Understanding the Morphology and Distribution of Nematocysts in Sea Anemones and Their Relatives

Total Page:16

File Type:pdf, Size:1020Kb

Understanding the Morphology and Distribution of Nematocysts in Sea Anemones and Their Relatives Understanding the morphology and distribution of nematocysts in sea anemones and their relatives DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Abigail Julia Reft Graduate Program in Evolution, Ecology and Organismal Biology The Ohio State University 2012 Dissertation Committee: Dr. Marymegan Daly, Advisor Dr. John V. Freudenstein Dr. William Ausich Copyright by Abigail Julia Reft 2012 Abstract Cnidaria includes organisms diverse in body form, life-cycle, and ecology and includes corals, sea anemones, Hydra, and jellyfish. Despite this diversity, cnidarians are easily recognized by the presence of small intracellular stinging capsules called nematocysts. This structure, which consists of a tubule attached at one end that typically bears spines, are a synapomorphy for the group as all members of the phylum produce them. These structures are used in many aspects of everyday biology including defense against predators, attachment to substrate, capture of prey, and aggression against other cnidarians. Although the basic construct of the nematocyst is simple, high amounts of morphological variation in tubule and spine features are found throughout the phylum. This variation has been difficult to interperate for several reasons including the need for advanced microscopy techniques to visualize the morphology, disagreements among authors as to how to best circumscribe and organize the variation that is observed, and the lack of many broad, phylogenetically based analyzes to put this diversity in an evolutionary context. Because the interpretation of nematocyst diversity is so problematic, the utility of nematocyst as phylogenetic characters for cnidarians is unclear. To determine if nematocysts can be used phylogenetically requires a better understanding of the morphological variation itself and its distribution within cnidarians. To address these issues, I performed a morphological survey of nematocysts using advanced microscopy techniques (differential inference contrast, scanning and ii transmission electron microscopy). This work included assessing the distribution and morphology of a single nematocyst character, the apical structure, to determine if it contained any phylogenetic signal, fully documenting the diversity of a group of nematocyst morphologies that have been particularly confusing (the rhabdoids or nematocysts with a wider diameter basal tubule), placing this diversity on phylogenetic trees to look for patterns of evolution, and utilizing a multivariate approach to assess the morphological groups implied by qualitative characters. The apical structure study found that an individual morphological character does provide strong phylogenetic information. Three morphological states are present and they each represent a monophyletic group (Medusozoa, Anthozoa, and the anthozoan order Actiniaria). For the Actiniaria, this provides a morphological synapomorphy that this group has previously lacked. In fully describing the variation of rhabdoid nematocyst forms, I recognize nine distinct morphologies. Some of these morphologies (particularly some of the p-rhabdoid forms) agree closely with previously hypothesized morphological groupings. However, other morphologies are recognized as distinct for the first time. New names are given to these nematocyst morphologies to help clarify the exact distribution of variation. Placing this variation in a phylogenetic context reveals that the presence/absence of certain morphologies does define monophyletic groups. Clarifying the confusion over which cnidarians have each morphology results in a clearer pattern morphotypes shared amongst certain taxa (i.e. the p-rhabdoid B forms in the Metridiodea). iii Finally, using quantitative characters in a multivariate analysis reveals support for many groups of nematocyst morphology. Using qualitative features to group the variation is effective in finding groups of morphologies that share shape features as quantified by a multivariate analysis. iv Dedication Dedicated to my parents, Joyce A. and Chester S., for all their love and support, and Prof. Michael LaBarbera for introducing me to the wonderful world of invertebrates. v Acknowledgments A project such as this one is impossible to complete without the help and support of many people both professionally and personally. First and foremost, I would like to thank my advisor, Meg Daly for taking me under her wing while I was working on my masters and supporting me through the completion of my Ph.D. I know of no other scientist could nurture my love of all things invertebrate and Asian like she has; I could not have asked for a better academic mother. I also want to thank the other members of my committee, John Freudenstein and Bill Ausich. In and out of class, I have learned much about both systematics and being a scientist from both and have always enjoyed learning about the plant and paleontological perspectives on the field. Also, I thank those that assisted me in fieldwork and hosted me while I was in foreign countries. Specifically, I thank Dr. Shin Kubota of the Seto Marine lab of Kyoto University for his assistance (and for the onsen) during my time in Japan, Dr. Jun-Im Song and her lab at Ewha Womens University for their assistance during my time in South Korea (and for the lovely trip to Jeju), and Dr. Bernard Picton of the National Museums of Northern Ireland for his assistance (and for the warm hospitality of his family) in Northern Ireland. Others to thank in collecting material include Anthony vi Montgomery, Estefanía Rodríguez, Neil Blackstone, and Paulyn