Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

Dissertation DISSERTATION Titel der Dissertation Expression of G protein-coupled receptor 19 in human lung cancer cells is triggered by entry into S phase and supports G2/M cell cycle progression Verfasser Stefan Kastner angestrebter akademischer Grad Doktor der Naturwissenschaften (Dr.rer.nat.) Wien, 2012 Studienkennzahl lt. Studienblatt: A 091 490 Dissertationsgebiet lt. Studienblatt: Dr.-Studium der Naturwissenschaften Molekulare Biologie Betreuerin / Betreuer: Univ.-Doz. Dr. Wolfgang Sommergruber Acknowledgement Acknowledgement I would like to thank Boehringer Ingelheim RCV – particularly my supervisor Dr. habil. Wolfgang Sommergruber – for the kind offer to conduct the research for my doctoral thesis in their laboratories. Wolfgang, your door was always open for great discussions about all the things a PhD student needs to ask during the course of a thesis and beyond! Prof. Michael Freissmuth from the Institute of Pharmacology at the Medical University of Vienna deserves my deepest gratitude for his willingness to support my doctoral thesis. Mischa, your help and advice – ranging from the design of experiments over your offer to partly conduct them in your laboratories to assistance with manuscript preparation – were of greatest value. Despite being a ‘hamster in a running wheel’ you always offered me a time slot for discussions on my project. Thank you so much for your help! I would further like to thank Dr. Christina Glöckel and Simon Keuerleber for their help with the adenylyl cyclase assay and the ‘exchange’ of expression constructs. Special thanks go to Prof. Walter Berger and Dr. habil. Renate Voit for their willingness to be the appraisers of my doctoral thesis. I’m also very thankful for excellent technical assistance by Teresa Gottschamel, Nathalie Harrer, Herwig Machat, and Diane Thompson, who assisted me in performing various molecular and cellular biology techniques – it was a pleasure to learn from your experience! Besides, thank you very much, Teresa, for taking care of my cells during my days off. Dr. Anja Ebert from the Institute of Molecular Pathology in Vienna kindly offered her well-established chromatin immunoprecipitation protocol. Dr. Tilman Voss helped me a lot with explanations regarding the high-throughput screening and the vast possibilities this technique has to offer – especially with regards to data analysis. Dr. Andreas Wernitznig was always happy and patient to discuss bioinformatic issues regarding our inhouse TANGO database. And last but not least: Special thanks to all the people from the F&E at Boehringer that helped my right from the beginning of my doctoral thesis. It has been a great time getting to know you and working together with you! Table of contents Table of contents Abbreviations ......................................................................................................................... 9 I. Abstract .......................................................................................................................... 13 II. Zusammenfassung ........................................................................................................ 14 III. Introduction ................................................................................................................... 15 1. Cancer – a highly diverse disease ............................................................................................ 15 1.1. Fundamental characteristics of cancer ........................................................................... 16 2. Lung cancer ................................................................................................................................. 19 2.1. Small cell lung cancer (SCLC) ............................................................................................ 20 2.2. Non-small cell lung cancer (NSCLC) ................................................................................. 21 2.3. The neuroendocrine phenotype of lung cancer ............................................................ 21 2.4. Molecular characterization of lung cancer ..................................................................... 22 3. Cell cycle ...................................................................................................................................... 23 3.1. Cyclins and cyclin-dependent kinases (CDKs) ................................................................ 24 3.2. Cell cycle checkpoints ........................................................................................................ 25 4. G protein-coupled receptors (GPCRs) .................................................................................... 27 4.1. Classification of GPCRs ........................................................................................................ 28 4.2. Classical GPCR signaling and GPCR-interacting proteins (GIPs) ................................. 29 4.3. GPCR oligomerization .......................................................................................................... 30 4.4. Endocytosis of GPCRs from the plasma membrane ....................................................... 32 4.5. GPCRs are involved in cell cycle regulation and cancer ............................................. 33 5. G protein-coupled receptor 19 (GPR19) ................................................................................. 34 5.1. Gene and protein information ........................................................................................... 34 5.2. Expression of Gpr19 .............................................................................................................. 36 5.3. Signal transduction of GPR19 ............................................................................................. 36 5.4. Functional implications for GPR19 ..................................................................................... 37 6. Project definition .......................................................................................................................... 