent cell types. The protonema is differentiated into chloroplast- teristics, mosses are often referred to as “lower” plants (Mishler rich chloronemal cells and caulonemal cells, which elongate three and Oliver, 2009). Despite this designation, mosses are highly suc- times faster (Menand et al., 2007). In response to dehydration cessful, comprising more than 10,000 species adapted to diverse stress, protonemal cells resume division and differentiate into habitats ranging from submerged aquatic to desert (Buck and thick-walled, dehydration-tolerant brachycytes, and subtending Goffinet, 2000). Mosses differ from vascular plants in the strat- tmema cells, which undergo programmed cell death (Decker et al., egy they employ to survive in the dry aerial environment. Vascular 2006). Gametophores include a stem, leaves, axillary hairs, and plants are homeohydric with a thick cuticle to reduce dehydra- rhizoids. The stem typically consists of small, thick-walled epi- tion, roots to extract water from the soil, and vascular tissue dermal and subepidermal cells, thin-walled parenchyma cells, to distribute water internally. In contrast, mosses are poikilo- and conducting cells. The conducting cells include hydroids hydric, depending on a surface film of free water to maintain and leptoids, which are functionally analogous to xylem and hydration. Although some mosses are confined to aquatic habitats, phloem (Buck and Goffinet, 2000). Similar to tracheary ele- many are dehydration tolerant and some are desiccation tolerant ments, hydroids are dead at maturity and connected by perfora- (Mishler and Oliver, 2009). tions, but they lack thick lignified secondary cell walls (Hebant, The life cycle, morphology, and biochemistry of mosses have 1977). Leaves are typically one cell layer thick except for the been influenced by selective pressure associated with poikilohydry. midribs and margins, which may consist of multiple layers of Because cellular water status is controlled by surface absorption differentiated cells. Leaf cells of Sphagnum species include pho- and diffusion, moss organs are small and thin, and lignin is not tosynthetic chlorocytes and hyalocytes with elaborate cell wall required to provide support against gravity or the negative pres- thickenings. Other leaf cell specializations include papillae and sures generated during transpiration (Mishler and Oliver, 2009). various surface elaborations. Additional differentiated cell types In most mosses, haploid spores produce protonemal filaments form the gametangia, gametes, and sterile paraphyses. The that extend by apical division and tip growth (Figure 1). The sporophyte stalk, sporangium, and spores also consist of spe- filaments produce buds that develop into leafy gametophores, cialized cell types (Buck and Goffinet, 2000), including stomata which enlarge by diffuse growth. Haploid spores are produced (Sack and Paolillo, 1983). www.frontiersin.org July 2012 | Volume 3 | Article 166 | 1 “fpls-03-00166” — 2012/7/18 — 14:17 — page1—#1 Roberts et al. Moss cell walls FIGURE 1 | Development of Physcomitrella patens. A haploid secondary caulonemata (not shown), or buds. Buds develop into leafy spore or protoplast germinates to form a primary chloronema with gametophores, which produce apical gametangia. Fertilization of an numerous chloroplasts and transverse cross walls, which subsequently egg by swimming sperm at the gametophore apex produces a zygote, differentiates into a more rapidly growing primary caulonema with fewer which develops into a diploid sporophyte consisting of a stalk and chloroplasts and oblique cross walls. The caulonemal subapical cells divide sporangium (not shown). Meiotic divisions within the sporangium generate to produce initials cells, which develop into lateral secondary chloronemata, haploid spores. Although mosses share a poikilohydric ecological strategy and PHYSCOMITRELLA PATENS, THE MODEL MOSS SPECIES common body plan, their diversification and colonization of As a member of the Funariales, Physcomitrella patens occupies different habitats have been accompanied by the evolution of spe- a phylogenetic position at the base of the true mosses. As an cialized morphological and biochemical adaptations that must be inhabitant of moist soils that tolerates dehydration, but not des- considered when inferring evolutionary trends from compara- iccation, it represents a “primitive moss ecology” (Mishler and tive studies of mosses and vascular plants. The mosses diverged Oliver, 2009). This lack of specialization for extreme conditions from the land plant lineage between the liverworts and the horn- combined with abundant genomic resources (Rensing et al., 2008), worts, which most recent phylogenies place as sister to the vascular efficient production of transgenic genotypes, and ease of culture plants. The moss lineage includes the“true mosses”and three early and experimental manipulation (Cove, 2005)providesanoppor- divergent and ecologically specialized lineages, the aquatic Sphag- tunity to relate the diversification of gene families to innovations nales, the desiccation-tolerant rock-dwelling Andreales, and the in cell wall composition, structure, and development that accom- morphologically diverse Polytricales (Mishler and Oliver, 2009). panied the adaptation of plants to life on land. Other advantages Whereas mosses have retained primitive aspects of cell wall struc- of P. patens include the ability to produce large amounts of tissue ture and composition due to poikilohydry, they have also evolved consisting of a single cell type (chloronemal filaments) and rapid special cell wall adaptations that enabled them to colonize diverse cell wall regeneration in protoplasts (Lee et al., 2005a; Lawton and habitats.
