Water Sea Anemones (Entacmaea Quadricolor and Stichodactyla Haddoni) Maintain High Genetic Diversity and Panmixia

Total Page:16

File Type:pdf, Size:1020Kb

Water Sea Anemones (Entacmaea Quadricolor and Stichodactyla Haddoni) Maintain High Genetic Diversity and Panmixia diversity Article Reproduction in Urbanised Coastal Waters: Shallow- Water Sea Anemones (Entacmaea quadricolor and Stichodactyla haddoni) Maintain High Genetic Diversity and Panmixia Wan Wen Rochelle Chan 1,*, Ywee Chieh Tay 1,2, Hui Ping Ang 3, Karenne Tun 3, Loke Ming Chou 1,2 , Danwei Huang 1,2,4 and Rudolf Meier 1,2 1 Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore; [email protected] (Y.C.T.); [email protected] (L.M.C.); [email protected] (D.H.); [email protected] (R.M.) 2 Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore 119227, Singapore 3 National Biodiversity Centre, National Parks Board, Singapore 259569, Singapore; [email protected] (H.P.A.); [email protected] (K.T.) 4 Centre for Nature-Based Climate Solutions, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore * Correspondence: [email protected] Received: 11 August 2020; Accepted: 30 November 2020; Published: 8 December 2020 Abstract: Sea anemones are sedentary marine animals that tend to disperse via planktonic larvae and are predicted to have high population connectivity in undisturbed habitats. We test whether two sea anemone species living in two different tidal zones of a highly disturbed marine environment can maintain high genetic connectivity. More than 1000 loci with single-nucleotide polymorphisms (SNPs) were obtained with double-digest RADseq for 81 Stichodactyla haddoni and 99 Entacmaea quadricolor individuals to test for population genetic structure. We find evidence that both species predominantly propagate via sexual reproduction, and asexual reproduction is limited. We observe panmixia that indicates the absence of effective dispersal barriers for these species living in a highly anthropogenically disturbed environment. This is positive news for both species that are also found in the aquarium trade. More fundamentally, our results suggest that inhabiting different parts of a shallow reef may not affect a species’ population connectivity nor favour asexual reproduction. Keywords: fine-scale connectivity; ddRADseq; sea anemones; clonality 1. Introduction The construction of artificial coastal structures and increased shipping traffic can potentially interfere with the population connectivity of marine species and are thought to have negative effects on sedentary species with limited dispersal abilities [1,2]. Fortunately, many sedentary marine species have planktonic larvae that aid in dispersal [3–6] given that they can be transported over large distances via oceanic currents before settlement [6]. Broadcast spawning in anthozoans is considered the predominant method of reproduction, used in both hermaphroditic and gonochoric species [5]. The range of pelagic larval dispersal could be dependent on factors like the influence of currents (passive distribution for longer distances). However, short-distance dispersal of pelagic larvae has been speculated to be dependent on behaviour i.e., larvae remaining close to the benthos [7]. A good example of sedentary marine organisms that use broadcast spawning for maintaining panmixia are sea anemones (Cnidaria: Anthozoa: Actiniaria) [5], but how effective is this reproductive mode when living in heavily Diversity 2020, 12, 467; doi:10.3390/d12120467 www.mdpi.com/journal/diversity DiversityDiversity2020 2020, ,12 12,, 467 x FOR PEER REVIEW 2 2of of 18 18 example of sedentary marine organisms that use broadcast spawning for maintaining panmixia are impacted marine environments? Reduced genetic diversity [8,9] and population connectivity [10] have sea anemones (Cnidaria: Anthozoa: Actiniaria) [5], but how effective is this reproductive mode when been detected in populations settling on artificial structures. These are thought to be due to ecological living in heavily impacted marine environments? Reduced genetic diversity [8,9] and population and functional differences between natural and artificial structures and/or ‘phenotype-environment’ connectivity [10] have been detected in populations settling on artificial structures. These are thought unsuitability. Pollution in heavily impacted environments is furthermore known to cause mutations [11] to be due to ecological