Apical Cell Segmentation and Its Relationship to the Peristome-Forming Layers in the Funariaceae Author(S): Owen M

Total Page:16

File Type:pdf, Size:1020Kb

Apical Cell Segmentation and Its Relationship to the Peristome-Forming Layers in the Funariaceae Author(S): Owen M Apical Cell Segmentation and Its Relationship to the Peristome-Forming Layers in the Funariaceae Author(s): Owen M. Schwartz Source: International Journal of Plant Sciences, Vol. 158, No. 3 (May, 1997), pp. 236-248 Published by: The University of Chicago Press Stable URL: http://www.jstor.org/stable/2475273 Accessed: 17/11/2010 10:28 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ucpress. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press is collaborating with JSTOR to digitize, preserve and extend access to International Journal of Plant Sciences. http://www.jstor.org Int. J. Plant Sci. 158(3):236-248. 1997. ? 1997 by The Universityof Chicago. All rightsreserved. 1058-5893/97/5803-0002$03.00 APICALCELL SEGMENTATION ANDITS RELATIONSHIP TOTHE PERISTOME-FORMINGLAYERS IN THEFUNARIACEAE OWEN M. SCHWARTZ' Departmentof Botany,Duke University,Durham, North Carolina 27706 Six taxa in the Funariaceae were examined to compare developmentand cell division patternsin moss capsules with and withoutperistome teeth. The peristomedifferentiates from a series of apical cell segmentsthat are foundto develop by a similar patternof cell divisions. The youngestapical cell segmentsdo not complete the entiredevelopmental sequence observed in the more proximalsegments. Few differencesin developmentwere foundamong the taxa, other than in the timingof transversecell divisions. Segmentsin the gymnostomoustaxa (Ephemerum,Aphanorrhegma) do not complete the entire sequence of divisions, with only three amphitheciallayers present in the mature capsule. Spiralingof the peristometeeth of Funaria is suggestedto be the resultof differentialcell expansionduring the course of developmentof the distal apical cell segments,although oblique division of the apical cell mightalso be responsible for the spiralingof the cell files. Moss sporophytesare bilaterallysymmetrical in theirdevelopment although forming a radially symmetricalcapsule. Because peristometeeth differentiate from several differentlevels in several different segments,cell position as well as cell lineage obviously is responsiblefor guidingdifferentiation. Introduction these apical cell derivativeshave been describedmany times,although not withrespect to peristometooth for- Although aspects of peristomedevelopment in the mation (De Bary 1884; Kienitz-Gerloff1878; Sachs Funariales have been studied for more than a century 1887; Goebel 1905; Evans and Hooker 1913). Some (Sachs 1887; Goebel 1905; Campbell 1913; Smith differencesin the orientationof early divisions in the 1955; Proskauer1958; Shaw et al. 1987, 1989), apical segmentsof Funaria and Ephemerumwere described segmentationand its relationshipto peristomedevel- but were not traced to the final morphologyof the opment have not been well documented.Aside from capsule. studies on embryology,nearly all published illustra- The sequence of cell divisions withina given seg- tions are of cross sections of sporophytes,probably ment of certainother taxa has been described as ex- because the importantsystematic characters associated tremelyregular. In the shoot apices of liverworts,a with the peristomeare usually seen in this plane of precise series of cell divisions within each segment section. In particular,development as viewed in three gives rise to leaves and lateral branches in specific dimensions has never been fully explored. A three- positions (Schuster 1966). Precise patternsof cell di- dimensionalview of developmentreveals the relation- vision withinsegments in the roots of heterosporous ship between cell lineages, segments sensu Gifford ferns,e.g., Azolla, also show thatcell position within (1983), Gunning(1978), and Schuster(1966), and dif- a segmentguided differentiation(Chiang 1970; Gun- ferentiation. ning et al. 1978). In contrast,initiation of leaf primor- A single meristematicinitial is presentat the apex dia in fern apices depends only on position on the of the Funaria sporophyte(Hofmeister 1862). Deriv- apex, withno regardto segmentboundaries (Bierhorst atives of the apical cell, oftenreferred to as segments, 1977). Are segmentboundaries and cell positionwith- are formedby inclinedtransverse divisions on two cut- in a given segmentimportant in guidingdifferentiation two vertical tingfaces, and derivativesare arrangedin of peristometeeth? Regular patternsof cell division files on opposite sides of