Cartright; thank you for providing some of the raw material needed to complete my project. The Daly lab has been my home for the last six years and I thank all members both past and present for their help and friendship. Specifically, thanks to Annie Lindgren for always providing perspective, Luciana Gusmaõ for the many long discussions about anything and everything, Estefanía Rodríguez for endless help and support, Paul Larson for fun atmosphere in lab, Nick Skomrock for the fun and gossip, and Jason Macrander for the events and parties. Finally, I would like to thank my family for being so supportive even if they do not completely understand what I am doing here. My parents in particular have always encouraged me to grow and explore the world around me and never discouraged me from trying new (and sometimes hard things). Thanks so much for all the love and support. vii Vita October 1980..................................................Born: Chicago, IL, USA 2002................................................................B.A. Biology, University of Chicago 2005................................................................M.A. Ecology and Evolutionary Biology, University of Kansas 2006 to present ..............................................Graduate Teaching Associate, Department of Evolution, Ecology and Organismal Biology, The Ohio State University Publications Voight JA, Lee RW, Reft AJ, Bates AE. 2012. Scientific gear as a vector for alien species at deep-sea hydrothermal vents. Conserv Biol DOI: 10.1111/j.1523-1739.2012.01864.x Reft AJ, Daly M. 2012. Morphology, distribution, and evolution of apical structure of nematocysts in Hexacorallians. J Morph. 273: 121-136. viii Daly M, Gusmao LC, Reft AJ, Rodriguez E. 2010. Phylogenetic Signal in Mitochondrial and Nuclear Markers in Sea Anemones (Cnidaria, Actiniaria). Integr Comp Biol 50: 371- 388. Reft, AJ, Westfall, JA, Fautin DG. 2009. Formation of the apical flaps in nematocysts of sea anemones (Cnidaria: Actiniaria). Biol Bull 217: 25-34. Reft AJ, Voight J. 2009. Sensory structures on the siphons of wood-boring bivalves (Pholadidae: Xylophagainae: Xylophaga). Nautilus 123:43-48. Sierwald P, Reft AJ. 2004. The Millipede Collections of the World. Fieldiana, Zoology New Series 103, Publication number 1532, 1-100. Fields of Study Major Field: Evolution, Ecology, and Organismal Biology ix Table of Contents Abstract............................................................................................................................... ii Dedication........................................................................................................................... v Acknowledgments.............................................................................................................. vi Vita...................................................................................................................................viii List of Tables .................................................................................................................... xv List of Figures................................................................................................................. xvii Chapter 1: Introduction.................................................................................................. 144 Overview of the chapters.........................................................................................3 References................................................................................................................6 Chapter 2: Morphology, distribution, and evolution of apical structure of nematocysts in Hexacorallia.........................................................................................................................8 Introduction..............................................................................................................8
Recommended publications
  • On the Food of the Antarctic Sea Anemone Urticinopsis Antarctica Carlgren, 1927 (Actiniidae, Actiniaria, Anthozoa) N
    Journal of the Marine Biological Association of the United Kingdom, page 1 of 6. # Marine Biological Association of the United Kingdom, 2016 doi:10.1017/S0025315415002131 On the food of the Antarctic sea anemone Urticinopsis antarctica Carlgren, 1927 (Actiniidae, Actiniaria, Anthozoa) n. yu. ivanova1 and s.d. grebelnyi2 1Saint Petersburg State University, Saint Petersburg, Russia, 2Zoological Institute of Russian Academy of Sciences, Saint Petersburg, Russia The results of an investigation into coelenteron content of the Antarctic sea anemone Urticinopsis antarctica Carlgren, 1927 are presented. Remains of invertebrate animals and fishes were found in the gastrovascular cavity of anemones. Some of them were damaged by digestion and were considered as food items of U. antarctica. These items were molluscs Addamussium colbecki (Smith, 1902), Laevilacunaria pumilia Smith, 1879, Eatoniella caliginosa Smith, 1875 and one not strictly identified gastropod species from the family Rissoidae; a crinoid from the family Comatulida; sea-urchin Sterechinus neumayeri Meissner, 1900; ophiuroid Ophiurolepis brevirima Mortensen, 1936 and a fish Trematomus sp. In contrast to the prey men- tioned above, three specimens of amphipods Conicostoma sp. were not destroyed by digestion. They may represent commen- sals, which live in the gastrovascular cavity of the anemone. Keywords: Antarctica, Urticinopsis antarctica, prey capture, coelenteron content, diet, generalist Submitted 1 June 2015; accepted 23 November 2015 INTRODUCTION disposed on the surface of a wide oral disc. The disc in this anemone can assume the form of a tube that allows selecting Sea anemones are well represented in marine benthic commu- of food particles from water passing through it (Figure 1.1–3).