and functional differences between natural and artificial structures and/or with sublethal effects [12], which suggests that marine species in heavily disturbed environments could ‘phenotype-environment’ unsuitability. Pollution in heavily impacted environments is furthermore face a bleak future especially if the population connectivity is low. It would interfere with re-population known to cause mutations [11] with sublethal effects [12], which suggests that marine species in andheavily lower disturbed the capacity environments to recover could from disturbances.face a bleak future A decrease especially in the if the ability population of populations connectivity to adapt is tolow. rapidly It would changing interfere micro-conditions with re-population might occurand lower [13–15 the], given capacity that to higher recover genetic from diversity disturbances increases. A resiliencedecrease in of the populations ability of populations and the ecosystem to adapt toto rapidly disturbances changing [16– micro18]. Population-conditions might genetic occur data [13 also– allow15], given for reconstructing that higher genetic demographic diversity responses increases such resilience as effective of populations population and size, the genetic ecosystem diversity to anddisturbances migration [16 rates–18] to. Population contemporary genetic stressors. data also The allow data for could reconstructing thereforealso demographic inform conservation responses prioritisationsuch as effective and population management size, [19 genetic]. This isdiversity particularly and migration important rates for economically to contemporary important stressors. and endangeredThe data could species therefore [20–22]. also inform conservation prioritisation and management [19]. This is particularlySedentary important animals for such economically as sea anemones important have reproductiveand endangered strategies species that [20– are22] selected. to increase their chancesSedentary of survivalanimals [5such,23– 25as]. sea On anemones the one hand, have most reproductive species reproduce strategies sexually, that are which selected increases to theincrease genetic their diversity chances and of survival allows [ for5,23 adaptation–25]. On the in one dynamic hand, m andost species heterogeneous reproduce environments sexually, which [26 ]. Onincreases the other thehand, genetic asexual diversity modes and allow allows for quicklyfor adaptation reproducing in dynamic successful and genotypes heterogeneous that are well-adaptedenvironments to [26] prevailing. On the stable other andhand, homogeneous asexual modes environments allow for quickly [27,28]. Inreproducing sea anemones, successful sexual reproductiongenotypes that primarily are well involves-adapted broadcastto prevailing spawning stable and while homogeneous asexual reproduction environments may occur[27,28] by. In pedal sea laceration,anemones, longitudinal sexual reproduction fission or primarily transverse involves fission broadcast [29,30]. In spawning species with while a predominantlyasexual reproduction sexual modemay occu of reproduction,r by pedal laceration, highly connected longitudinal populations fission acrossor transverse different fission spatial [29,30] scales. andIn species higher with genetic a diversitypredominantly have been sexual observed mode of [31 reproduction,–33]. Conversely, highly species connected with asexualpopulations reproduction across different typically spatial show reducedscales and dispersal higher and genetic stronger diversity genetic have isolation been [observed34–37], because [31–33] individuals. Conversely, are species likely towith attach asexual to the firstreproduction hard surface typically that they show encounter reduced [38 dispersal]. and stronger genetic isolation [34–37], because individualsRecent observationalare likely to attach studies to the have first demonstratedhard surface that that they most encounter sea anemone [38]. species reproduce sexuallyRecent [5,23 observational,39–42]. For the studies sea anemone have demonstrateStichodactylad that haddoni most(Figure sea anemone1a), there species is no evidencereproduce of sexualsexually reproduction—asexuality [5,23,39–42]. For the sea appearsanemone to Stichodactyla be the main haddoni mode ( ofFigure reproduction 1a), there [is42 no]. Onevidence the other of hand,sexual sea reproduction anemones— likeasexualityEntacmaea