Anthozoa: Actiniaria) from the Coast of Yucatán, Mexico

Total Page:16

File Type:pdf, Size:1020Kb

Anthozoa: Actiniaria) from the Coast of Yucatán, Mexico Revista Mexicana de Biodiversidad Revista Mexicana de Biodiversidad 91 (2020): e913195 Taxonomy and systematics Sea anemones (Anthozoa: Actiniaria) from the coast of Yucatán, Mexico Anémonas (Anthozoa: Actiniaria) de la costa de Yucatán, México Luis G. Herrera-Bojórquez a, Ricardo González-Muñoz b, Lorena V. León-Deniz a, *, Gregory Arjona-Torres c, Raúl Sima-Álvarez c a Universidad Autónoma de Yucatán, Facultad de Medicina Veterinaria y Zootecnia, Departamento de Biología Marina, Km. 15.5 carretera a Xmatkuil, Apartado postal 116, 97315 Mérida, Yucatán, Mexico b Laboratorio de Biología de Cnidarios, Instituto de Investigaciones Marinas y Costeras, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales y Exactas, Universidad Nacional de Mar de Plata, Rodríguez Peña 4046, 7600 Mar del Plata, Argentina c Laboratorio de Patología Acuática, Centro de Investigación y Estudios Avanzados, Instituto Politécnico Nacional, Unidad Mérida, Km. 6 antigua carretera a Progreso, Apartado postal 73, Cordemex, 97310 Mérida, Yucatán, Mexico *Corresponding author: [email protected] (L.V. León-Deniz) Received: 10 September 2019; accepted: 25 May 2020 Abstract Sea anemones (order Actiniaria) are among the benthic marine invertebrate groups that commonly inhabit a wide range of coastal environments, including seagrass meadows, rocky bottoms, coral reefs, sandy patches, mangroves, and artificial substrates. However, they are typically overlooked in most faunal studies or biodiversity assessments in shallow water environments along the coastline of the Mexican Atlantic, particularly in Yucatán. Although some sea anemones species have been reported from coral reef localities in the region, no previous studies have been made to inventory the actinofauna in localities of the coast of Yucatán. In this study, we document 8 species of sea anemones from 5 coastal localities in Yucatán, Mexico, and provide short descriptions and images of the external and internal anatomy, and cnidom. Five of these species have been previously reported from coral reefs in Yucatán, whereas 3 of them are reported for the first time in the region. The aim of this contribution is to inventory the most common species of sea anemones in Yucatán and provide an aid to distinguish them to facilitate identification and encourage biological and ecological research requiring species-level resolution. Keywords: Cnidaria; Benthic fauna; Invertebrates; Gulf of Mexico; Western Atlantic Resumen Las anémonas (orden Actiniaria) se encuentran entre los grupos de invertebrados marinos bentónicos que habitan comúnmente en un amplio rango de ambientes costeros, incluyendo pastos marinos, fondos rocosos, arrecifes de coral, parches arenosos, manglares y sustratos artificiales. Sin embargo, son típicamente pasadas por alto en la mayoría de los estudios faunísticos o evaluaciones de la biodiversidad de ambientes marinos de aguas someras a lo largo de la ISSN versión electrónica: 2007-8706; Universidad Nacional Autónoma de México, Instituto de Biología. Open Access bajo la licencia CC BY-NC-ND (4.0) https://doi.org/10.22201/ib.20078706e.2020.91.3195 L.G. Herrera-Bojórquez et al. / Revista Mexicana de Biodiversidad 91 (2020): e913195 2 https://doi.org/10.22201/ib.20078706e.2020.91.3195 línea de costa del Atlántico mexicano, particularmente en Yucatán. Aunque algunas especies de anémonas han sido reportadas en la región en localidades de arrecifes de coral, no se han realizado estudios previos para inventariar la actinofauna en localidades de la costa de Yucatán. En este estudio, documentamos 8 especies de anémonas en 5 localidades costeras de Yucatán, México y proveemos descripciones cortas e imágenes de la anatomía externa e interna, y del cnidoma, de cada una de las especies. Cinco de estas especies han sido reportadas previamente en ambientes arrecifales de Yucatán, pero 3 especies son reportadas por primera vez en la región. El objetivo de esta contribución es el inventariar a las especies de anémonas más comunes en Yucatán y proveer un apoyo para distinguirlas y facilitar su identificación, fomentando la investigación biológica y ecológica que requiera de resolución a nivel específico. Palabras clave: Cnidaria; Fauna bentónica; Invertebrados; Golfo de México; Atlántico Occidental Introduction species inhabiting other coastal environments along the shoreline. The coastline of Yucatán, in the southeastern part