    [Show full text]
  • High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project
    High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project AEA Technology, Environment Contract: W/35/00632/00/00 For: The Department of Trade and Industry New & Renewable Energy Programme Report issued 30 August 2002 (Version with minor corrections 16 September 2002) Keith Hiscock, Harvey Tyler-Walters and Hugh Jones Reference: Hiscock, K., Tyler-Walters, H. & Jones, H. 2002. High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Report from the Marine Biological Association to The Department of Trade and Industry New & Renewable Energy Programme. (AEA Technology, Environment Contract: W/35/00632/00/00.) Correspondence: Dr. K. Hiscock, The Laboratory, Citadel Hill, Plymouth, PL1 2PB. [email protected] High level environmental screening study for offshore wind farm developments – marine habitats and species ii High level environmental screening study for offshore wind farm developments – marine habitats and species Title: High Level Environmental Screening Study for Offshore Wind Farm Developments – Marine Habitats and Species Project. Contract Report: W/35/00632/00/00. Client: Department of Trade and Industry (New & Renewable Energy Programme) Contract management: AEA Technology, Environment. Date of contract issue: 22/07/2002 Level of report issue: Final Confidentiality: Distribution at discretion of DTI before Consultation report published then no restriction. Distribution: Two copies and electronic file to DTI (Mr S. Payne, Offshore Renewables Planning). One copy to MBA library. Prepared by: Dr. K. Hiscock, Dr. H. Tyler-Walters & Hugh Jones Authorization: Project Director: Dr. Keith Hiscock Date: Signature: MBA Director: Prof. S. Hawkins Date: Signature: This report can be referred to as follows: Hiscock, K., Tyler-Walters, H.
    [Show full text]
  • Anthopleura and the Phylogeny of Actinioidea (Cnidaria: Anthozoa: Actiniaria)
    Org Divers Evol (2017) 17:545–564 DOI 10.1007/s13127-017-0326-6 ORIGINAL ARTICLE Anthopleura and the phylogeny of Actinioidea (Cnidaria: Anthozoa: Actiniaria) M. Daly1 & L. M. Crowley2 & P. Larson1 & E. Rodríguez2 & E. Heestand Saucier1,3 & D. G. Fautin4 Received: 29 November 2016 /Accepted: 2 March 2017 /Published online: 27 April 2017 # Gesellschaft für Biologische Systematik 2017 Abstract Members of the sea anemone genus Anthopleura by the discovery that acrorhagi and verrucae are are familiar constituents of rocky intertidal communities. pleisiomorphic for the subset of Actinioidea studied. Despite its familiarity and the number of studies that use its members to understand ecological or biological phe- Keywords Anthopleura . Actinioidea . Cnidaria . Verrucae . nomena, the diversity and phylogeny of this group are poor- Acrorhagi . Pseudoacrorhagi . Atomized coding ly understood. Many of the taxonomic and phylogenetic problems stem from problems with the documentation and interpretation of acrorhagi and verrucae, the two features Anthopleura Duchassaing de Fonbressin and Michelotti, 1860 that are used to recognize members of Anthopleura.These (Cnidaria: Anthozoa: Actiniaria: Actiniidae) is one of the most anatomical features have a broad distribution within the familiar and well-known genera of sea anemones. Its members superfamily Actinioidea, and their occurrence and exclu- are found in both temperate and tropical rocky intertidal hab- sivity are not clear. We use DNA sequences from the nu- itats and are abundant and species-rich when present (e.g., cleus and mitochondrion and cladistic analysis of verrucae Stephenson 1935; Stephenson and Stephenson 1972; and acrorhagi to test the monophyly of Anthopleura and to England 1992; Pearse and Francis 2000).