37 IV. Materials ......................................................................................................................... 39 1. Devices and accessory .............................................................................................................. 39 2. Software ........................................................................................................................................ 41 3. Chemicals ..................................................................................................................................... 41 4. Kits, enzymes, and reagents ...................................................................................................... 41 5. Buffers and solutions .................................................................................................................... 44 6. Plasmid constructs ....................................................................................................................... 46 7. DNA oligodeoxynucleotides ...................................................................................................... 49 8. Short interfering ribonucleic acids (siRNAs) ............................................................................. 50 9. TaqMan® assays .......................................................................................................................... 50 10. Primary antibodies ....................................................................................................................... 51 11. Cell lines ........................................................................................................................................ 52 12. Animals .......................................................................................................................................... 52 5 Table of contents V. Methods ......................................................................................................................... 53 1. Molecular biology and biochemistry (in vitro analyses) ........................................................ 53 1.1. Nucleic acid reconstitution ................................................................................................. 53 1.2. Nucleic acid concentration measurement – NanoDrop™ ........................................... 53 1.3. Isolation of total RNA from cultured cells .......................................................................... 53 1.4. Complementary-deoxyribonucleic acid (cDNA) synthesis ........................................... 54 1.5. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) gene expression and data analysis ................................................................................... 54 1.6. Preparation of bacterial culture plates (selective medium) ......................................... 55 1.7. Bacterial transformation ...................................................................................................... 55 1.8. Bacteria culture .................................................................................................................... 56 1.9. Bacteria glycerol stock ........................................................................................................ 56 1.10. Plasmid preparation (Maxi Prep) ....................................................................................... 56 1.11. Plasmid
Recommended publications
  • Expression of G Protein-Coupled Receptor 19 in Human Lung Cancer Cells Is Triggered by Entry Into S-Phase and Supports
    Published OnlineFirst August 21, 2012; DOI: 10.1158/1541-7786.MCR-12-0139 Molecular Cancer Cell Cycle, Cell Death, and Senescence Research Expression of G Protein-Coupled Receptor 19 in Human Lung Cancer Cells Is Triggered by Entry into S-Phase and Supports G2–M Cell-Cycle Progression Stefan Kastner1, Tilman Voss1, Simon Keuerleber2, Christina Glockel€ 2, Michael Freissmuth2, and Wolfgang Sommergruber1 Abstract It has long been known that G protein-coupled receptors (GPCR) are subject to illegitimate expression in tumor cells. Presumably, hijacking the normal physiologic functions of GPCRs contributes to all biologic capabilities acquired during tumorigenesis. Here, we searched for GPCRs that were expressed in lung cancer: the mRNA encoding orphan G protein-coupled receptor 19 (GPR19) was found frequently overexpressed in tissue samples obtained from patients with small cell lung cancer. Several observations indicate that over- expression of Gpr19 confers a specific advantage to lung cancer cells by accelerating transition through the cell- cycle. (i) Knockdown of Gpr19 mRNA by RNA interference reduced cell growth of human lung cancer cell – lines. (ii) Cell-cycle progression through G2 M-phase was impaired in cells transfected with siRNAs directed against Gpr19 and this was associated with increased protein levels of cyclin B1 and phosphorylated histone H3. (iii) The expression levels of Gpr19 mRNA varied along the cell-cycle with a peak observed in S-phase. (iv)TheputativecontrolofGpr19 expression by E2F transcription factors was verified by chromatin immuno- precipitation: antibodies directed against E2F-1 to -4 allowed for the recovery of the Gpr19 promoter. (v) Removal of E2F binding sites in the Gpr19 promoter diminished the expression of a luciferase reporter.
    [Show full text]
  • Strategies to Increase ß-Cell Mass Expansion
    This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Strategies to increase -cell mass expansion Drynda, Robert Lech Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 Strategies to increase β-cell mass expansion A thesis submitted by Robert Drynda For the degree of Doctor of Philosophy from King’s College London Diabetes Research Group Division of Diabetes & Nutritional Sciences Faculty of Life Sciences & Medicine King’s College London 2017 Table of contents Table of contents .................................................................................................