of In this study, we document 8 species of sea anemones Mexico, is composed of a variety of ecosystems such from 5 coastal localities along the coast of Yucatán: as coastal lagoons, coastal seas, mangroves, seagrass Chelem, Yucalpetén, Telchac, Chabihau, and Dzilam de meadows, and sandy intertidal patches (Herrera-Silveira Bravo, and provide diagnoses and images of the external et al., 2013), where thousands of species of marine fauna and internal anatomy and types of cnidae for 7 of them. live. Several groups of invertebrates such as mollusks, Five species, Actinostella flosculifera (Le Sueur, 1817), crustaceans, nematodes, and annelids are among the most Bunodosoma granuliferum (Le Sueur, 1817), Anemonia studied benthic fauna in the region (Pech et al., 2007; Pech sargassensis Hargitt, 1908, Exaiptasia diaphana (Rapp, & Ardisson, 2010), with a main interest in those animals 1829), and Calliactis tricolor (Le Sueur, 1817), have been with economic importance at the local and regional level, previously reported from the coral reef areas of the region, such as shrimps (May-Kú & Ordóñez-López, 2006; May- but Bunodosoma cavernatum (Bosc, 1802), Anthopleura Kú et al., 2014; Wakida-Kusunoki et al., 2016), lobsters dalyae González-Muñoz, Garese and Acuña, 2018, and (Ríos-Lara et al., 2010), or sea cucumbers (Hernández- Anthopleura krebsi (Duchassaing & Michelotti, 1860) are Flores et al., 2015, 2017), among others. In addition, recorded for the first time in Yucatán. some inventories of these groups have been carried out as valuable steps to study their diversity and their Materials and methods ecological role in the ecosystems (Kuk-Dzul et al., 2019; Palomino-Álvarez et al., 2019; Pech & Ardisson, 2010). Specimens of sea anemones were collected from 5 However, other invertebrate groups, such as echinoderms, beach locations along the Yucatán coastline, Mexico: sponges, tunicates, and cnidarians, have been less studied Chelem (21°16’ N, 89°43’ W), Yucalpetén (21°15’ or even overlooked in most faunal studies or biodiversity N, 89°39’ W), Telchac Puerto (21°16’ N, 89°13’ W), assessments of the shallow water environments along the Chabihau (21°18’ N, 89°09’ W), and Dzilam de Bravo coast of Yucatán (Pech & Ardisson, 2010). (21°20’ N, 88°24’ W) (Fig. 1). Specimens were collected Sea anemones (Cnidaria: Anthozoa: Actiniaria) are by hand and snorkeling from 0-2 m depth, using a hammer among the benthic marine cnidarian groups that are and a chisel. Collected specimens were transferred to the commonly found in a wide range of coastal environments, laboratory and maintained in an aquarium to photograph including seagrass meadows, rocky bottoms, coral reefs, their color while alive. Specimens were relaxed in 5% sandy patches, mangroves, and artificial substrates MgCl2 seawater solution and fixed in 10% seawater (González-Muñoz et al., 2016). They are recognized as formalin. Measurements of specimens (i.e., column, oral, valuable elements of the benthic fauna due to their role in and pedal disc diameters, maximum length and width of the bidirectional exchange of energy between the benthic- the body, and number of tentacles) were obtained from pelagic coupling, as well as their propensity to establish fixed specimens. Histological sections 5-10 µm thick were close mutualistic relationships with other invertebrates made from 1-2 specimens from each species (except for (Daly et al., 2008). Some species of sea anemones have C. tricolor due to poor preservation), and stained with been reported in the coral reef formations off the coast of hematoxylin and eosin (Estrada-Flores et al., 1982). Squash Yucatán, such as Bajo de Diez, Madagascar, Serpientes, preparations of small amounts of tissue from tentacles, and Alacranes reefs (González-Muñoz et al., 2013), but actinopharynx, mesenterial filaments, column, marginal no previous studies have been conducted to document the projections, and acontia (if present) were made from at L.G. Herrera-Bojórquez et al. / Revista Mexicana de Biodiversidad 91 (2020): e913195 3 https://doi.org/10.22201/ib.20078706e.2020.91.3195 least 1 specimen from each species to observe their cnidae (Fig. 2A-P) types. Cnidae were examined using a Nikon Eclipse E200 Actinia flosculifera Le Sueur (1817) light microscope, and cnidae terminology follows Östman Metridium praetextum: Couthouy in Dana, 1846 (2000). Specimen identifications are based on Carlgren Actinostella Formosa [sic]: Duchassaing, 1850 (1949, 1952), Carlgren and Hedgpeth (1952), González- Oulactis flosculifera: Milne-Edwards, 1857 Muñoz et al. (2012, 2013, 2019), and Daly and den Oulactis conquilega: Duchassaing & Michelotti, 1860 Hartog (2004). We followed the taxonomic classification Oulactis Flosculifera [sic]: Duchassaing, 1870 implemented in Carlgren (1949) with modifications from Evactis flosculifera: Andres, 1883 Rodríguez et al. (2014). Taxa were organized according to Oulactis foliosa: Andres, 1883 their suborder and family and listed in alphabetical order. Oulactis fasciculata: McMurrich, 1889a Voucher specimens of each species were deposited in the Asteractis n. sp.: Duerden,