Recommended publications
  • Translocation and Transport
    Glime, J. M. 2017. Nutrient Relations: Translocation and Transport. Chapt. 8-5. In: Glime, J. M. Bryophyte Ecology. Volume 1. 8-5-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 17 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 8-5 NUTRIENT RELATIONS: TRANSLOCATION AND TRANSPORT TABLE OF CONTENTS Translocation and Transport ................................................................................................................................ 8-5-2 Movement from Older to Younger Tissues .................................................................................................. 8-5-6 Directional Differences ................................................................................................................................ 8-5-8 Species Differences ...................................................................................................................................... 8-5-8 Mechanisms of Transport .................................................................................................................................... 8-5-9 Source to Sink? ............................................................................................................................................ 8-5-9 Enrichment Effects ..................................................................................................................................... 8-5-10 Internal Transport
    [Show full text]
  • Lehman Caves Management Plan
    National Park Service U.S. Department of the Interior Great Basin National Park Lehman Caves Management Plan June 2019 ON THE COVER Photograph of visitors on tour of Lehman Caves NPS Photo ON THIS PAGE Photograph of cave shields, Grand Palace, Lehman Caves NPS Photo Shields in the Grand Palace, Lehman Caves. Lehman Caves Management Plan Great Basin National Park Baker, Nevada June 2019 Approved by: James Woolsey, Superintendent Date Executive Summary The Lehman Caves Management Plan (LCMP) guides management for Lehman Caves, located within Great Basin National Park (GRBA). The primary goal of the Lehman Caves Management Plan is to manage the cave in a manner that will preserve and protect cave resources and processes while allowing for respectful recreation and scientific use. More specifically, the intent of this plan is to manage Lehman Caves to maintain its geological, scenic, educational, cultural, biological, hydrological, paleontological, and recreational resources in accordance with applicable laws, regulations, and current guidelines such as the Federal Cave Resource Protection Act and National Park Service Management Policies. Section 1.0 provides an introduction and background to the park and pertinent laws and regulations. Section 2.0 goes into detail of the natural and cultural history of Lehman Caves. This history includes how infrastructure was built up in the cave to allow visitors to enter and tour, as well as visitation numbers from the 1920s to present. Section 3.0 states the management direction and objectives for Lehman Caves. Section 4.0 covers how the Management Plan will meet each of the objectives in Section 3.0.
    [Show full text]
  • Distribution and Phylogenetic Significance of the 71-Kb Inversion
    Annals of Botany 99: 747–753, 2007 doi:10.1093/aob/mcm010, available online at www.aob.oxfordjournals.org Distribution and Phylogenetic Significance of the 71-kb Inversion in the Plastid Genome in Funariidae (Bryophyta) BERNARD GOFFINET1,*, NORMAN J. WICKETT1 , OLAF WERNER2 , ROSA MARIA ROS2 , A. JONATHAN SHAW3 and CYMON J. COX3,† 1Department of Ecology and Evolutionary Biology, 75 North Eagleville Road, University of Connecticut, Storrs, CT 06269-3043, USA, 2Universidad de Murcia, Facultad de Biologı´a, Departamento de Biologı´a Vegetal, Campus de Espinardo, 30100-Murcia, Spain and 3Department of Biology, Duke University, Durham, NC 27708, USA Received: 31 October 2006 Revision requested: 21 November 2006 Accepted: 21 December 2006 Published electronically: 2 March 2007 † Background and Aims The recent assembly of the complete sequence of the plastid genome of the model taxon Physcomitrella patens (Funariaceae, Bryophyta) revealed that a 71-kb fragment, encompassing much of the large single copy region, is inverted. This inversion of 57% of the genome is the largest rearrangement detected in the plastid genomes of plants to date. Although initially considered diagnostic of Physcomitrella patens, the inversion was recently shown to characterize the plastid genome of two species from related genera within Funariaceae, but was lacking in another member of Funariidae. The phylogenetic significance of the inversion has remained ambiguous. † Methods Exemplars of all families included in Funariidae were surveyed. DNA sequences spanning the inversion break ends were amplified, using primers that anneal to genes on either side of the putative end points of the inver- sion. Primer combinations were designed to yield a product for either the inverted or the non-inverted architecture.