appears quadricolor to be the(Figure main1b) mode [ 5,23 of] andreproductionS. gigantea [42][33. On] occasionally the other performhand, sea asexual anemones reproduction like Entacmaea via longitudinal quadricolor fission (Figure [23 ,130b), 43[5,].23] Unfortunately, and S. gigantea our [33] understanding occasionally of theperform reproductive asexual biologyreproduction of sea via anemones longitudinal is poor fission because [23,30,43 obtaining]. Unfortunately, high-quality our observational understanding data forof long-livedthe reproductive and slow-growing biology of sea anemones anemones is is time-consuming poor because obtaining [39,44]. Inhigh the-q marineuality observational environment, didatafficulties for long to directly-lived access,and slow track-growing and monitor anemones marine is speciestime-consuming in situ
Recommended publications
  • Educators' Resource Guide
    EDUCATORS' RESOURCE GUIDE Produced and published by 3D Entertainment Distribution Written by Dr. Elisabeth Mantello In collaboration with Jean-Michel Cousteau’s Ocean Futures Society TABLE OF CONTENTS TO EDUCATORS .................................................................................................p 3 III. PART 3. ACTIVITIES FOR STUDENTS INTRODUCTION .................................................................................................p 4 ACTIVITY 1. DO YOU Know ME? ................................................................. p 20 PLANKton, SOURCE OF LIFE .....................................................................p 4 ACTIVITY 2. discoVER THE ANIMALS OF "SECRET OCEAN" ......... p 21-24 ACTIVITY 3. A. SECRET OCEAN word FIND ......................................... p 25 PART 1. SCENES FROM "SECRET OCEAN" ACTIVITY 3. B. ADD color to THE octoPUS! .................................... p 25 1. CHristmas TREE WORMS .........................................................................p 5 ACTIVITY 4. A. WHERE IS MY MOUTH? ..................................................... p 26 2. GIANT BasKET Star ..................................................................................p 6 ACTIVITY 4. B. WHat DO I USE to eat? .................................................. p 26 3. SEA ANEMONE AND Clown FISH ......................................................p 6 ACTIVITY 5. A. WHO eats WHat? .............................................................. p 27 4. GIANT CLAM AND ZOOXANTHELLAE ................................................p
    [Show full text]
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Anthopleura and the Phylogeny of Actinioidea (Cnidaria: Anthozoa: Actiniaria)
    Org Divers Evol (2017) 17:545–564 DOI 10.1007/s13127-017-0326-6 ORIGINAL ARTICLE Anthopleura and the phylogeny of Actinioidea (Cnidaria: Anthozoa: Actiniaria) M. Daly1 & L. M. Crowley2 & P. Larson1 & E. Rodríguez2 & E. Heestand Saucier1,3 & D. G. Fautin4 Received: 29 November 2016 /Accepted: 2 March 2017 /Published online: 27 April 2017 # Gesellschaft für Biologische Systematik 2017 Abstract Members of the sea anemone genus Anthopleura by the discovery that acrorhagi and verrucae are are familiar constituents of rocky intertidal communities. pleisiomorphic for the subset of Actinioidea studied. Despite its familiarity and the number of studies that use its members to understand ecological or biological phe- Keywords Anthopleura . Actinioidea . Cnidaria . Verrucae . nomena, the diversity and phylogeny of this group are poor- Acrorhagi . Pseudoacrorhagi . Atomized coding ly understood. Many of the taxonomic and phylogenetic problems stem from problems with the documentation and interpretation of acrorhagi and verrucae, the two features Anthopleura Duchassaing de Fonbressin and Michelotti, 1860 that are used to recognize members of Anthopleura.These (Cnidaria: Anthozoa: Actiniaria: Actiniidae) is one of the most anatomical features have a broad distribution within the familiar and well-known genera of sea anemones. Its members superfamily Actinioidea, and their occurrence and exclu- are found in both temperate and tropical rocky intertidal hab- sivity are not clear. We use DNA sequences from the nu- itats and are abundant and species-rich when present (e.g., cleus and mitochondrion and cladistic analysis of verrucae Stephenson 1935; Stephenson and Stephenson 1972; and acrorhagi to test the monophyly of Anthopleura and to England 1992; Pearse and Francis 2000).