Recommended publications
  • Anthopleura and the Phylogeny of Actinioidea (Cnidaria: Anthozoa: Actiniaria)
    Org Divers Evol (2017) 17:545–564 DOI 10.1007/s13127-017-0326-6 ORIGINAL ARTICLE Anthopleura and the phylogeny of Actinioidea (Cnidaria: Anthozoa: Actiniaria) M. Daly1 & L. M. Crowley2 & P. Larson1 & E. Rodríguez2 & E. Heestand Saucier1,3 & D. G. Fautin4 Received: 29 November 2016 /Accepted: 2 March 2017 /Published online: 27 April 2017 # Gesellschaft für Biologische Systematik 2017 Abstract Members of the sea anemone genus Anthopleura by the discovery that acrorhagi and verrucae are are familiar constituents of rocky intertidal communities. pleisiomorphic for the subset of Actinioidea studied. Despite its familiarity and the number of studies that use its members to understand ecological or biological phe- Keywords Anthopleura . Actinioidea . Cnidaria . Verrucae . nomena, the diversity and phylogeny of this group are poor- Acrorhagi . Pseudoacrorhagi . Atomized coding ly understood. Many of the taxonomic and phylogenetic problems stem from problems with the documentation and interpretation of acrorhagi and verrucae, the two features Anthopleura Duchassaing de Fonbressin and Michelotti, 1860 that are used to recognize members of Anthopleura.These (Cnidaria: Anthozoa: Actiniaria: Actiniidae) is one of the most anatomical features have a broad distribution within the familiar and well-known genera of sea anemones. Its members superfamily Actinioidea, and their occurrence and exclu- are found in both temperate and tropical rocky intertidal hab- sivity are not clear. We use DNA sequences from the nu- itats and are abundant and species-rich when present (e.g., cleus and mitochondrion and cladistic analysis of verrucae Stephenson 1935; Stephenson and Stephenson 1972; and acrorhagi to test the monophyly of Anthopleura and to England 1992; Pearse and Francis 2000).
    [Show full text]
  • Marine Drugs ISSN 1660-3397 © 2006 by MDPI
    Mar. Drugs 2006, 4, 70-81 Marine Drugs ISSN 1660-3397 © 2006 by MDPI www.mdpi.org/marinedrugs Special Issue on “Marine Drugs and Ion Channels” Edited by Hugo Arias Review Cnidarian Toxins Acting on Voltage-Gated Ion Channels Shanta M. Messerli and Robert M. Greenberg * Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA Tel: 508 289-7981. E-mail: [email protected] * Author to whom correspondence should be addressed. Received: 21 February 2006 / Accepted: 27 February 2006 / Published: 6 April 2006 Abstract: Voltage-gated ion channels generate electrical activity in excitable cells. As such, they are essential components of neuromuscular and neuronal systems, and are targeted by toxins from a wide variety of phyla, including the cnidarians. Here, we review cnidarian toxins known to target voltage-gated ion channels, the specific channel types targeted, and, where known, the sites of action of cnidarian toxins on different channels. Keywords: Cnidaria; ion channels; toxin; sodium channel; potassium channel. Abbreviations: KV channel, voltage-gated potassium channel; NaV, voltage-gated sodium channel; CaV, voltage-gated calcium channel; ApA, Anthopleurin A; ApB, Anthopleurin B; ATX II, Anemone sulcata toxin II; Bg II, Bunodosoma granulifera toxin II; Sh I, peptide neurotoxin I from Stichodactyla helianthus; RP II, polypeptide toxin II from Radianthus paumotensis; RP III, polypeptide toxin III from Radianthus paumotensis; RTX I, neurotoxin I from Radianthus macrodactylus; PaTX, toxin from Paracicyonis actinostoloides; Er I, peptide toxin I from Entacmaea ramsayi; Da I, peptide toxin I from Dofleinia armata; ATX III, Anemone sulcata toxin III; ShK, potassium channel toxin from Stichodactyla helianthus; BgK, potassium channel toxin from Bunodosoma granulifera; AsKS, kalciceptine from Anemonia sulcata; HmK, potassium channel toxin from Heteractis magnifica; AeK, potassium channel toxin from Actinia equina; AsKC 1-3, kalcicludines 1-3 from Anemonia sulcata; BDS-I, BDS-II, blood depressing toxins I and II Mar.