the sporophyteaxis. Early in and leaf initiationwithin segmentsof moss gameto- the cell divides sporophytegrowth, apical frequently phyteshave been reported(Merl 1917; Berthier1971- (Hebant 1973), cuttingoff 10-14 segments.From two 72), but segmentationin moss sporophyteshas not of the earliestapical cell segments,an intercalarymer- been completelyinvestigated. The lack of information istem differentiates(Roth 1969; French and Paolillo led Proskauer(1958) to point out thatthe relationship 1975, 1976). Elongation of the intercalarymeristem of the peristomiallayers to apical cell segmentation derivativesis responsiblefor the increase in lengthof had never been properlydescribed. the seta portionof the sporophyte.Segments formed I initiatedthis investigationto resolve differingde- afterthose differentiatinginto the intercalarymeristem in the literatureand to relate apical cell seg- remain,with few internaldivisions, until much laterin scriptions development. mentationto peristometooth differentiation. Although of was re- The firstthree or fourplanes of cell division within the developmentof the peristome Funaria cently reinvestigated(Shaw et al. 1989), apical cell segmentationwas not considered. Patternsof cell di- 'Address for correspondence and reprints:Plant Cell Biology Group,Research School of Biological Sciences, GPO Box 475, Aus- vision and apical cell segmentationin cleistocarpous tralianNational University,Canberra, ACT 2601 Australia;E-mail: taxa are even less well understood,with only a very [email protected]. limited number of taxa examined (Hofmeister1862; Manuscript received July 1996; revised manuscript received Muller 1868; Kienitz-Gerloff1878; Sachs 1887; Goe- December 1996. bel 1905; Snider 1975; Rushing and Snider 1980). 236 SCHWARTZ-FUNARIA APICAL SEGMENTATION 237 None of these studies described segmentationduring the later stages of development. 3 The following questions will be addressed: Do all A apical cell derivativesfollow the same patternof de- velopment?Do taxa with peristomesfollow the same patternof developmentas cleistocarpous taxa? How ' , 1 ~~~~~~~7b are the positionsof the peristometeeth related to seg- 7a ~ 7b mentboundaries? Materialand methods Moss sporophytesand attachedgametophytes were fixed in FAA (formalin-aceticacid-ethanol 1: 1:18). Afterfixa- 14~~~~~~~~1 tionwas complete,sporophytes and embryoswere dissected fromthe archegonia. Plants were cleared in a diluteClorox solution,dehydrated through a gradedethanol series, and stainedin fastgreen FCE Whole embryosand sporophyte 1 4~~~~ 11 1W 8 apices weremounted in gumdammar or cedaroil and pho- tographedon a LeitzOrtholux microscope. For complete de- Fig. 1 Schematic diagram of cell divisions withina single seg- tailsof themethods used, see Schwartz(1994). ment of Funaria. The outer surfaceof the sporophyteis to the left In orderto followthe cell divisionpattern within a single on each segment.The rightside of each segmentforms the central segment,it is essentialto comparethe development of sev- axis of the sporophyte.The numbersadjacent to each segmentare erallayers of cells.Therefore, cleared sporophyte apices and cell division planes which formthe common developmentalpattern embryoswere used ratherthan longitudinal sections. This followed by all segments.The apparentgaps in the numberingsys- tem are anticlinal divisions which cannot be seen in longitudinal permittedoptical sectioning of thesporophytes and compar- section.A, An undividedsegment. The firstdivision of the segment ison of surfacewith median views within the same sample. cannot be seen in longitudinalsection because it is parallel to the Furthermore,segment boundary walls are muchmore dis- plane of section, as are all anticlinal/radialdivisions. 2 = the first tinctin clearedsporophytes than in longitudinalsections. If periclinaldivision; 3 = the firsttransverse division; 5 = formation longitudinalsections were used, segmentboundary infor- of the second amphitheciallayer; 7a = transversedivisions of the mationwould be lost. lower half of the segment; 7b = transversedivisions of the upper half of the segment;8 = formationof the thirdamphithecial layer; Definitions
Recommended publications
  • Translocation and Transport