    [Show full text]
  • MARINE FAUNA and FLORA of BERMUDA a Systematic Guide to the Identification of Marine Organisms
    MARINE FAUNA AND FLORA OF BERMUDA A Systematic Guide to the Identification of Marine Organisms Edited by WOLFGANG STERRER Bermuda Biological Station St. George's, Bermuda in cooperation with Christiane Schoepfer-Sterrer and 63 text contributors A Wiley-Interscience Publication JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore ANTHOZOA 159 sucker) on the exumbrella. Color vari­ many Actiniaria and Ceriantharia can able, mostly greenish gray-blue, the move if exposed to unfavorable condi­ greenish color due to zooxanthellae tions. Actiniaria can creep along on their embedded in the mesoglea. Polyp pedal discs at 8-10 cm/hr, pull themselves slender; strobilation of the monodisc by their tentacles, move by peristalsis type. Medusae are found, upside­ through loose sediment, float in currents, down and usually in large congrega­ and even swim by coordinated tentacular tions, on the muddy bottoms of in­ motion. shore bays and ponds. Both subclasses are represented in Ber­ W. STERRER muda. Because the orders are so diverse morphologically, they are often discussed separately. In some classifications the an­ Class Anthozoa (Corals, anemones) thozoan orders are grouped into 3 (not the 2 considered here) subclasses, splitting off CHARACTERISTICS: Exclusively polypoid, sol­ the Ceriantharia and Antipatharia into a itary or colonial eNIDARIA. Oral end ex­ separate subclass, the Ceriantipatharia. panded into oral disc which bears the mouth and Corallimorpharia are sometimes consid­ one or more rings of hollow tentacles. ered a suborder of Scleractinia. Approxi­ Stomodeum well developed, often with 1 or 2 mately 6,500 species of Anthozoa are siphonoglyphs. Gastrovascular cavity compart­ known. Of 93 species reported from Ber­ mentalized by radially arranged mesenteries.
    [Show full text]
  • PSA Marine (Pte) Ltd GENERAL OPERATING CONDITIONS
    PSA MARINE (PTE) LTD GENERAL OPERATING CONDITIONS Updated on 16 August 2018 PSA Marine (Pte) Ltd GENERAL OPERATING CONDITIONS CONTENTS A. GENERAL TERMS B. UK STANDARD CONDITIONS FOR TOWAGE AND OTHER SERVICES (Revised 1986) C. TERMS AND CONDITIONS FOR PILOTAGE SERVICES D. PRICE LIST E. TERMS AND CONDITIONS OF CREDIT ACCOUNT Updated on 16 August 2018 PSA Marine (Pte) Ltd GENERAL OPERATING CONDITIONS A. GENERAL TERMS 1 DEFINITION 1.1. In the General Operating Conditions (as defined herein below), the following expressions, except where the context otherwise requires or where it is otherwise stated, shall have the following meaning: (a) “Company” means PSA Marine (Pte) Ltd, its subsidiaries, successors in title and/or assigns; (b) “General Operating Conditions” means the General Operating Conditions, comprising:- (i) Section A. General Terms; (ii) Section B. UK Standard Terms and Conditions for Towage and Other Services (Revised 1986); (iii) Section C. Terms and Conditions for Pilotage Services; (iv) Section D. Price List; and (v) Section E. Terms and Conditions of Credit Account. (c) “Contract” means any agreement between the Hirer and the Company in connection with the provision of Services; (d) “Hirer” means any Person who has requested and/or any Person on whose behalf a request is made for the Company to provide Services; (e) “Person” includes any individual, person(s) or any body or bodies corporate; (f) “Price List” means the document titled as such and setting out the charges payable to the Company (as may be amended from time to
    [Show full text]
  • Chapter Two Marine Organisms
    THE SINGAPORE BLUE PLAN 2018 EDITORS ZEEHAN JAAFAR DANWEI HUANG JANI THUAIBAH ISA TANZIL YAN XIANG OW NICHOLAS YAP PUBLISHED BY THE SINGAPORE INSTITUTE OF BIOLOGY OCTOBER 2018 THE SINGAPORE BLUE PLAN 2018 PUBLISHER THE SINGAPORE INSTITUTE OF BIOLOGY C/O NSSE NATIONAL INSTITUTE OF EDUCATION 1 NANYANG WALK SINGAPORE 637616 CONTACT: [email protected] ISBN: 978-981-11-9018-6 COPYRIGHT © TEXT THE SINGAPORE INSTITUTE OF BIOLOGY COPYRIGHT © PHOTOGRAPHS AND FIGURES BY ORINGAL CONTRIBUTORS AS CREDITED DATE OF PUBLICATION: OCTOBER 2018 EDITED BY: Z. JAAFAR, D. HUANG, J.T.I. TANZIL, Y.X. OW, AND N. YAP COVER DESIGN BY: ABIGAYLE NG THE SINGAPORE BLUE PLAN 2018 ACKNOWLEDGEMENTS The editorial team owes a deep gratitude to all contributors of The Singapore Blue Plan 2018 who have tirelessly volunteered their expertise and effort into this document. We are fortunate to receive the guidance and mentorship of Professor Leo Tan, Professor Chou Loke Ming, Professor Peter Ng, and Mr Francis Lim throughout the planning and preparation stages of The Blue Plan 2018. We are indebted to Dr. Serena Teo, Ms Ria Tan and Dr Neo Mei Lin who have made edits that improved the earlier drafts of this document. We are grateful to contributors of photographs: Heng Pei Yan, the Comprehensive Marine Biodiversity Survey photography team, Ria Tan, Sudhanshi Jain, Randolph Quek, Theresa Su, Oh Ren Min, Neo Mei Lin, Abraham Matthew, Rene Ong, van Heurn FC, Lim Swee Cheng, Tran Anh Duc, and Zarina Zainul. We thank The Singapore Institute of Biology for publishing and printing the The Singapore Blue Plan 2018.