    [Show full text]
  • The 1940 Ricketts-Steinbeck Sea of Cortez Expedition: an 80-Year Retrospective Guest Edited by Richard C
    JOURNAL OF THE SOUTHWEST Volume 62, Number 2 Summer 2020 Edited by Jeffrey M. Banister THE SOUTHWEST CENTER UNIVERSITY OF ARIZONA TUCSON Associate Editors EMMA PÉREZ Production MANUSCRIPT EDITING: DEBRA MAKAY DESIGN & TYPOGRAPHY: ALENE RANDKLEV West Press, Tucson, AZ COVER DESIGN: CHRISTINE HUBBARD Editorial Advisors LARRY EVERS ERIC PERRAMOND University of Arizona Colorado College MICHAEL BRESCIA LUCERO RADONIC University of Arizona Michigan State University JACQUES GALINIER SYLVIA RODRIGUEZ CNRS, Université de Paris X University of New Mexico CURTIS M. HINSLEY THOMAS E. SHERIDAN Northern Arizona University University of Arizona MARIO MATERASSI CHARLES TATUM Università degli Studi di Firenze University of Arizona CAROLYN O’MEARA FRANCISCO MANZO TAYLOR Universidad Nacional Autónoma Hermosillo, Sonora de México RAYMOND H. THOMPSON MARTIN PADGET University of Arizona University of Wales, Aberystwyth Journal of the Southwest is published in association with the Consortium for Southwest Studies: Austin College, Colorado College, Fort Lewis College, Southern Methodist University, Texas State University, University of Arizona, University of New Mexico, and University of Texas at Arlington. Contents VOLUME 62, NUMBER 2, SUmmer 2020 THE 1940 RICKETTS-STEINBECK SEA OF CORTEZ EXPEDITION: AN 80-YEAR RETROSPECTIVE GUesT EDITed BY RIchard C. BRUsca DedIcaTed TO The WesTerN FLYer FOUNdaTION Publishing the Southwest RIchard C. BRUsca 215 The 1940 Ricketts-Steinbeck Sea of Cortez Expedition, with Annotated Lists of Species and Collection Sites RIchard C. BRUsca 218 The Making of a Marine Biologist: Ed Ricketts RIchard C. BRUsca AND T. LINdseY HasKIN 335 Ed Ricketts: From Pacific Tides to the Sea of Cortez DONald G. Kohrs 373 The Tangled Journey of the Western Flyer: The Boat and Its Fisheries KEVIN M.