    Glime, J. M. 2017. Nutrient Relations: Translocation and Transport. Chapt. 8-5. In: Glime, J. M. Bryophyte Ecology. Volume 1. 8-5-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 17 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 8-5 NUTRIENT RELATIONS: TRANSLOCATION AND TRANSPORT TABLE OF CONTENTS Translocation and Transport ................................................................................................................................ 8-5-2 Movement from Older to Younger Tissues .................................................................................................. 8-5-6 Directional Differences ................................................................................................................................ 8-5-8 Species Differences ...................................................................................................................................... 8-5-8 Mechanisms of Transport .................................................................................................................................... 8-5-9 Source to Sink? ............................................................................................................................................ 8-5-9 Enrichment Effects ..................................................................................................................................... 8-5-10 Internal Transport
    [Show full text]
  • Lehman Caves Management Plan
    National Park Service U.S. Department of the Interior Great Basin National Park Lehman Caves Management Plan June 2019 ON THE COVER Photograph of visitors on tour of Lehman Caves NPS Photo ON THIS PAGE Photograph of cave shields, Grand Palace, Lehman Caves NPS Photo Shields in the Grand Palace, Lehman Caves. Lehman Caves Management Plan Great Basin National Park Baker, Nevada June 2019 Approved by: James Woolsey, Superintendent Date Executive Summary The Lehman Caves Management Plan (LCMP) guides management for Lehman Caves, located within Great Basin National Park (GRBA). The primary goal of the Lehman Caves Management Plan is to manage the cave in a manner that will preserve and protect cave resources and processes while allowing for respectful recreation and scientific use. More specifically, the intent of this plan is to manage Lehman Caves to maintain its geological, scenic, educational, cultural, biological, hydrological, paleontological, and recreational resources in accordance with applicable laws, regulations, and current guidelines such as the Federal Cave Resource Protection Act and National Park Service Management Policies. Section 1.0 provides an introduction and background to the park and pertinent laws and regulations. Section 2.0 goes into detail of the natural and cultural history of Lehman Caves. This history includes how infrastructure was built up in the cave to allow visitors to enter and tour, as well as visitation numbers from the 1920s to present. Section 3.0 states the management direction and objectives for Lehman Caves. Section 4.0 covers how the Management Plan will meet each of the objectives in Section 3.0.
    [Show full text]
  • Moss Cell Walls: Structure and Biosynthesis Alison W
    University of Rhode Island DigitalCommons@URI Biological Sciences Faculty Publications Biological Sciences 2012 Moss cell walls: structure and biosynthesis Alison W. Roberts University of Rhode Island, [email protected] Eric M. Roberts See next page for additional authors Creative Commons License This work is licensed under a Creative Commons Attribution 3.0 License. Follow this and additional works at: https://digitalcommons.uri.edu/bio_facpubs Citation/Publisher Attribution Roberts AW, Roberts EM and Haigler CH (2012) Moss cell walls: structure and biosynthesis. Front. Plant Sci. 3:166. doi: 10.3389/ fpls.2012.00166 Available at: https://doi.org/10.3389/fpls.2012.00166 This Article is brought to you for free and open access by the Biological Sciences at DigitalCommons@URI. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. Authors Alison W. Roberts, Eric M. Roberts, and Candace H. Haigler This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/bio_facpubs/205 MINI REVIEW ARTICLE published: 19 July 2012 doi: 10.3389/fpls.2012.00166 Moss cell walls: structure and biosynthesis Alison W. Roberts1*, Eric M. Roberts2 and Candace H. Haigler3,4 1 Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA 2 Department of Biology, Rhodes Island College, Providence, RI, USA 3 Department of Crop Science, North Carolina State University, Raleigh, NC, USA 4 Department of Plant Biology, North Carolina State University, Raleigh, NC, USA Edited by: The genome sequence of the moss Physcomitrella patens has stimulated new research Seth DeBolt, University of Kentucky, examining the cell wall polysaccharides of mosses and the glycosyl transferases that syn- USA thesize them as a means to understand fundamental processes of cell wall biosynthesis Reviewed by: and plant cell wall evolution.