    [Show full text]
  • Thesis and Paper II
    Adaptation of anemonefish to their host anemones: From Genetics to Physiology Nguyen Thi Hai Thanh Thesis for the degree of Philosophiae Doctor (PhD) University of Bergen, Norway 2020 Adaptation of anemonefish to their host anemones: From Genetics to Physiology Nguyen Thi Hai Thanh ThesisAvhandling for the for degree graden of philosophiaePhilosophiae doctorDoctor (ph.d (PhD). ) atved the Universitetet University of i BergenBergen Date of defense:2017 21.02.2020 Dato for disputas: 1111 © Copyright Nguyen Thi Hai Thanh The material in this publication is covered by the provisions of the Copyright Act. Year: 2020 Title: Adaptation of anemonefish to their host anemones: From Genetics to Physiology Name: Nguyen Thi Hai Thanh Print: Skipnes Kommunikasjon / University of Bergen Scientific environment i Scientific environment The work of this doctoral thesis was financed by the Norwegian Agency for Development Cooperation through the project “Incorporating Climate Change into Ecosystem Approaches to Fisheries and Aquaculture Management” (SRV-13/0010) The experiments were carried out at the Center for Aquaculture Animal Health and Breeding Studies (CAAHBS) and Institute of Biotechnology and Environment, Nha Trang University (NTU), Vietnam from 2015 to 2017 under the supervision of Dr Dang T. Binh, Dr Ha L.T.Loc and Assoc. Professor Ngo D. Nghia. The study was continued at the Department of Biology, University of Bergen under the supervision of Professor Audrey J. Geffen. Acknowledgements ii Acknowledgements During these years of my journey, there are so many people I would like to thank for their support in the completion of my PhD. I would like to express my gratitude to my principle supervisor Audrey J.
    [Show full text]
  • Resultados - Capítulo 2 120
    Resultados - Capítulo 2 120 Resultados - Capítulo 2 121 Figure 32 – Electrophysiological screening of BcsTx1 (0.5 µM) on several cloned voltage–gated potassium channel isoforms belonging to different subfamilies. Representative traces under control and after application of 0.5 µM of BcsTx1 are shown. The asterisk indicates steady-state current traces after toxin application. The dotted line indicates the zero-current level. This screening shows that BcsTx1 selectively blocks KV1.x channels at a concentration of 0.5 µM. Resultados - Capítulo 2 122 Resultados - Capítulo 2 123 Figure 33 – Inhibitory effects of BcsTx2 (3 µM) on 12 voltage-gated potassium channels isoforms expressed in X. laevis oocytes. Representative whole-cell current traces in the absence and in the presence of 3 µM BcsTx2 are shown for each channel. The dotted line indicates the zero-current level. The * indicates steady state current traces after application of 3 µM BcsTx2. This screening carried out on a large number of KV channel isoforms belonging to different subfamilies shows that BcsTx2 selectively blocks Shaker channels subfamily. In order to characterize the potency and selectivity profile, concentration- response curves were constructed for BcsTx1. IC50 values yielded 405 ± 20.56 nanomolar (nM) for rKv1.1, 0.03 ± 0.006 nM for rKv1.2, 74.11 ± 20.24 nM for hKv1.3, 1.31 ± 0.20 nM for rKv1.6 and 247.69 ± 95.97 nM for Shaker IR (Figure 34A and Table 7). A concentration–response curve was also constructed to determine the concentration at which BcsTx2 blocked half of the channels. The IC50 values calculated are 14.42 ± 2.61 nM for rKV1.1, 80.40 ± 1.44 nM for rKV1.2, 13.12 ± 3.29 nM for hKV1.3, 7.76 ± 1.90 nM for rKV1.6, and 49.14 ± 3.44 nM for Shaker IR (Figure 34B and Table 7).