    [Show full text]
  • Feeding Biology of Intertidal Sea Anemones in the South-"'Estern Cape
    FEEDING BIOLOGY OF INTERTIDAL SEA ANEMONES IN THE SOUTH-"'ESTERN CAPE by Lisa Kruger Town Thesis submitted forCape the degree of Masterof of Science Zoology Department and Marine Biology Research Institute, UnivesityUniversity of Cape Town May 1995 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University I AM NOT Af FLoWER!, l M A CARNIVDRQV5 (N\lERTE B RXrE 'M-Io STaNGS AJJD EATS OT.e.R CREATuRE.S, WHA-r DO 'tOU ~ Do FOt< A LlV1NQ? I EA.l SEA t ANEMONES US DAFFODILS suRE" KID AROUND A Lo-r ! ii For my best friends, Des - who helped the most and Dee - whose memory accompanies me always DECLARATION This thesis reports the results of original research which I have carried out in the Marine Biology Research Institute, University of Cape Town, between 1992 and 1995. Throughout this study I was involved in the gathering, assimilation and interpretation of data, as well as the writing up of the project. This work has not been submitted for a degree at any other university and any assistance I received is fully acknowledged. Lisa Kruger Date iv TABLE OF CONTENTS ABSTRACT V1 ACKNOWLEDGMENTS V1n GENERAL INTRODUCTION 1 CHAPTER 1. THE NATURE AND DISTRIBUTION OF INTERTIDAL SEA ANEMONE ASSEMBLAGES AT TWO SITES IN THE SOUTH-WESTERN CAPE 6 Methods 7 Study sites 7 Sampling procedure 9 Results 10 Abundance and distribution 11 Size distribution 15 Discussion 21 Conclusion 26 CHAPTER 2.
    [Show full text]
  • 19201051.Pdf
    Universidad de El Salvador Facultad de Ciencias Naturales y Matemática Escuela de Biología Trabajo de Graduación Diversidad de Anémonas de Mar (Anthozoa: Actiniaria) en la zona intermareal de las playas rocosas del Área Natural Protegida Los Cóbanos y Punta Amapala, El Salvador. Trabajo de graduación presentado por: ADRIANA JANNET RAMÍREZ ORELLANA PARA OPTAR AL GRADO DE: LICENCIADA EN BIOLOGÍA CIUDAD UNIVERSITARIA, MARZO DE 2017. UNIVERSIDAD DE EL SALVADOR FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICA ESCUELA DE BIOLOGÍA Diversidad de Anémonas de Mar (Anthozoa: Actiniaria) en la zona intermareal de las playas rocosas del Área Natural Protegida Los Cóbanos y Punta Amapala, El Salvador. Trabajo de graduación presentado por: ADRIANA JANNET RAMÍREZ ORELLANA PARA OPTAR AL GRADO DE: LICENCIADA EN BIOLOGÍA ASESORA DE LA INVESTIGACIÓN: ______________________________ M.Sc. Johanna Vanessa Segovia CIUDAD UNIVERSITARIA, MARZO DE 2017. UNIVERSIDAD DE EL SALVADOR FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICA ESCUELA DE BIOLOGÍA Diversidad de Anémonas de Mar (Anthozoa: Actiniaria) en la zona intermareal de las playas rocosas del Área Natural Protegida Los Cóbanos y Punta Amapala, El Salvador. Trabajo de graduación presentado por: ADRIANA JANNET RAMÍREZ ORELLANA PARA OPTAR AL GRADO DE: LICENCIADA EN BIOLOGÍA JURADO EVALUADOR: _______________________________ Licda. Ana María Rivera _______________________________ Licda. Martha Noemy Martínez Hernández CIUDAD UNIVERSITARIA, MARZO DE 2017. 3 AUTORIDADES UNIVERSITARIAS RECTOR INTERINO LIC. LUIS ARGUETA ANTILLÓN SECRETARIO/A GENERAL DRA. LETICIA ZAVALETA DE AMAYA FISCAL GENERAL LICDA. BEATRIZ MÉNDEZ FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICA DECANO Lic. MAURICIO HERNÁN LOVO SECRETARIO/A LIC. DAMARYS MELANY HERRERA TURCIOS DIRECTORA DE LA ESCUELA DE BIOLOGÍA M.Sc. ANA MARTHA ZETINO CALDERON CIUDAD UNIVERSITARIA, MARZO DE 2017.