    [Show full text]
  • Distribution and Phylogenetic Significance of the 71-Kb Inversion
    Annals of Botany 99: 747–753, 2007 doi:10.1093/aob/mcm010, available online at www.aob.oxfordjournals.org Distribution and Phylogenetic Significance of the 71-kb Inversion in the Plastid Genome in Funariidae (Bryophyta) BERNARD GOFFINET1,*, NORMAN J. WICKETT1 , OLAF WERNER2 , ROSA MARIA ROS2 , A. JONATHAN SHAW3 and CYMON J. COX3,† 1Department of Ecology and Evolutionary Biology, 75 North Eagleville Road, University of Connecticut, Storrs, CT 06269-3043, USA, 2Universidad de Murcia, Facultad de Biologı´a, Departamento de Biologı´a Vegetal, Campus de Espinardo, 30100-Murcia, Spain and 3Department of Biology, Duke University, Durham, NC 27708, USA Received: 31 October 2006 Revision requested: 21 November 2006 Accepted: 21 December 2006 Published electronically: 2 March 2007 † Background and Aims The recent assembly of the complete sequence of the plastid genome of the model taxon Physcomitrella patens (Funariaceae, Bryophyta) revealed that a 71-kb fragment, encompassing much of the large single copy region, is inverted. This inversion of 57% of the genome is the largest rearrangement detected in the plastid genomes of plants to date. Although initially considered diagnostic of Physcomitrella patens, the inversion was recently shown to characterize the plastid genome of two species from related genera within Funariaceae, but was lacking in another member of Funariidae. The phylogenetic significance of the inversion has remained ambiguous. † Methods Exemplars of all families included in Funariidae were surveyed. DNA sequences spanning the inversion break ends were amplified, using primers that anneal to genes on either side of the putative end points of the inver- sion. Primer combinations were designed to yield a product for either the inverted or the non-inverted architecture.
    [Show full text]
  • New York Natural Heritage Program Rare Plant Status List May 2004 Edited By
    New York Natural Heritage Program Rare Plant Status List May 2004 Edited by: Stephen M. Young and Troy W. Weldy This list is also published at the website: www.nynhp.org For more information, suggestions or comments about this list, please contact: Stephen M. Young, Program Botanist New York Natural Heritage Program 625 Broadway, 5th Floor Albany, NY 12233-4757 518-402-8951 Fax 518-402-8925 E-mail: [email protected] To report sightings of rare species, contact our office or fill out and mail us the Natural Heritage reporting form provided at the end of this publication. The New York Natural Heritage Program is a partnership with the New York State Department of Environmental Conservation and by The Nature Conservancy. Major support comes from the NYS Biodiversity Research Institute, the Environmental Protection Fund, and Return a Gift to Wildlife. TABLE OF CONTENTS Introduction.......................................................................................................................................... Page ii Why is the list published? What does the list contain? How is the information compiled? How does the list change? Why are plants rare? Why protect rare plants? Explanation of categories.................................................................................................................... Page iv Explanation of Heritage ranks and codes............................................................................................ Page iv Global rank State rank Taxon rank Double ranks Explanation of plant
    [Show full text]
  • M.Sc. BOTANY SEMESTER - I BO- 7115 PAPER - I DIVERSITY of VIRUSES, MYCOPLASMA, BACTERIA and FUNGI (60 Hrs)
    ST. JOSEPH'S COLLEGE (AUTONOMOUS) M.Sc. BOTANY SEMESTER - I BO- 7115 PAPER - I DIVERSITY OF VIRUSES, MYCOPLASMA, BACTERIA AND FUNGI (60 Hrs) Unit I Five kingdom, Eight kingdom classification and Three domains of 02 hrs living organisms. Unit -II Viruses – general characters, nomenclature, classification; 08 hrs morphology, structure, transmission and replication. Purification of plant viruses. Symptoms of viral diseases in plants Mycoplasma – General characters , classification ,ultrastructure 05 hrs Unit-III and reproduction. Brief account of mycoplasmal diseases of plants- Little leaf of Brinjal. Unit -IV Bacteria –Forms, distribution and classification according to 12 hrs Bergy’s System, Classification based on DNA-DNA hybridization, 16s rRNA sequencing; Nutritional types: Autotrophic, heterotrophic, photosynthetic,chemosynthetic,saprophytic,parasitic and symbiotic ; A brief account on methonogenic bacteria ; Brief account of Actinomycetes and their importance in soil and medical microbiology. Unit – V Fungi 20 hrs General characteristics, Classification (Ainsworth 1973, McLaughlin 2001), structure and reproduction. Salient features of Myxomycota, Mastigomycotina, Zygomycotina, Ascomycotina, Basidiomycotina and Deuteromycotina and their classificafion upto class level. Unit - VI Brief account of fungal heterothallism, sex hormones and 09 hrs Parasexual cycle. Brief account of mycorrhizae,lichens, fungal symbionts in insects, fungi as biocontrol agents ( Trichoderma and nematophagous). Unit – VII Isolation, purification and culturing of microorganisms 04 hrs (bacteria and fungi). 1 PRACTICALS: Micrometry. Haemocytometer. Isolation, culture and staining techniques of Bacteria and Fungi. Type study: Stemonites, Synchytrium, Saprolegnia, Albugo, Phytophthora, Mucor/Rhizopus , Erysiphe, Aspergillus, Chaetomium, Pencillium, Morchella, Hamileia, Ustilago Lycoperdon, Cyathes, Dictyophora, Polyporus, Trichoderma, Curvularia, Alternaria, Drechslera and Pestalotia. Study of few bacterial, viral, mycoplasmal diseases in plants (based on availability).