    [Show full text]
  • Protection of Host Anemones by Snapping Shrimps: a Case for Symbiotic Mutualism?
    Symbiosis DOI 10.1007/s13199-014-0289-8 Protection of host anemones by snapping shrimps: a case for symbiotic mutualism? AmberM.McCammon& W. Randy Brooks Received: 4 June 2014 /Accepted: 29 July 2014 # Springer Science+Business Media Dordrecht 2014 Abstract The sea anemone Bartholomea annulata is an eco- especially common in marine environments (Roughgarden logically important member of Caribbean coral reefs which host 1975; Poulin and Grutter 1996;Côté2000). Mutualism; a a variety of symbiotic crustacean associates. Crustacean type of symbiotic relationship in which both partners derive exosymbionts typically gain protection from predation by dwell- some benefit from the association, are also widespread across ing with anemones. Concurrently, some symbionts may provide taxa (Boucher et al. 1982). The benefit(s) of symbiont- protection to their host by defending against anemone predators mediated protection of host species from microbial disease, such as the predatory fireworm, Hermodice carunculata,which parasites, and predators is increasingly evident (Haine 2008). can severely damage or completely devour prey anemones. Protection mechanisms are diverse and include various sym- Herein we show through both field and laboratory studies that biont derived chemical defenses (Haine 2008) as well as anemones hosting the symbiotic alpheid shrimp Alpheus armatus maintenance behaviors (Heil and McKey 2003; Stier et al. are significantly less likely to sustain damage by H. carunculata 2012) and defensive social interactions (Glynn 1980; Brooks than anemones without this shrimp. Our results suggest that the and Gwaltney 1993; Heil and McKey 2003;McKeonetal. association between A. armatus and B. annulata, although com- 2012). Previous studies have demonstrated that some crusta- plex because of the numerous symbionts involved, may be closer ceans will actively defend host cnidarians in their natural to mutualism on the symbiotic continuum.
    [Show full text]
  • Orange Clownfish (Amphiprion Percula)
    NOAA Technical Memorandum NMFS-PIFSC-52 April 2016 doi:10.7289/V5J10152 Status Review Report: Orange Clownfish (Amphiprion percula) Kimberly A. Maison and Krista S. Graham Pacific Islands Fisheries Science Center National Marine Fisheries Service National Oceanic and Atmospheric Administration U.S. Department of Commerce About this document The mission of the National Oceanic and Atmospheric Administration (NOAA) is to understand and predict changes in the Earth’s environment and to conserve and manage coastal and oceanic marine resources and habitats to help meet our Nation’s economic, social, and environmental needs. As a branch of NOAA, the National Marine Fisheries Service (NMFS) conducts or sponsors research and monitoring programs to improve the scientific basis for conservation and management decisions. NMFS strives to make information about the purpose, methods, and results of its scientific studies widely available. NMFS’ Pacific Islands Fisheries Science Center (PIFSC) uses the NOAA Technical Memorandum NMFS series to achieve timely dissemination of scientific and technical information that is of high quality but inappropriate for publication in the formal peer- reviewed literature. The contents are of broad scope, including technical workshop proceedings, large data compilations, status reports and reviews, lengthy scientific or statistical monographs, and more. NOAA Technical Memoranda published by the PIFSC, although informal, are subjected to extensive review and editing and reflect sound professional work. Accordingly, they may be referenced in the formal scientific and technical literature. A NOAA Technical Memorandum NMFS issued by the PIFSC may be cited using the following format: Maison, K. A., and K. S. Graham. 2016. Status Review Report: Orange Clownfish (Amphiprion percula).