    [Show full text]
  • The Sea Anemone Exaiptasia Diaphana (Actiniaria: Aiptasiidae) Associated to Rhodoliths at Isla Del Coco National Park, Costa Rica
    The sea anemone Exaiptasia diaphana (Actiniaria: Aiptasiidae) associated to rhodoliths at Isla del Coco National Park, Costa Rica Fabián H. Acuña1,2,5*, Jorge Cortés3,4, Agustín Garese1,2 & Ricardo González-Muñoz1,2 1. Instituto de Investigaciones Marinas y Costeras (IIMyC). CONICET - Facultad de Ciencias Exactas y Naturales. Universidad Nacional de Mar del Plata. Funes 3250. 7600 Mar del Plata. Argentina, [email protected], [email protected], [email protected]. 2. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). 3. Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Ciudad de la Investigación, Universidad de Costa Rica, San Pedro, 11501-2060 San José, Costa Rica. 4. Escuela de Biología, Universidad de Costa Rica, San Pedro, 11501-2060 San José, Costa Rica, [email protected] 5. Estación Científica Coiba (Coiba-AIP), Clayton, Panamá, República de Panamá. * Correspondence Received 16-VI-2018. Corrected 14-I-2019. Accepted 01-III-2019. Abstract. Introduction: The sea anemones diversity is still poorly studied in Isla del Coco National Park, Costa Rica. Objective: To report for the first time the presence of the sea anemone Exaiptasia diaphana. Methods: Some rhodoliths were examined in situ in Punta Ulloa at 14 m depth, by SCUBA during the expedition UCR- UNA-COCO-I to Isla del Coco National Park on 24th April 2010. Living anemones settled on rhodoliths were photographed and its external morphological features and measures were recorded in situ. Results: Several indi- viduals of E. diaphana were observed on rodoliths and we repeatedly observed several small individuals of this sea anemone surrounding the largest individual in an area (presumably the founder sea anemone) on rhodoliths from Punta Ulloa.
    [Show full text]
  • Preliminary Mass-Balance Food Web Model of the Eastern Chukchi Sea
    NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center December 2013 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center. This document should be cited as follows: Whitehouse, G. A. 2013. A preliminary mass-balance food web model of the eastern Chukchi Sea. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-262, 162 p. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse1,2 1Alaska Fisheries Science Center 7600 Sand Point Way N.E. Seattle WA 98115 2Joint Institute for the Study of the Atmosphere and Ocean University of Washington Box 354925 Seattle WA 98195 www.afsc.noaa.gov U.S. DEPARTMENT OF COMMERCE Penny. S. Pritzker, Secretary National Oceanic and Atmospheric Administration Kathryn D.
    [Show full text]
  • The Anemonia Viridis Venom: Coupling Biochemical Purification
    marine drugs Review The Anemonia viridis Venom: Coupling Biochemical Purification and RNA-Seq for Translational Research Aldo Nicosia 1,*,† , Alexander Mikov 2,†, Matteo Cammarata 3, Paolo Colombo 4 , Yaroslav Andreev 2,5, Sergey Kozlov 2 and Angela Cuttitta 1,* 1 National Research Council-Institute for the Study of Anthropogenic Impacts and Sustainability in the Marine Environment (IAS-CNR), Laboratory of Molecular Ecology and Biotechnology, Capo Granitola, Via del mare, Campobello di Mazara (TP), 91021 Sicily, Italy 2 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, GSP-7, ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia; [email protected] (A.M.); [email protected] (Y.A.); [email protected] (S.K.) 3 Department of Earth and Marine Sciences, University of Palermo, 90100 Palermo, Italy; [email protected] 4 Istituto di Biomedicina e di Immunologia Molecolare, Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy; [email protected] 5 Institute of Molecular Medicine, Ministry of Healthcare of the Russian Federation, Sechenov First Moscow State Medical University, 119991 Moscow, Russia * Correspondence: [email protected] (A.N.); [email protected] (A.C.); Tel.: +39-0924-40600 (A.N. & A.C.) † These authors have made equal contribution. Received: 29 September 2018; Accepted: 24 October 2018; Published: 25 October 2018 Abstract: Blue biotechnologies implement marine bio-resources for addressing practical concerns. The isolation of biologically active molecules from marine animals is one of the main ways this field develops. Strikingly, cnidaria are considered as sustainable resources for this purpose, as they possess unique cells for attack and protection, producing an articulated cocktail of bioactive substances.