    [Show full text]
  • Endemic Genera of Bryophytes of North America (North of Mexico)
    Preslia, Praha, 76: 255–277, 2004 255 Endemic genera of bryophytes of North America (north of Mexico) Endemické rody mechorostů Severní Ameriky Wilfred Borden S c h o f i e l d Dedicated to the memory of Emil Hadač Department of Botany, University Boulevard 3529-6270, Vancouver B. C., Canada V6T 1Z4, e-mail: [email protected] Schofield W. B. (2004): Endemic genera of bryophytes of North America (north of Mexico). – Preslia, Praha, 76: 255–277. There are 20 endemic genera of mosses and three of liverworts in North America, north of Mexico. All are monotypic except Thelia, with three species. General ecology, reproduction, distribution and nomenclature are discussed for each genus. Distribution maps are provided. The Mexican as well as Neotropical genera of bryophytes are also noted without detailed discussion. K e y w o r d s : bryophytes, distribution, ecology, endemic, liverworts, mosses, reproduction, North America Introduction Endemism in bryophyte genera of North America (north of Mexico) appears not to have been discussed in detail previously. Only the mention of genera is included in Schofield (1980) with no detail presented. Distribution maps of several genera have appeared in scattered publications. The present paper provides distribution maps of all endemic bryophyte genera for the region and considers the biology and taxonomy of each. When compared to vascular plants, endemism in bryophyte genera in the region is low. There are 20 genera of mosses and three of liverworts. The moss families Andreaeobryaceae, Pseudoditrichaceae and Theliaceae and the liverwort family Gyrothyraceae are endemics; all are monotypic. A total of 16 families of mosses and three of liverworts that possess endemic genera are represented.
    [Show full text]
  • Polyploidization Within the Funariaceae—A Key Principle Behind Speciation, Sporophyte Reduction and the High Variance of Spore Diameters?