    [Show full text]
  • M.Sc. BOTANY SEMESTER - I BO- 7115 PAPER - I DIVERSITY of VIRUSES, MYCOPLASMA, BACTERIA and FUNGI (60 Hrs)
    ST. JOSEPH'S COLLEGE (AUTONOMOUS) M.Sc. BOTANY SEMESTER - I BO- 7115 PAPER - I DIVERSITY OF VIRUSES, MYCOPLASMA, BACTERIA AND FUNGI (60 Hrs) Unit I Five kingdom, Eight kingdom classification and Three domains of 02 hrs living organisms. Unit -II Viruses – general characters, nomenclature, classification; 08 hrs morphology, structure, transmission and replication. Purification of plant viruses. Symptoms of viral diseases in plants Mycoplasma – General characters , classification ,ultrastructure 05 hrs Unit-III and reproduction. Brief account of mycoplasmal diseases of plants- Little leaf of Brinjal. Unit -IV Bacteria –Forms, distribution and classification according to 12 hrs Bergy’s System, Classification based on DNA-DNA hybridization, 16s rRNA sequencing; Nutritional types: Autotrophic, heterotrophic, photosynthetic,chemosynthetic,saprophytic,parasitic and symbiotic ; A brief account on methonogenic bacteria ; Brief account of Actinomycetes and their importance in soil and medical microbiology. Unit – V Fungi 20 hrs General characteristics, Classification (Ainsworth 1973, McLaughlin 2001), structure and reproduction. Salient features of Myxomycota, Mastigomycotina, Zygomycotina, Ascomycotina, Basidiomycotina and Deuteromycotina and their classificafion upto class level. Unit - VI Brief account of fungal heterothallism, sex hormones and 09 hrs Parasexual cycle. Brief account of mycorrhizae,lichens, fungal symbionts in insects, fungi as biocontrol agents ( Trichoderma and nematophagous). Unit – VII Isolation, purification and culturing of microorganisms 04 hrs (bacteria and fungi). 1 PRACTICALS: Micrometry. Haemocytometer. Isolation, culture and staining techniques of Bacteria and Fungi. Type study: Stemonites, Synchytrium, Saprolegnia, Albugo, Phytophthora, Mucor/Rhizopus , Erysiphe, Aspergillus, Chaetomium, Pencillium, Morchella, Hamileia, Ustilago Lycoperdon, Cyathes, Dictyophora, Polyporus, Trichoderma, Curvularia, Alternaria, Drechslera and Pestalotia. Study of few bacterial, viral, mycoplasmal diseases in plants (based on availability).
    [Show full text]
  • MOLECULAR BASIS of SALT TOLERANCE in Physcomitrella Patens MODEL PLANT: POTASSIUM HOMEOSTASIS and PHYSIOLOGICAL ROLES of CHX TRANSPORTERS
    UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS DEPARTAMENTO DE BIOTECNOLOGÍA MOLECULAR BASIS OF SALT TOLERANCE IN Physcomitrella patens MODEL PLANT: POTASSIUM HOMEOSTASIS AND PHYSIOLOGICAL ROLES OF CHX TRANSPORTERS. Director: Alonso Rodríguez Navarro Profesor Emérito, E.T.S.I. Agrónomos Universidad Politécnica de Madrid TESIS DOCTORAL SHADY ABDEL MOTTALEB MADRID, 2013 MOLECULAR BASIS OF SALT TOLERANCE IN Physcomitrella patens MODEL PLANT: POTASSIUM HOMEOSTASIS AND PHYSIOLOGICAL ROLES OF CHX TRANSPORTERS. Memoria presentada por SHADY ABDEL MOTTALEB para la obtención del grado de Doctor por la Universidad Politécnica de Madrid Fdo. Shady Abdel Mottaleb VºBº Director de Tesis: Fdo. Dr. Alonso Rodríguez-Navarro Profesor emérito Departamento de Biotecnología ETSIA- Universidad Politécnica de Madrid Madrid, Septiembre 2013 To my family i ACKNOWLEDGEMENTS This work would not have been possible without the collaboration and inspiration of many people. First of all, I would like to express my deep appreciation to my supervisor and mentor Alonso Rodríguez Navarro for giving me this once-in-a- lifetime opportunity to both studying what I like most and developing my professional career. For integrating me in his research group, introducing me to novel research topics and for his constant support at both personal and professional level. I owe a debt of gratitude to Rosario Haro for her unconditional help, ongoing support and care during my thesis. For teaching me to pay attention to the details of everything and for her immense efforts in supervising all the experiments of this thesis. I also feel grateful to Begoña Benito for her constant help and encouragement, for her useful advice and for always being available to answer my questions at anytime with enthusiasm and a pleasant smile.