    [Show full text]
  • Genome-Wide Prediction of Small Molecule Binding to Remote
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.04.236729; this version posted August 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Genome-wide Prediction of Small Molecule Binding 2 to Remote Orphan Proteins Using Distilled Sequence 3 Alignment Embedding 1 2 3 4 4 Tian Cai , Hansaim Lim , Kyra Alyssa Abbu , Yue Qiu , 5,6 1,2,3,4,7,* 5 Ruth Nussinov , and Lei Xie 1 6 Ph.D. Program in Computer Science, The Graduate Center, The City University of New York, New York, 10016, USA 2 7 Ph.D. Program in Biochemistry, The Graduate Center, The City University of New York, New York, 10016, USA 3 8 Department of Computer Science, Hunter College, The City University of New York, New York, 10065, USA 4 9 Ph.D. Program in Biology, The Graduate Center, The City University of New York, New York, 10016, USA 5 10 Computational Structural Biology Section, Basic Science Program, Frederick National Laboratory for Cancer Research, 11 Frederick, MD 21702, USA 6 12 Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel 13 Aviv, Israel 7 14 Helen and Robert Appel Alzheimer’s Disease Research Institute, Feil Family Brain & Mind Research Institute, Weill 15 Cornell Medicine, Cornell University, New York, 10021, USA * 16 [email protected] 17 July 27, 2020 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.04.236729; this version posted August 5, 2020.
    [Show full text]
  • Edinburgh Research Explorer
    Edinburgh Research Explorer International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list Citation for published version: Davenport, AP, Alexander, SPH, Sharman, JL, Pawson, AJ, Benson, HE, Monaghan, AE, Liew, WC, Mpamhanga, CP, Bonner, TI, Neubig, RR, Pin, JP, Spedding, M & Harmar, AJ 2013, 'International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands', Pharmacological reviews, vol. 65, no. 3, pp. 967-86. https://doi.org/10.1124/pr.112.007179 Digital Object Identifier (DOI): 10.1124/pr.112.007179 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Pharmacological reviews Publisher Rights Statement: U.S. Government work not protected by U.S. copyright General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 1521-0081/65/3/967–986$25.00 http://dx.doi.org/10.1124/pr.112.007179 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:967–986, July 2013 U.S.
    [Show full text]
  • Metabolite Sensing Gpcrs: Promising Therapeutic Targets for Cancer Treatment?
    cells Review Metabolite Sensing GPCRs: Promising Therapeutic Targets for Cancer Treatment? Jesús Cosín-Roger 1,*, Dolores Ortiz-Masia 2 , Maria Dolores Barrachina 3 and Sara Calatayud 3 1 Hospital Dr. Peset, Fundación para la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, FISABIO, 46017 Valencia, Spain 2 Departament of Medicine, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; [email protected] 3 Departament of Pharmacology and CIBER, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain; [email protected] (M.D.B.); [email protected] (S.C.) * Correspondence: [email protected]; Tel.: +34-963851234 Received: 30 September 2020; Accepted: 21 October 2020; Published: 23 October 2020 Abstract: G-protein-coupled receptors constitute the most diverse and largest receptor family in the human genome, with approximately 800 different members identified. Given the well-known metabolic alterations in cancer development, we will focus specifically in the 19 G-protein-coupled receptors (GPCRs), which can be selectively activated by metabolites. These metabolite sensing GPCRs control crucial processes, such as cell proliferation, differentiation, migration, and survival after their activation. In the present review, we will describe the main functions of these metabolite sensing GPCRs and shed light on the benefits of their potential use as possible pharmacological targets for cancer treatment. Keywords: G-protein-coupled receptor; metabolite sensing GPCR; cancer 1. Introduction G-protein-coupled receptors (GPCRs) are characterized by a seven-transmembrane configuration, constitute the largest and most ubiquitous family of plasma membrane receptors, and regulate virtually all known physiological processes in humans [1,2]. This family includes almost one thousand genes that were initially classified on the basis of sequence homology into six classes (A–F), where classes D and E were not found in vertebrates [3].