    [Show full text]
  • A Diverse Host Thrombospondin-Type-1
    RESEARCH ARTICLE A diverse host thrombospondin-type-1 repeat protein repertoire promotes symbiont colonization during establishment of cnidarian-dinoflagellate symbiosis Emilie-Fleur Neubauer1, Angela Z Poole2,3, Philipp Neubauer4, Olivier Detournay5, Kenneth Tan3, Simon K Davy1*, Virginia M Weis3* 1School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand; 2Department of Biology, Western Oregon University, Monmouth, United States; 3Department of Integrative Biology, Oregon State University, Corvallis, United States; 4Dragonfly Data Science, Wellington, New Zealand; 5Planktovie sas, Allauch, France Abstract The mutualistic endosymbiosis between cnidarians and dinoflagellates is mediated by complex inter-partner signaling events, where the host cnidarian innate immune system plays a crucial role in recognition and regulation of symbionts. To date, little is known about the diversity of thrombospondin-type-1 repeat (TSR) domain proteins in basal metazoans or their potential role in regulation of cnidarian-dinoflagellate mutualisms. We reveal a large and diverse repertoire of TSR proteins in seven anthozoan species, and show that in the model sea anemone Aiptasia pallida the TSR domain promotes colonization of the host by the symbiotic dinoflagellate Symbiodinium minutum. Blocking TSR domains led to decreased colonization success, while adding exogenous *For correspondence: Simon. TSRs resulted in a ‘super colonization’. Furthermore, gene expression of TSR proteins was highest [email protected] (SKD); weisv@ at early time-points during symbiosis establishment. Our work characterizes the diversity of oregonstate.edu (VMW) cnidarian TSR proteins and provides evidence that these proteins play an important role in the Competing interests: The establishment of cnidarian-dinoflagellate symbiosis. authors declare that no DOI: 10.7554/eLife.24494.001 competing interests exist.
    [Show full text]
  • Western Bering Sea Pacific Cod and Pacific Halibut Longline
    MSC Sustainable Fisheries Certification Western Bering Sea Pacific cod and Pacific halibut longline Public Consultation Draft Report – August 2019 Longline Fishery Association Assessment Team: Dmitry Lajus, Daria Safronova, Aleksei Orlov, Rob Blyth-Skyrme Document: MSC Full Assessment Reporting Template V2.0 page 1 Date of issue: 8 October 2014 © Marine Stewardship Council, 2014 Contents Table of Tables ..................................................................................................................... 5 Table of Figures .................................................................................................................... 7 Glossary.............................................................................................................................. 10 1 Executive Summary ..................................................................................................... 12 2 Authorship and Peer Reviewers ................................................................................... 14 2.1 Use of the Risk-Based Framework (RBF): ............................................................ 15 2.2 Peer Reviewers .................................................................................................... 15 3 Description of the Fishery ............................................................................................ 16 3.1 Unit(s) of Assessment (UoA) and Scope of Certification Sought ........................... 16 3.1.1 UoA and Proposed Unit of Certification (UoC) ..............................................
    [Show full text]
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]
  • Acanthastrea Lordhowensis
    RÉCIF FRANCE Les LETTRES RÉCIFALES L’AQUARIOPHILIE MARINE ET RÉCIFALE À LA PORTÉE DE TOUS Pomacanthus navarchus Acanthastrea lordhowensis Maintenir les Turbos Réduction des nitrates Le genre Acanthastrea 9HRLCQF*jjfjhe+ Numéro 97 Mars / Avril 2014 6,50 € BELGIQUE & SUISSE : 7,98 € ISSN 1265 - 9959 Page 2 Les Lettres Récifales Les Lettres Récifales, c’est votre magazine ! Vous souhaitez communiquer votre expé- rience sur les conditions de maintenance de votre éco - système, faire part de vos réus- sites et déboires avec un animal, nous pré- senter votre installation ou partager avec nous vos réflexions sur votre future installa- tion, écrivez nous ! Vous avez eu l’occasion de visiter une installation privée ou publique qui vous a retenu votre attention, vous souhaitez faire part de votre coup de cœur à nos lecteurs, écrivez nous ! Vous avez testé un nouveau matériel, vous avez amélioré son fonctionnement, vous êtes bricoleur et avez fabriqué avec succès un équipement, vous voulez partager votre conception et en faire profiter le plus grand nombre, écrivez nous ! Faire paraître vos articles c’est encourager la passion de l’aquariophilie marine pour tous et communiquer la passion ! 