    [Show full text]
  • An Examination of Leaf Morphogenesis in the Moss, Physcomitrella Patens, in an Oral Examination Held on August 30, 2011
    AN EXAMINATION OF LEAF MORPHOGENESIS IN THE MOSS, PHYSCOMITRELLA PATENS A Thesis Submitted to the Faculty of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In Biology University of Regina By Elizabeth Io Barker Regina, Saskatchewan August, 2011 Copyright 2011: E.I. Barker UNIVERSITY OF REGINA FACULTY OF GRADUATE STUDIES AND RESEARCH SUPERVISORY AND EXAMINING COMMITTEE Elizabeth Barker, candidate for the degree of Doctor of Philosophy in Biology, has presented a thesis titled, An Examination of Leaf Morphogenesis In The Moss, Physcomitrella Patens, in an oral examination held on August 30, 2011. The following committee members have found the thesis acceptable in form and content, and that the candidate demonstrated satisfactory knowledge of the subject material. External Examiner: Dr. David Cove, University of Leeds Supervisor: Dr. Neil Ashton, Department of Biology Committee Member: Dr. Harold Weger, Department of Biology Committee Member: Dr. William Chapco, Department of Biology Committee Member: *Dr. Janis Dale, Department of Geology Chair of Defense: Dr. Philip Charrier. Department of History *Not present at defense ABSTRACT Physcomitrella patens is a simple model plant belonging to the bryophytes, which diverged from the tracheophytes approximately 500 million years ago. The leaves of the moss are similar in form to vascular plant leaves although leaves evolved independently in the bryophyte and tracheophyte lineages. Close examination of the morphology of Physcomitrella leaves and investigation of the morphogenetic processes that result in the leaf form and of the hormonal and genetic regulation of those processes will elucidate the evolutionary trajectory of moss leaves.
    [Show full text]
  • О Систематическом Положении Рода Discelium (Bryophyta) Michael S
    Arctoa (2016) 25: 278–284 doi: 10.15298/arctoa.25.21 ON THE SYSTEMATIC POSITION OF DISCELIUM (BRYOPHYTA) О СИСТЕМАТИЧЕСКОМ ПОЛОЖЕНИИ РОДА DISCELIUM (BRYOPHYTA) MICHAEL S. IGNATOV1,2, VLADIMIR E. FEDOSOV1, ALINA V. F EDOROVA3 & ELENA A. IGNATOVA1 МИХАИЛ С. ИГНАТОВ1,2, ВЛАДИМИР Э. ФЕДОСОВ1, АЛИНА В. ФЕДОРОВА3, ЕЛЕНА А. ИГНАТОВА1 Abstract Results of molecular phylogenetic analysis support the position of the genus Discelium in the group of diplolepideous opposite mosses, Funariidae; however, its affinity is stronger with Encalyptales than with Funariales, where it is currently placed. A number of neglected morphological characters also indicate that Discelium is related to Funariales no closer than to Encalyptales, and thus new order Disceliales is proposed. Within the Encalyptaceae a case of strong sporophyte reduction is revealed. Bryobartramia appeared to be nested in Encalypta sect. Rhabdotheca, thus this genus is synonymized with Encalypta. Резюме Молекулярно-филогенетический анализ подтвердил положение рода Discelium в группе диплолепидных мхов с перистомом с супротивным расположением его элементов, или подклассе Funariidae, однако указал на родство с порядком Encalyptales, а не с Funariales, в который его обычно относили. Ряд редко учитываемых морфологических признаков также свидетельствует в пользу лишь отдаленного родства с Funariaceae. Предложено выделение Discelium в отдельный порядок Disceliales. В Encalyptaceae выявлен случай сильной редукции спорофита. Выявлено положение Bryobartramia в пределах рода Encalypta, в котором он имеет близкое родство с терминальными группами видов с гетерополярными спорами. Таким образом, Bryobartramia отнесена в синонимы к роду Encalypta. KEYWORDS: mosses, taxonomy, molecular phylogenetics, new order INTRODUCTION observation revealed the peristomial formula of Discelium The genus Discelium Brid. represents a small moss is 4:2(–4):4 with opposite position of exostome and with a strongly reduced gametophore.