    [Show full text]
  • Anatomy and Taxonomy of Three Species of Sea
    Anatomy and Taxonomy ofThree Species ofSea Anemones (Cnidaria: Anthozoa: Actiniidae) from the Gulfof California, Including Isoaulactinia hespervolita Daly, n. Sp.l Marymegan Daly2 Abstract: Specimens of actiniarians from the Gulf of California having a col­ umn densely covered with vesicles or verrucae have been attributed to one of three species: Anthopleura dowii, Bunodactis mexicana, or Bunodosoma californica. These three species are difficult to distinguish and are at least partly synony­ mous: Bunodosoma californica is a pro parte synonym of A. dowii and Bunodactis mexicana is a junior synonym of A. dowii. However, based on anatomy, color­ ation patterns, types of cnidae in the column, and habitat preferences, I discern three distinct species. I describe specimens attributed to Bunodaetis mexicana not belonging to A. dowii as Isoaulactinia hespervolita, n. sp. I redescribe Bunodosoma californica and A. dowii and designate a lectotype for Bunodosoma californica to resolve taxonomic confusion. ALTHOUGH MEMBERS of the family Actini­ The actiniarian fauna of the Gulf of Cali­ idae are among the most common and best fornia includes three members of Actiniidae known sea anemones, distinguishing genera that are easily confused: Anthopleura dowii and species of actiniids is difficult because of Verrill, 1869; Bunodactis mexicana Carlgren, the mosaic of traits that diagnose each genus 1951; and Bunodosoma californica Carlgren, (e.g., Carlgren 1921, 1949, Hand 1955, Dunn 1951. Members of these species are similar in et al. 1980, England 1987, den Hartog 1987). size and in tentacle number, and all have stout Characters of primary importance in separat­ columns covered with hollow, vesicular out­ ing genera within Actiniidae, such as verrucae growths.
    [Show full text]
  • Some Actiniaria (Cnidaria: Anthozoa) from the West Coast of India
    Some Actiniaria (Cnidaria: Anthozoa) from the west coast of India J.C. den Hartog & J. Vennam Hartog, J.C. den & J. Vennam. Some Actiniaria (Cnidaria: Anthozoa) from the west coast of India. Zool. Med. Leiden 67 (42), 24.xii.1993:601-637, figs. 1-47, tabs. 1-6.— ISSN 0024-0672. Key words: Actiniaria; India; descriptions; cnidom; distribution; new species. A small collection of five species of Actiniaria from the west coast of India, including three new species, is described and discussed. It concerns: Anthopleura anjunae spec, nov., Bunodosoma goanensis spec, nov., Synantheopsis parulekari spec, nov., Paracondylactis cf. sinensis Carlgren, 1934, and Sticho- dactyla haddoni (Saville-Kent, 1893). Details are given on the synonymy, cnidom and distribution of these species. J.C. den Hartog, Nationaal Namurhistorisch Museum (NNM), P.O. Box 9517, 2300 RA Leiden, The Netherlands. J. Vennam, National Institute of Oceanography (NIO), Dona Paula, Goa-403 004, India. Contents Introduction 601 Descriptions 602 Anthopleura anjunae spec. nov. 602 Bunodosoma goanensis spec. nov. 610 Synantheopsis parulekari spec. nov. 617 Paracondylactis cf. sinensis Carlgren, 1934 625 Stichodactyla haddoni (Saville-Kent, 1893) 631 Acknowledgements and abbreviations... 635 References 636 Introduction The present paper deals with some interesting samples of Actiniaria from the west coast of India collected between 1980 and 1990, which were donated to the Nationaal Natuurhistorisch Museum (NNM) [incorporating the former Rijks• museum van Natuurlijke Historie (RMNH)], Leiden, by the junior author, when she spent there a period of one and a half year (November 1989 - June 1990) as a visiting scientist. Considering that the present collection of only five species contains three species that are new to science, the conclusion seems justified that the actinian fauna of India is still poorly known, even if there is a fair number of publications on the subject.
    [Show full text]
  • Wentletrap Epitonium (Kanmacher, 1797)
    BASTERIA, 51: 95-108, 1987 Observations the clathratulum on wentletrap Epitonium (Kanmacher, 1797) (Prosobranchia, Epitoniidae) and the sea anemoneBunodosoma biscayensis (Fischer, 1874) (Actiniaria, Actiniidae) J.C. den Hartog Rijksmuseum van Natuurlijke Historie, P.O. Box 9517, 2300 RA Leiden, The Netherlands A review is of the literature given most important on parasite/host (or predator/prey) rela- modes of are mentioned. tions of Epitoniidae and Anthozoa, and various feeding An as yet association of unreported the wentletrap Epitonium clathratulum and the sea anemone is described. Both collected Bunodosoma biscayensis species were at Plage d’Ilbarritz,Côte Bas- SW. que, France. Field and aquarium observations suggest that E. clathratulum feeds on food in the ofits host-anemone. partly digested gastric cavity This is achieved in a way as yet unprecedented: the wentletrap climbs the oral disc of its host and introduces its proboscis the mouth slit into the feed. The through gastric cavity to sequence ofclimbingthe host and feeding is described and depicted. Key words: Gastropoda, Prosobranchia, Epitoniidae, Epitonium clathratulum, Actiniaria, Actiniidae, Bunodosoma France. biscayensis, nematocysts, parasite/host relation, INTRODUCTION of Associated occurrence a species of wentletrap (Epitonium tinctum Carpenter, 1864) and sea anemones was already incidentally mentioned in the literature by Strong in to 1930 (p. 186), whereas Ankel (1938: 8) seems have been the first to mention a feed species [E. clathrus (Linnaeus, 1758)] to upon these Cnidaria. He reported to have found both actinian nematocysts and zooxanthellae in specimens from Naples (Italy) and 1 few Kristineberg (Sweden) . A years later another species, Habea inazawaiKuroda, 1943, was described as "semi-parasitic" on the actinianDiadumene luciae(Verrill, 1898) (Habe, 1943).