    Bry. Div. Evo. 043 (1): 164–179 ISSN 2381-9677 (print edition) DIVERSITY & https://www.mapress.com/j/bde BRYOPHYTEEVOLUTION Copyright © 2021 Magnolia Press Article ISSN 2381-9685 (online edition) https://doi.org/10.11646/bde.43.1.13 Polyploidization within the Funariaceae—a key principle behind speciation, sporophyte reduction and the high variance of spore diameters? ANNA K. OSTENDORF1,2,#, NICO VAN GESSEL2,#, YARON MALKOWSKY1,3, MARKO S. SABOVLJEVIC4, STEFAN A. RENSING5,6,7, ANITA ROTH-NEBELSICK1 & RALF RESKI2,7,8,* 1State Museum of Natural History, Rosenstein 1, 70191 Stuttgart, Germany �[email protected]; �[email protected]; https://orcid.org/0000-0002-9401-5128 2Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, 79104 Freiburg, Germany �[email protected]; https://orcid.org/0000-0002-0606-246X 3Nees Institute for Biodiversity of Plants, University of Bonn, Meckenheimer Allee 170, 53115 Bonn, Germany �[email protected]; 4Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia �[email protected]; https://orcid.org/0000-0001-5809-0406 5Plant Cell Biology, Faculty of Biology, University of Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany �[email protected]; https://orcid.org/0000-0002-0225-873X 6SYNMIKRO Center for Synthetic Microbiology, University of Marburg, Karl-von-Frisch-Straße 16, 35043 Marburg, Germany 7Signalling Research Centres BIOSS and CIBSS, University
    [Show full text]
  • MOLECULAR BASIS of SALT TOLERANCE in Physcomitrella Patens MODEL PLANT: POTASSIUM HOMEOSTASIS and PHYSIOLOGICAL ROLES of CHX TRANSPORTERS
    UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AGRÓNOMOS DEPARTAMENTO DE BIOTECNOLOGÍA MOLECULAR BASIS OF SALT TOLERANCE IN Physcomitrella patens MODEL PLANT: POTASSIUM HOMEOSTASIS AND PHYSIOLOGICAL ROLES OF CHX TRANSPORTERS. Director: Alonso Rodríguez Navarro Profesor Emérito, E.T.S.I. Agrónomos Universidad Politécnica de Madrid TESIS DOCTORAL SHADY ABDEL MOTTALEB MADRID, 2013 MOLECULAR BASIS OF SALT TOLERANCE IN Physcomitrella patens MODEL PLANT: POTASSIUM HOMEOSTASIS AND PHYSIOLOGICAL ROLES OF CHX TRANSPORTERS. Memoria presentada por SHADY ABDEL MOTTALEB para la obtención del grado de Doctor por la Universidad Politécnica de Madrid Fdo. Shady Abdel Mottaleb VºBº Director de Tesis: Fdo. Dr. Alonso Rodríguez-Navarro Profesor emérito Departamento de Biotecnología ETSIA- Universidad Politécnica de Madrid Madrid, Septiembre 2013 To my family i ACKNOWLEDGEMENTS This work would not have been possible without the collaboration and inspiration of many people. First of all, I would like to express my deep appreciation to my supervisor and mentor Alonso Rodríguez Navarro for giving me this once-in-a- lifetime opportunity to both studying what I like most and developing my professional career. For integrating me in his research group, introducing me to novel research topics and for his constant support at both personal and professional level. I owe a debt of gratitude to Rosario Haro for her unconditional help, ongoing support and care during my thesis. For teaching me to pay attention to the details of everything and for her immense efforts in supervising all the experiments of this thesis. I also feel grateful to Begoña Benito for her constant help and encouragement, for her useful advice and for always being available to answer my questions at anytime with enthusiasm and a pleasant smile.
    [Show full text]
  • An Examination of Leaf Morphogenesis in the Moss, Physcomitrella Patens, in an Oral Examination Held on August 30, 2011
    AN EXAMINATION OF LEAF MORPHOGENESIS IN THE MOSS, PHYSCOMITRELLA PATENS A Thesis Submitted to the Faculty of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In Biology University of Regina By Elizabeth Io Barker Regina, Saskatchewan August, 2011 Copyright 2011: E.I. Barker UNIVERSITY OF REGINA FACULTY OF GRADUATE STUDIES AND RESEARCH SUPERVISORY AND EXAMINING COMMITTEE Elizabeth Barker, candidate for the degree of Doctor of Philosophy in Biology, has presented a thesis titled, An Examination of Leaf Morphogenesis In The Moss, Physcomitrella Patens, in an oral examination held on August 30, 2011. The following committee members have found the thesis acceptable in form and content, and that the candidate demonstrated satisfactory knowledge of the subject material. External Examiner: Dr. David Cove, University of Leeds Supervisor: Dr. Neil Ashton, Department of Biology Committee Member: Dr. Harold Weger, Department of Biology Committee Member: Dr. William Chapco, Department of Biology Committee Member: *Dr. Janis Dale, Department of Geology Chair of Defense: Dr. Philip Charrier. Department of History *Not present at defense ABSTRACT Physcomitrella patens is a simple model plant belonging to the bryophytes, which diverged from the tracheophytes approximately 500 million years ago. The leaves of the moss are similar in form to vascular plant leaves although leaves evolved independently in the bryophyte and tracheophyte lineages. Close examination of the morphology of Physcomitrella leaves and investigation of the morphogenetic processes that result in the leaf form and of the hormonal and genetic regulation of those processes will elucidate the evolutionary trajectory of moss leaves.