    [Show full text]
  • Morphology of Mosses (Phylum Bryophyta)
    Morphology of Mosses (Phylum Bryophyta) Barbara J. Crandall-Stotler Sharon E. Bartholomew-Began With over 12,000 species recognized worldwide (M. R. Superclass IV, comprising only Andreaeobryum; and Crosby et al. 1999), the Bryophyta, or mosses, are the Superclass V, all the peristomate mosses, comprising most most speciose of the three phyla of bryophytes. The other of the diversity of mosses. Although molecular data have two phyla are Marchantiophyta or liverworts and been undeniably useful in identifying the phylogenetic Anthocerotophyta or hornworts. The term “bryophytes” relationships among moss lineages, morphological is a general, inclusive term for these three groups though characters continue to provide definition of systematic they are only superficially related. Mosses are widely groupings (D. H. Vitt et al. 1998) and are diagnostic for distributed from pole to pole and occupy a broad range species identification. This chapter is not intended to be of habitats. Like liverworts and hornworts, mosses an exhaustive treatise on the complexities of moss possess a gametophyte-dominated life cycle; i.e., the morphology, but is aimed at providing the background persistent photosynthetic phase of the life cycle is the necessary to use the keys and diagnostic descriptions of haploid, gametophyte generation. Sporophytes are this flora. matrotrophic, permanently attached to and at least partially dependent on the female gametophyte for nutrition, and are unbranched, determinate in growth, Gametophyte Characters and monosporangiate. The gametophytes of mosses are small, usually perennial plants, comprising branched or Spore Germination and Protonemata unbranched shoot systems bearing spirally arranged leaves. They rarely are found in nature as single isolated A moss begins its life cycle when haploid spores are individuals, but instead occur in populations or colonies released from a sporophyte capsule and begin to in characteristic growth forms, such as mats, cushions, germinate.
    [Show full text]
  • Universidad De Murcia
    UNIVERSIDAD DE MURCIA FACULTAD DE BIOLOGÍA Genetic variability in mosses and its relation to climate change adaptation processes in Mediterranean environments Variabilidad genética en musgos y su relación con procesos adaptativos al cambio climático en ambientes Mediterráneos D. Mahmoud Magdy Abdallah Awad 2013 UNIVERSIDAD DE MURCIA FACULTAD DE BIOLOGÍA Genetic variability in mosses and its relation to climate change adaptation processes in Mediterranean environments Thesis to obtain the Ph.D. title, presented by Mahmoud Magdy Abdallah Awad M.Sc. Murcia University, B.Sc. Ain Shams University This study was realized in the Department of Plant Biology of Murcia University, under the direction and supervision of Dr. Olaf Franziskus Werner and Dr. Rosa María Ros Espín Dr. Olaf Franziskus Werner Dr. Rosa María Ros Espín Ph.D. Heidelberg University Ph.D. Murcia University Murcia, March 2013 To my family, especially Samah, my wife ACKNOWLEDGMENTS The present study has been done with the intensive help and guidance of Dr. Olaf Franziskus Werner and Dr. Rosa María Ros Espín. Due to their great discussions, exchange of intellectual information, comments, critics, kindness and friendship, I will always be in debt for their great help and support. I am also grateful for the personal and scientific comportment of my lab mate and best friend Sergio Pisa Martín and his family to my life during the last four years in Murcia. I owe an especial gratitude to Dr. Bernard Goffinet (Connecticut University, U. S. A.) for sharing valuable information, which was of great impact to the current work. Many thanks to Dr. Adnan Erdağ (Menderes University, Turkey), Dr.