    [Show full text]
  • Phylogeny and Evolution of Anthopleura (Cnidaria: Anthozoa: Actiniaria)
    Phylogeny and Evolution of Anthopleura (Cnidaria: Anthozoa: Actiniaria) Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Esprit Noel Heestand, B.A. Evolution, Ecology, and Organismal Biology Graduate Program The Ohio State University 2009 Thesis Committee Dr. Marymegan Daly, Advisor Dr. John Freudenstein Dr. Andrea Wolfe Copyright by Esprit N. Heestand 2009 Abstract Members of Anthopleura (Cnidaria: Anthozoa: Actiniaria) are some of the most well known and studied sea anemones in the world. Two distinguishing characteristics define the genus, acrorhagi and verrucae. Acrorhagi are nematocyst dense projections found in the fosse that are used for defense. Verrucae are suction cup-like protrusions on the column that hold rocks and small pebbles close to the anemone and prevent desiccation and DNA degradation. Previous studies have found that Anthopleura is non- monophyletic regards to Bunodosoma, another genus in Actiniidae. This study used molecular markers (12S, 16S, COIII, 28S) to circumscribe the polyphyly of Anthopleura, compared the informativeness of the four markers, and looked for patterns of evolution of acrorhagi and verrucae. This study shows that Anthopleura is polyphyletic regards to other genera within and outside of Actiniidae. It also shows that acrorhagi and verrucae are not valid characters when used to describe a monophyletic group, and did not find patterns of evolution of these two characters. The nuclear ribosomal marker 28S was the most informative marker and COIII was the least informative marker, however none of the markers had more then about 50% informativeness. ii Acknowledgement I would like to thank Abby Reft, Annie Lindgren, Derek Boogaard, Kody Kuehnl, Jacob Olson, Joel McAllister, Luciana Gusmao, Reagan Walker, and Sarah Barath for all their help, counsel, encouragement, and reminding me that other things in the world exist besides this project, also, many thanks to my committee members for being so flexible and easy to work with.
    [Show full text]
  • Two New Deep-Sea Species of Burrowing Anemones (Cnidaria: Actiniaria: Edwardsiidae) from Whittard Canyon Off the Southwestern Coast of Ireland
    AMERICAN MUSEUM NOVITATES Number 3945, 25 pp. February 12, 2020 Two new deep-sea species of burrowing anemones (Cnidaria: Actiniaria: Edwardsiidae) from Whittard Canyon off the southwestern coast of Ireland LUCIANA C. GUSMÃO,1 CHERIE QU,2, 3 SADIE L. BURKE,2,4 AND ESTEFANÍA RODRÍGUEZ1 ABSTRACT Burrowing sea anemones have a simple morphology with an elongate body and a round aboral end that anchors the animal into mud, sand, or gravel, leaving only the tentacle crown exposed. Edwardsiids are easily differentiated from other burrowing sea anemones by their dis- tinctive mesentery arrangement of eight unpaired macrocnemes at midcolumn with microcnemes restricted to the distal column at the base of the tentacles. Though edwardsiids may be frequently collected in biodiversity surveys, oceanographic expeditions, and ecological monitoring projects, their identification is particularly hampered by their small size, the need for histology, the high number of undescribed species, and the few specialists able to identify them. Scolanthus belongs to the subfamily Edwardsiinae, which is characterized by nemathybomes; it is differentiated from other members of the subfamily by having nemathybomes with basitrichs and periderm in the proximal end, at least eight microcnemes, and 16 or more tentacles in adults. The 14 valid species of Scolanthus are distributed worldwide, but only four species have been recorded from waters deeper than 100 m (S. ingolfi, 1461 m; S. nidarosiensis, 125–150 m; S. intermedius, 223 m; S. tri- angulus, 71–271 m). Here we describe Scolanthus shrimp, sp. nov., and S. celticus, sp. nov., the first two sea anemones recorded from the deep-sea Whittard Canyon off the coast of Ireland.