    [Show full text]
  • Marine Drugs ISSN 1660-3397 © 2006 by MDPI
    Mar. Drugs 2006, 4, 70-81 Marine Drugs ISSN 1660-3397 © 2006 by MDPI www.mdpi.org/marinedrugs Special Issue on “Marine Drugs and Ion Channels” Edited by Hugo Arias Review Cnidarian Toxins Acting on Voltage-Gated Ion Channels Shanta M. Messerli and Robert M. Greenberg * Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA Tel: 508 289-7981. E-mail: [email protected] * Author to whom correspondence should be addressed. Received: 21 February 2006 / Accepted: 27 February 2006 / Published: 6 April 2006 Abstract: Voltage-gated ion channels generate electrical activity in excitable cells. As such, they are essential components of neuromuscular and neuronal systems, and are targeted by toxins from a wide variety of phyla, including the cnidarians. Here, we review cnidarian toxins known to target voltage-gated ion channels, the specific channel types targeted, and, where known, the sites of action of cnidarian toxins on different channels. Keywords: Cnidaria; ion channels; toxin; sodium channel; potassium channel. Abbreviations: KV channel, voltage-gated potassium channel; NaV, voltage-gated sodium channel; CaV, voltage-gated calcium channel; ApA, Anthopleurin A; ApB, Anthopleurin B; ATX II, Anemone sulcata toxin II; Bg II, Bunodosoma granulifera toxin II; Sh I, peptide neurotoxin I from Stichodactyla helianthus; RP II, polypeptide toxin II from Radianthus paumotensis; RP III, polypeptide toxin III from Radianthus paumotensis; RTX I, neurotoxin I from Radianthus macrodactylus; PaTX, toxin from Paracicyonis actinostoloides; Er I, peptide toxin I from Entacmaea ramsayi; Da I, peptide toxin I from Dofleinia armata; ATX III, Anemone sulcata toxin III; ShK, potassium channel toxin from Stichodactyla helianthus; BgK, potassium channel toxin from Bunodosoma granulifera; AsKS, kalciceptine from Anemonia sulcata; HmK, potassium channel toxin from Heteractis magnifica; AeK, potassium channel toxin from Actinia equina; AsKC 1-3, kalcicludines 1-3 from Anemonia sulcata; BDS-I, BDS-II, blood depressing toxins I and II Mar.
    [Show full text]
  • Asexual Reproduction and Molecular Systematics of the Sea Anemone Anthopleura Krebsi (Actiniaria: Actiniidae)
    Rev. Biol. Trop. 51(1): 147-154, 2003 www.ucr.ac.cr www.ots.ac.cr www.ots.duke.edu Asexual reproduction and molecular systematics of the sea anemone Anthopleura krebsi (Actiniaria: Actiniidae) Paula Braga Gomes1, Mauricio Oscar Zamponi2 and Antonio Mateo Solé-Cava3 1. LAMAMEBEN, Departamento de Zoologia-CCB, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, Recife-Pe, 50670-901, Brazil. [email protected] 2. Laboratorio de Biología de Cnidarios, Depto. Cs. Marinas, FCEyN, Funes, 3250 (7600), Mar del Plata - Argentina. CONICET Research. 3. Molecular Biodiversity Lab. Departamento de Genética, Instituto de Biologia, Bloco A, CCS, Universidade Federal do Rio de Janeiro, Ilha do Fundão, CEP 21941-590, Rio de Janeiro, RJ, Brazil and Port Erin Marine Laboratory, University of Liverpool, Isle of Man, IM9 6JA, UK. Received 26-VI-2001. Corrected 02-V-2002. Accepted 07-III-2003. Abstract: In this paper we use allozyme analyses to demonstrate that individuals in Anthopleura krebsi aggre- gates are monoclonal. Additionally, sympatric samples of the red and the green colour-morphs of A. krebsi from Pernambuco, Brazil were genetically compared and no significant differences were observed between them (gene identity= 0.992), indicating that they do not belong to different biological species. All individuals within aggregates of the green colour-morph were found to be identical over the five polymorphic loci analysed. Such results would be extremely unlikely (P<10-11) if the individuals analysed had been generated through sexual reproduction, thus confirming the presence of asexual reproduction in this species. Key words: Cnidaria, allozymes, clones, fission, molecular systematics.
    [Show full text]