    [Show full text]
  • О Систематическом Положении Рода Discelium (Bryophyta) Michael S
    Arctoa (2016) 25: 278–284 doi: 10.15298/arctoa.25.21 ON THE SYSTEMATIC POSITION OF DISCELIUM (BRYOPHYTA) О СИСТЕМАТИЧЕСКОМ ПОЛОЖЕНИИ РОДА DISCELIUM (BRYOPHYTA) MICHAEL S. IGNATOV1,2, VLADIMIR E. FEDOSOV1, ALINA V. F EDOROVA3 & ELENA A. IGNATOVA1 МИХАИЛ С. ИГНАТОВ1,2, ВЛАДИМИР Э. ФЕДОСОВ1, АЛИНА В. ФЕДОРОВА3, ЕЛЕНА А. ИГНАТОВА1 Abstract Results of molecular phylogenetic analysis support the position of the genus Discelium in the group of diplolepideous opposite mosses, Funariidae; however, its affinity is stronger with Encalyptales than with Funariales, where it is currently placed. A number of neglected morphological characters also indicate that Discelium is related to Funariales no closer than to Encalyptales, and thus new order Disceliales is proposed. Within the Encalyptaceae a case of strong sporophyte reduction is revealed. Bryobartramia appeared to be nested in Encalypta sect. Rhabdotheca, thus this genus is synonymized with Encalypta. Резюме Молекулярно-филогенетический анализ подтвердил положение рода Discelium в группе диплолепидных мхов с перистомом с супротивным расположением его элементов, или подклассе Funariidae, однако указал на родство с порядком Encalyptales, а не с Funariales, в который его обычно относили. Ряд редко учитываемых морфологических признаков также свидетельствует в пользу лишь отдаленного родства с Funariaceae. Предложено выделение Discelium в отдельный порядок Disceliales. В Encalyptaceae выявлен случай сильной редукции спорофита. Выявлено положение Bryobartramia в пределах рода Encalypta, в котором он имеет близкое родство с терминальными группами видов с гетерополярными спорами. Таким образом, Bryobartramia отнесена в синонимы к роду Encalypta. KEYWORDS: mosses, taxonomy, molecular phylogenetics, new order INTRODUCTION observation revealed the peristomial formula of Discelium The genus Discelium Brid. represents a small moss is 4:2(–4):4 with opposite position of exostome and with a strongly reduced gametophore.
    [Show full text]
  • Morphology of Mosses (Phylum Bryophyta)
    Morphology of Mosses (Phylum Bryophyta) Barbara J. Crandall-Stotler Sharon E. Bartholomew-Began With over 12,000 species recognized worldwide (M. R. Superclass IV, comprising only Andreaeobryum; and Crosby et al. 1999), the Bryophyta, or mosses, are the Superclass V, all the peristomate mosses, comprising most most speciose of the three phyla of bryophytes. The other of the diversity of mosses. Although molecular data have two phyla are Marchantiophyta or liverworts and been undeniably useful in identifying the phylogenetic Anthocerotophyta or hornworts. The term “bryophytes” relationships among moss lineages, morphological is a general, inclusive term for these three groups though characters continue to provide definition of systematic they are only superficially related. Mosses are widely groupings (D. H. Vitt et al. 1998) and are diagnostic for distributed from pole to pole and occupy a broad range species identification. This chapter is not intended to be of habitats. Like liverworts and hornworts, mosses an exhaustive treatise on the complexities of moss possess a gametophyte-dominated life cycle; i.e., the morphology, but is aimed at providing the background persistent photosynthetic phase of the life cycle is the necessary to use the keys and diagnostic descriptions of haploid, gametophyte generation. Sporophytes are this flora. matrotrophic, permanently attached to and at least partially dependent on the female gametophyte for nutrition, and are unbranched, determinate in growth, Gametophyte Characters and monosporangiate. The gametophytes of mosses are small, usually perennial plants, comprising branched or Spore Germination and Protonemata unbranched shoot systems bearing spirally arranged leaves. They rarely are found in nature as single isolated A moss begins its life cycle when haploid spores are individuals, but instead occur in populations or colonies released from a sporophyte capsule and begin to in characteristic growth forms, such as mats, cushions, germinate.
    [Show full text]