    [Show full text]
  • Cnidaria, Anthozoa, Actiniidae) on a Swimming Crab Callinectes Sp
    Predation of the sea anemone Bunodosoma cangicum Corrêa, 1964 (Cnidaria, Anthozoa, Actiniidae) on a swimming crab Callinectes sp. Stimpson, 1860 (Decapoda, Brachyura, Portunidae) 1 1 1 THELMA DIAS , JOCELAYNE BORGES , EMANUELLA MOURA , SUELENN 1 GUEDES & LUIS CARLOS DAMASCENO 1 Universidade Estadual da Paraíba, CCBSA, Campus V, Rua Neusa de Sousa Sales, s/n, Mangabeira VII, João Pessoa, PB, 58058-420, Brasil. E-mail: [email protected]. Sea anemones are solitary polyps that belong to the Phylum Cnidaria and the Class Anthozoa (Order Actiniaria or Corallimorpharia) (Fautin & Allen 1994). These animals inhabit shallow or deep coastal waters throughout the world, but are particularly diverse in tropical oceans (Ruppert et al. 2005). Although they are not considered especially voracious predators, sea anemones feed on a variety of prey that includes small fish, sea cucumbers, mollusks and crustaceans, especially crabs (Fautin & Allen 1994). Sea anemones of the species Bunodosoma cangicum Corrêa, 1964 are frequently seen in the inter-tidal zone during low tides on the coastal reefs of Cabo Branco beach (João Pessoa, Paraíba State, Brazil) (Fig. A). On April 1, 2007, during field work on these reefs (7º08’50” S, 34º47’51” W) a predation event was witnessed involving Bunodosoma cangicum attacking a swimming crab, Callinectes sp. Stimpson, 1860 (Fig. B). At the moment of the sighting, the inter-tidal region was totally exposed due to the low tide. The anemone was approximately 5 cm tall and the swimming crab occupied the entire gastro vascular cavity. The crab appeared to be larger than the anemone could hold, and the crab was in fact partially visible, which allowed its identification to the genus level.
    [Show full text]
  • High Levels of Gene Variation and the Population Structure of Bunodosoma Caissarum (Cnidaria: Actiniidae)
    Rey. Biol. Trop., 39 (1): 41-46, 1991 High levels of gene variation and the population structure of Bunodosoma caissarum (Cnidaria: Actiniidae) C.A. de Moraes RussoJ.2 and A.M. Solé-Cava2 1 Departamento deGenetica, Instituto de Biologia, Universidade Federal doRío de Janeiro, Bloco A, CCS, Dha do Fundao, 22.000-Río de Janeiro-RJ, Brazil. 2 Departamentode Biologia Geral, Universidade Federal Fluminense. C.P. 100.183,24000 - Niteroi, Río de Janeiro, Brazil. (Rec. 2O-1V-I990. Acep. 14-IX-I990) Abstract: High levels of gene variation bave been recently reported for coelenterates and sponges from temperate waters. These levels are supposedly related to tlteir particular life histories,ecolog ical conditions and populationsizes. However, few studies bave beenmade so faron tropical sea anemone populations. Herewe reportan analysis of 20putative isozyme lociin threepopulations of Bunodosoma caissarum, a Brazilian actiniid anemone extremely abundant in tite intertidal zoneof rocky shores along Río de Janeiro. Heterozygosity levels were high (between 0.284 and 0.299),as in tite anemones fromtite tem­ perate zone. This suggests tbatlatitude-related variables are not necessary conditions for high heterozygosity levels. A low level of gene differentiation (1 = 0.954) was observed between populations up to 200 km apart, indicating a high homogeneity for the population. Theevolutionary age of tite groupand tite high population sizes presentin these organisms may be respon­ sible for the high levels of gene polymorphism observed in tlteirpopulations. Key words: Actiniaria,heterozygosity, Bunodosoma, genetics, population The Brazilian endemic sea-anemone species help to clarifying problems in taxonomy Bunodosoma caissarum Correa, 1964 is widely (Carter & Thorpe 1981, Haylor et al.
    [Show full text]