    [Show full text]
  • Bombesin Receptors in Distinct Tissue Compartments of Human Pancreatic Diseases Achim Fleischmann, Ursula Läderach, Helmut Friess, Markus W
    0023-6837/00/8012-1807$03.00/0 LABORATORY INVESTIGATION Vol. 80, No. 12, p. 1807, 2000 Copyright © 2000 by The United States and Canadian Academy of Pathology, Inc. Printed in U.S.A. Bombesin Receptors in Distinct Tissue Compartments of Human Pancreatic Diseases Achim Fleischmann, Ursula Läderach, Helmut Friess, Markus W. Buechler, and Jean Claude Reubi Division of Cell Biology and Experimental Cancer Research (AF, UL, JCR), Institute of Pathology, University of Berne, and Department of Visceral and Transplantation Surgery (HF, MWB), Inselspital, University of Berne, Berne, Switzerland SUMMARY: Overexpression of receptors for regulatory peptides in various human diseases is reportedly of clinical interest. Among these peptides, bombesin and gastrin-releasing peptide (GRP) have been shown to play a physiological and pathophysiological role in pancreatic tissues. Our aim has been to localize bombesin receptors in the human diseased pancreas to identify potential clinical applications of bombesin analogs in this tissue. The presence of bombesin receptor subtypes has been evaluated in specimens of human pancreatic tissues with chronic pancreatitis (n ϭ 23) and ductal pancreatic carcinoma (n ϭ 29) with in vitro receptor autoradiography on tissue sections incubated with 125I-[Tyr4]-bombesin or the universal ligand 125I-[D-Tyr6, ␤-Ala11, Phe13, Nle14]-bombesin(6–14) as radioligands and displaced by subtype-selective bombesin receptor agonists and antagonists. GRP receptors were identified in the pancreatic exocrine parenchyma in 17 of 20 cases with chronic pancreatitis. No measurable bombesin receptors were found in the tumor tissue of ductal pancreatic carcinomas, however, GRP receptors were detected in a subset of peritumoral small veins in 19 of 29 samples.
    [Show full text]
  • G Protein-Coupled Receptors in Stem Cell Maintenance and Somatic Reprogramming to Pluripotent Or Cancer Stem Cells
    BMB Reports - Manuscript Submission Manuscript Draft Manuscript Number: BMB-14-250 Title: G protein-coupled receptors in stem cell maintenance and somatic reprogramming to pluripotent or cancer stem cells Article Type: Mini Review Keywords: G protein-coupled receptors; stem cell maintenance; somatic reprogramming; cancer stem cells; pluripotent stem cell Corresponding Author: Ssang-Goo Cho Authors: Ssang-Goo Cho1,*, Hye Yeon Choi1, Subbroto Kumar Saha1, Kyeongseok Kim1, Sangsu Kim1, Gwang-Mo Yang1, BongWoo Kim1, Jin-hoi Kim1 Institution: 1Department of Animal Biotechnology, Animal Resources Research Center, and Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea, UNCORRECTED PROOF 1 G protein-coupled receptors in stem cell maintenance and somatic reprogramming to 2 pluripotent or cancer stem cells 3 4 Hye Yeon Choi, Subbroto Kumar Saha, Kyeongseok Kim, Sangsu Kim, Gwang-Mo 5 Yang, BongWoo Kim, Jin-hoi Kim, and Ssang-Goo Cho 6 7 Department of Animal Biotechnology, Animal Resources Research Center, and 8 Incurable Disease Animal Model and Stem Cell Institute (IDASI), Konkuk University, 9 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea 10 * 11 Address correspondence to Ssang-Goo Cho, Department of Animal Biotechnology and 12 Animal Resources Research Center. Konkuk University, 120 Neungdong-ro, Gwangjin- 13 gu, Seoul 143-701, Republic of Korea. Tel: 82-2-450-4207, Fax: 82-2-450-1044, E-mail: 14 [email protected] 15 16 17 18 19 1 UNCORRECTED PROOF 20 Abstract 21 The G protein-coupled receptors (GPCRs) compose the third largest gene family in the 22 human genome, representing more than 800 distinct genes and 3–5% of the human genome.
    [Show full text]
  • In the IUPHAR/BPS Guide to Pharmacology Database
    IUPHAR/BPS Guide to Pharmacology CITE https://doi.org/10.2218/gtopdb/F16/2019.4 Class A Orphans (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database Stephen P.H. Alexander1, Jim Battey2, Helen E. Benson3, Richard V. Benya4, Tom I. Bonner5, Anthony P. Davenport6, Satoru Eguchi7, Anthony Harmar3, Nick Holliday1, Robert T. Jensen2, Sadashiva Karnik8, Evi Kostenis9, Wen Chiy Liew3, Amy E. Monaghan3, Chido Mpamhanga10, Richard Neubig11, Adam J. Pawson3, Jean-Philippe Pin12, Joanna L. Sharman3, Michael Spedding13, Eliot Spindel14, Leigh Stoddart15, Laura Storjohann16, Walter G. Thomas17, Kalyan Tirupula8 and Patrick Vanderheyden18 1. University of Nottingham, UK 2. National Institutes of Health, USA 3. University of Edinburgh, UK 4. University of Illinois at Chicago, USA 5. National Institute of Mental Health, USA 6. University of Cambridge, UK 7. Temple University, USA 8. Cleveland Clinic Lerner Research Institute, USA 9. University of Bonn, Germany 10. LifeArc, UK 11. Michigan State University, USA 12. Université de Montpellier, France 13. Spedding Research Solutions SARL, France 14. Oregon Health & Science University, USA 15. University of Glasgow, UK 16. University of Utah, USA 17. University of Queensland, Australia 18. Vrije Universiteit Brussel, Belgium Abstract Table 1 lists a number of putative GPCRs identified by NC-IUPHAR [191], for which preliminary evidence for an endogenous ligand has been published, or for which there exists a potential link to a disease, or disorder. These GPCRs have recently been reviewed in detail [148]. The GPCRs in Table 1 are all Class A, rhodopsin-like GPCRs. Class A orphan GPCRs not listed in Table 1 are putative GPCRs with as-yet unidentified endogenous ligands.
