Slide-In Electric Road System Conductive Project Report
Total Page:16
File Type:pdf, Size:1020Kb
Gothenburg: 2013-10-18 Report draft from project Phase 1 Slide-in Electric Road System Conductive project report This report is compiled and edited by Viktoria Swedish ICT on behalf of Volvo GTT and Scania CV and is partly financed by the: In this project, the following companies and organizations are participating: Viktoria Swedish ICT, Lindholmspiren 3A, SE-417 56 Gothenburg, www.viktoria.se, Phone: +46 31 772 48 08, Fax +46 31 772 89 63, [email protected] Slide-in Electric Road System Viktoria Swedish ICT Conductive project report Date: 2013-10-18 Document title: Slide-in Electric Road System, Conductive project report Created by: Viktoria Swedish ICT on behalf of Volvo GTT and Scania CV. Document created: 2013-10-18 Document type: Report draft Publication number: 2013:02 Version: 0.10.18.1 Publication date: October 23 2013 Publisher: Volvo GTT Edited by: Oscar Olsson Contact details: [email protected] Assignment responsible: Richard Sebestyén, Distributor: Volvo Global Trucks Technology, SE-405 08 Göteborg, www.volvotrucks.com, [email protected] Page 2 of 63 Slide-in Electric Road System Viktoria Swedish ICT Conductive project report Date: 2013-10-18 SAMMANFATTNING Att elektrifiera fordon ses av många som en möjlig lösning för att minska miljöutsläppen och beroendet av fossilt bränsle. Dessvärre innebär de flesta miljövänliga energilagringssystem, såsom batterier, en lägre energidensitet jämfört med fossilbränsle vilket har stor påverkan på fordonets räckvidd. Ett tillräckligt stort batteri för långväga transporter är ofta kombinerat med en väsentlig ökning av kostnad och vikt vilket därmed innebär en minskad möjlig transportvolym. Ett alternativ, till exempelvis batteridrift, skulle kunna vara att överföra energin kontinuerligt från vägen till fordonet för såväl framdrift som laddning. En utbyggnad av ett elektrifierat vägnät (”Electrified Road Systems”, ERS) mellan städer skulle innebära att merparten av sträckan kunde köras på el från vägnätet och resterande sträcka kan köras på energi från potentiellt mindre batterier optimerade för stadsrutter. Detta är en delrapport i projektet Slide-in där det slutliga syftet är att utvärdera tekniken för att konduktivt överföra energi från vägen till fordonet baserat på kostnad, energieffektivitet och rimlighet. Rapporten innefattar såväl en bakgrund med affärsmodeller samt vilken teknik som skulle krävas på fordonen, i vägen samt omkringliggande infrastruktur för en storskalig utbyggnad. Rapporten avslutas med en kostnadsuppskattning för en full utbyggnad av en väg mellan Stockholm och Göteborg samt en bedömning av hur implementationen bör genomföras. ABSTRACT Electrifying vehicles is seen by many as a possible solution to reduce environmental emissions and the dependence on fossil fuel. Unfortunately, most environmentally friendly energy storage systems, such as batteries, have less energy density compared to fossil fuel, which will have a negative impact on the vehicle range. A battery with enough capacity for long distance transports will therefore often imply a substantial increase in cost and weight, and reduced transport volume. An alternative would be to continuously transfer energy from the road to the vehicle both for propulsion and charging. A development of an electrified road system (ERS) between cities would mean that most of the route could be driven on electricity from the road and the remaining distance can be driven on energy from potentially smaller batteries optimized for city routes. This is a progress report in the Slide-in project where the final objective is to evaluate the technology to conductively transfer energy from the road to the vehicle based on cost, efficiency and feasibility. The report includes both a background with a business model as well as a description of the technology that would be required on the vehicles, in road and in the surrounding infrastructure for a large-scale implementation. The report also includes a cost estimate for a full deployment of a road between Stockholm and Gothenburg and an assessment of how implementation should be carried out. Page 3 of 63 Slide-in Electric Road System Viktoria Swedish ICT Conductive project report Date: 2013-10-18 VOCABULARY AND ABBREVIATIONS AC Alternating current APS Aesthetic Power Supply ( Alimentation Par le Sol ) CAMS Computerized Aided Maintenance System DC Direct current ERS Electric Road System EV Electric vehicle ICE Internal combustion engine MFC Multi Function Cable OCL Overhead Contact Line PB Power Box AUTHORS Chapter 1. An electric road system. Viktoria Swedish ICT and KTH Chapter 2. ERS – A New Technological Paradigm. KTH Chapter 3. Simulation of gereic ERS. Lund University Chapter 4. Generic scenario description. Scania CV and Volvo GTT Chapter 5. Details of conductive system. Alstom Chapter 6. Details of vehicle. Volvo GTT Chapter 7. Details of power supply system from energy provider to the conductive system. Vattenfall Chapter 8. Implementation concept. The Swedish Transport Administration Chapter 11. ERS reference case based on overhead lines. Svenska Elvägar In this report 1 Euro corresponds to 8.63 Swedish kronor. Page 4 of 63 Slide-in Electric Road System Viktoria Swedish ICT Conductive project report Date: 2013-10-18 TABLE OF CONTETNS 1 AN ELECTRIC ROAD SYSTEM ............................................................................................................. 7 1.1 BACKGROUND ...................................................................................................................................................... 7 1.2 PROJECT GOALS ................................................................................................................................................... 8 1.3 PROJECT OBJECTIVES AND SCOPE ................................................................................................................... 8 1.4 PROJECT PARTICIPANTS AND RESPONSIBILITIES ........................................................................................ 9 1.5 TARGETED AUDIENCE .................................................................................................................................... 10 1.6 TIME PLAN ......................................................................................................................................................... 10 2 ERS – A NEW TECHNOLOGICAL PARADIGM ............................................................................. 11 2.1 STAKEHOLDER IMPLICATIONS ...................................................................................................................... 13 2.2 A BUSINESS MODEL PERSPECTIVE ............................................................................................................... 15 3 SIMULATION OF GENERIC ERS ....................................................................................................... 16 3.1 SIMULATED ERS EXAMPLE ........................................................................................................................... 16 3.2 TRAFFIC SIMULATION .................................................................................................................................... 17 3.3 ELECTRIC POWER SYSTEM SIMULATION ................................................................................................... 18 3.4 THERMAL POWER SYSTEM SIMULATION ................................................................................................... 18 3.5 RESULT SUMMARY ........................................................................................................................................... 20 3.6 RECOMMENDATIONS ....................................................................................................................................... 20 4 GENERIC SCENARIO DESCRIPTION .............................................................................................. 21 4.1 HEAVY VEHICLE DEFINITIONS: .................................................................................................................... 21 4.2 PASSENGER CAR DEFINITIONS: ..................................................................................................................... 21 4.3 ROUTE TOPOLOGY ........................................................................................................................................... 22 4.4 ROAD AND EMBANKMENT PARAMETERS: .................................................................................................. 23 4.5 ENVIRONMENTAL CONDITIONS: ................................................................................................................... 23 4.6 TRAFFIC CONDITIONS IN THE ELECTRIC LANE ........................................................................................ 24 5 DETAILS OF CONDUCTIVE SYSTEM ............................................................................................. 25 5.1 SYSTEM OVERVIEW ......................................................................................................................................... 25 5.2 APS PRINCIPLE ................................................................................................................................................. 25 5.3 DIFFERENCES ERS – APS .............................................................................................................................. 30 5.4 ADAPTATIONS OF APS TO ERS ...................................................................................................................