2014, n° 97 Page 3 Copyright © 2014 Récif France. All rights reserved. Sommaire MARS - AVRIL 2014 ►Délégués Régionaux : ALSACE - BOURGOGNE - FRANCHE COMTÉ - Francis SCHULTZ 89 rue Principale - 67870 BISCHHOFFSHEIM 4 POMACANTHUS NAR- Courriel : [email protected] BRETAGNE - PAYS DE LOIRE - Serge BLIVET VACHUS 66 rue Hortense Tanvet - 44150 ANCENIS Jens GSCHWENDER
    [Show full text]
  • The Genus Periclimenes Costa, 1844 in the Mediterranean Sea and The
    Atti Soc. it. Sci. nat. Museo civ. Stor. nat. Milano, 135/1994 (II): 401-412, Giugno 1996 Gian Bruno Grippa (*) & Cedric d'Udekem d'Acoz (**) The genus Periclimenes Costa, 1844 in the Mediterranean Sea and the Northeastern Atlantic Ocean: review of the species and description of Periclimenes sagittifer aegylios subsp. nov. (Crustacea, Decapoda, Caridea, Pontoniinae) Abstract - The shrimps of the genus Periclimenes in the Northeastern Atlantic and the Mediterranean present a complex and little known systematic . In the present paper, several problems are solved, a new subspecies is described and a new identification key is proposed. Furthermore the systematic value of live colour patterns in the taxa examined is briefly di- scussed. Riassunto - II genere Periclimenes Costa, 1844 nel mar Mediterraneo e nell'Atlantico Nordorientale: revisione delle specie e descrizione di Periclimenes sagittifer aegylios subsp. nov. (Crustacea, Decapoda, Caridea, Pontoniinae). II genere Periclimenes presenta una sistematica complessa e poco conosciuta. Ricerche effettuate dagli autori hanno messo in luce la confusione dovuta a descrizioni carenti dei tipi effettuate talvolta su esemplari singoli e incompleti. Viene percio proposta una chiave siste- matica e viene descritta una nuova subspecie. Inoltre si accenna al valore sistematico delle caratteristiche cromatiche nei taxa esaminati. Key words: Decapoda, Periclimenes, Mediterranean sea. Systematic. Introduction In a recent faunistical note on the decapod crustaceans of the Toscan archipelago (Grippa, 1991), the first named author recorded some shrimps of the genus Periclimenes Costa, 1844. Using the well known monograph of Zariquiey Alvarez (1968), he identified shallow-water specimens found on the sea anemone Anemonia viridis (Forskal, 1775) as P. amethysteus (Risso, 1827) and some others, living deeper and associated with bryozoans as P.
    [Show full text]
  • Reproduction in British Zoanthids, and an Unusual Process in Parazoanthus Anguicomus
    J. Mar. Biol. Ass. U.K. +2000), 80,943^944 Printed in the United Kingdom Reproduction in British zoanthids, and an unusual process in Parazoanthus anguicomus J.S. Ryland School of Biological Sciences, University of Wales Swansea, Swansea, Wales, SA2 8PP. E-mail: [email protected] Specimens of three zoanthid species, Epizoanthus couchii, Parazoanthus anguicomus and P. axinellae were sectioned. All were gonochoric, with gametes developing during summer. Oocytes in P. anguicomus originate in a single-layered ribbon down the perfect septa, but the ribbon becomes moniliform as, at regular intervals, it folds laterally into lens-shaped nodes, packed with oocytes, doubling polyp fecundity. Zoanthids are mainly tropical anthozoans but a few species Oocytes had reached 100 mm diameter by August^October, +all suborder Macrocnemina) occur in cooler latitudes, ¢ve the sperm cysts a little more +Figure 1). Oocytes and cysts will being present around the British Isles: Epizoanthus couchii, have shrunk by 10^25% during processing +Ryland & Babcock, E. papillosus incrustatus), Isozoanthus sulcatus, Parazoanthus 1991; Ryland, 1997). Even so, if these oocytes were nearly anguicomus and P. axinellae +Manuel, 1988). Manuel reported mature they are smaller than recorded in other zoanthids `no recent records' of E. papillosus, but it has since been +170^450 mm diameter: Ryland, 1997). Testis cysts in June found in both the North Sea +54^618N, west of 2.58E) and contained spermatogonia, later samples spermatocytes; none St George's Channel +51.78N6.58W: S. Jennings and J.R. contained mature spermatozoa. In E. couchii collected in Lough Ellis, personal communications). Additionally, a sixth species, Hyne, the germinal vesicles were central +Figure 2B^F) and no E.
    [Show full text]