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • Targeting Neuropeptide Receptors for Cancer Imaging and Therapy: Perspectives with Bombesin, Neurotensin, and Neuropeptide-Y Receptors
    Journal of Nuclear Medicine, published on September 4, 2014 as doi:10.2967/jnumed.114.142000 CONTINUING EDUCATION Targeting Neuropeptide Receptors for Cancer Imaging and Therapy: Perspectives with Bombesin, Neurotensin, and Neuropeptide-Y Receptors Clément Morgat1–3, Anil Kumar Mishra2–4, Raunak Varshney4, Michèle Allard1,2,5, Philippe Fernandez1–3, and Elif Hindié1–3 1CHU de Bordeaux, Service de Médecine Nucléaire, Bordeaux, France; 2University of Bordeaux, INCIA, UMR 5287, Talence, France; 3CNRS, INCIA, UMR 5287, Talence, France; 4Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, New Delhi, India; and 5EPHE, Bordeaux, France Learning Objectives: On successful completion of this activity, participants should be able to list and discuss (1) the presence of bombesin receptors, neurotensin receptors, or neuropeptide-Y receptors in some major tumors; (2) the perspectives offered by radiolabeled peptides targeting these receptors for imaging and therapy; and (3) the choice between agonists and antagonists for tumor targeting and the relevance of various PET radionuclides for molecular imaging. Financial Disclosure: The authors of this article have indicated no relevant relationships that could be perceived as a real or apparent conflict of interest. CME Credit: SNMMI is accredited by the Accreditation Council for Continuing Medical Education (ACCME) to sponsor continuing education for physicians. SNMMI designates each JNM continuing education article for a maximum of 2.0 AMA PRA Category 1 Credits. Physicians should claim only credit commensurate with the extent of their participation in the activity. For CE credit, SAM, and other credit types, participants can access this activity through the SNMMI website (http://www.snmmilearningcenter.org) through October 2017.
    [Show full text]
  • Multi-Functionality of Proteins Involved in GPCR and G Protein Signaling: Making Sense of Structure–Function Continuum with In
    Cellular and Molecular Life Sciences (2019) 76:4461–4492 https://doi.org/10.1007/s00018-019-03276-1 Cellular andMolecular Life Sciences REVIEW Multi‑functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder‑based proteoforms Alexander V. Fonin1 · April L. Darling2 · Irina M. Kuznetsova1 · Konstantin K. Turoverov1,3 · Vladimir N. Uversky2,4 Received: 5 August 2019 / Revised: 5 August 2019 / Accepted: 12 August 2019 / Published online: 19 August 2019 © Springer Nature Switzerland AG 2019 Abstract GPCR–G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signal- ing cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand–GPCR and GPCR–G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defnes an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR–G protein system represents an illustrative example of the protein structure–function continuum, where structures of the involved proteins represent a complex mosaic of diferently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fne-tuned by various post-translational modifcations and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specifc partners.
    [Show full text]
  • G Protein‐Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology (2019) 176, S21–S141 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors Stephen PH Alexander1 , Arthur Christopoulos2 , Anthony P Davenport3 , Eamonn Kelly4, Alistair Mathie5 , John A Peters6 , Emma L Veale5 ,JaneFArmstrong7 , Elena Faccenda7 ,SimonDHarding7 ,AdamJPawson7 , Joanna L Sharman7 , Christopher Southan7 , Jamie A Davies7 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia 3Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK 4School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 5Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 6Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 7Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website.
    [Show full text]