    [Show full text]
  • Hypnales, Brachytheciaceae) Denis V
    The mitochondrial genome of moss Brachythecium rivulare B.S.G. (Hypnales, Brachytheciaceae) Denis V. Goryunov, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia [email protected] Maria D. Logacheva Belozersky Institute of Physico-Chemical Biology and Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia [email protected] Michail S. Ignatov Main Botanical Garden RAS, Moscow, Russia [email protected] Alexey V. Troitsky Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia [email protected] The liverworts and mosses (bryophytes sensu lato) are the basal groups of higher plants diverged more than 450 million years ago (myr). The primary terrestrial biotopes formed by bryophytes were an important spots for subsequent invasion on land of other plants. To date there is no comprehensive scenario of this crucial step of plants evolution. Now, one possible way to clarify some evolution obscurities is a comparative genomics approach. However, until now bryophyte genomics is on some initial stage of its progress especially in comparison with other groups of plants. To date, the nuclear genome sequence as two scaffolds available for a single moss species - Physcomitrella patens, and for two species plastid genomes are known. Mitochondrial genomes also from only two moss species from different subclasses Bryidae and Funariidae are deposited in NCBI GenBank: Anomodon rugelii (Hypnales, Anomodontaceae) and P. patens (Funariales, Funariaceae). Taking into account the great diversity of bryophytes (in number of species, they are not inferior angiosperms) from one hand and scanty bryophyte mitochondrial genome data on the other hand, we sequenced and annotated mitochondrial genome of Brachythecium rivulare (as a part of whole genome sequencing project for this species).
    [Show full text]
  • 2447 Introductions V3.Indd
    BRYOATT Attributes of British and Irish Mosses, Liverworts and Hornworts With Information on Native Status, Size, Life Form, Life History, Geography and Habitat M O Hill, C D Preston, S D S Bosanquet & D B Roy NERC Centre for Ecology and Hydrology and Countryside Council for Wales 2007 © NERC Copyright 2007 Designed by Paul Westley, Norwich Printed by The Saxon Print Group, Norwich ISBN 978-1-85531-236-4 The Centre of Ecology and Hydrology (CEH) is one of the Centres and Surveys of the Natural Environment Research Council (NERC). Established in 1994, CEH is a multi-disciplinary environmental research organisation. The Biological Records Centre (BRC) is operated by CEH, and currently based at CEH Monks Wood. BRC is jointly funded by CEH and the Joint Nature Conservation Committee (www.jncc/gov.uk), the latter acting on behalf of the statutory conservation agencies in England, Scotland, Wales and Northern Ireland. CEH and JNCC support BRC as an important component of the National Biodiversity Network. BRC seeks to help naturalists and research biologists to co-ordinate their efforts in studying the occurrence of plants and animals in Britain and Ireland, and to make the results of these studies available to others. For further information, visit www.ceh.ac.uk Cover photograph: Bryophyte-dominated vegetation by a late-lying snow patch at Garbh Uisge Beag, Ben Macdui, July 2007 (courtesy of Gordon Rothero). Published by Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire, PE28 2LS. Copies can be ordered by writing to the above address until Spring 2008; thereafter consult www.ceh.ac.uk Contents Introduction .
    [Show full text]
  • FUNARIA HYGROMETRICA HEDW. (FUNARIACEAE) from BANGLADESH 1 KHURSHIDA BANU-FATTAH Department of Botany, Ananda Mohan University College, Mymensingh, Bangladesh
    Bangladesh J. Bot. 34(2): 121-124, 2005 (December) Short communication FUNARIA HYGROMETRICA HEDW. (FUNARIACEAE) FROM BANGLADESH 1 KHURSHIDA BANU-FATTAH Department of Botany, Ananda Mohan University College, Mymensingh, Bangladesh Key words: Funaria hygrometrica, Acrocarpous moss, Funariaceae, Bangladesh Abstract Funaria hygrometrica Hedw. an Acrocarpous moss of the family Funariaceae under the order Funariales is described and illustrated with a short note and its world-wide distribution. This moss is autoicous, bright green, leaves rosette at the apex on short slender stem. Capsule, strongly asymmetric, often arcuate, pyriform. Peristome teeth epicranoid, spirally arranged. Operculum without apiculus. Calyptra cucullate. Spores spherical, small and smooth. Funaria hygrometrica Hedw. is one of the most known species among Acrocarpous mosses. It is a cosmopolitan species which is present all over the world and usually found in hilly areas thriving best in tropical and temperate zones. While working with mosses of Tangail and Mymensingh districts the author came across with an interesting group of plants collected from damp soil, Ghatail, Tangail. The plants were carefully separated out, and they looked like Physcomitrium (Brid.) Fuernr. species by their gametophytic appearance but the sporophyte was distinctly different. After a thorough and careful examination the plant was identified as Funaria hygrometrica Hedw. of the family Funariaceae under the order Funariales following the description and illustration given by Gangulee (1974) in his monograph. The author expected and always looked for this moss as two other genera of Funariaceae Physcomitrium (Brid.) Fuernr. and Entosthodon Schwaegr. which are very close to Funaria are quite common in Bangladesh. They grow on damp soil and are abundant during winter season (Banu 1991).
    [Show full text]