On the Occurrence of Conchoderma Virgatum and Dosima Fascicularis (Cirripedia, Thoracica) on the Sea Snake, Pelamis Platurus (Reptilia, Serpentes) in Jalisco, Mexico

Total Page:16

File Type:pdf, Size:1020Kb

On the Occurrence of Conchoderma Virgatum and Dosima Fascicularis (Cirripedia, Thoracica) on the Sea Snake, Pelamis Platurus (Reptilia, Serpentes) in Jalisco, Mexico ON THE OCCURRENCE OF CONCHODERMA VIRGATUM AND DOSIMA FASCICULARIS (CIRRIPEDIA, THORACICA) ON THE SEA SNAKE, PELAMIS PLATURUS (REPTILIA, SERPENTES) IN JALISCO, MEXICO BY FERNANDO ALVAREZ and ANTONIO CELIS Colección Nacional de Crustáceos, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 70-153, Mexico 04510, D.F., Mexico In May 2000, a mature, yellow-bellied sea snake, Pelamis platurus (Lin- naeus, 1766) (61 cm total length), was collected on Chamela Beach (19◦3153N 105◦535W), Jalisco, Mexico. Attached at two sites on the posterior portion of the snake were two barnacle aggregations consisting of two species, Conchoderma virgatum (Spengler, 1790) and Dosima fascicularis (Ellis & Solander, 1786). Pelamis platurus exhibits a widespread distribution in tropical waters, from the east coast of Africa, through the Indo-Pacific, to the Pacific coast of the Americas (Casas, 1997). In Mexican waters, it can be very abundant along the slicks, drift lines that form 5 to 10 km from the coast, and it is occasionally washed ashore during storms or strong winds (Casas, 1997). Although barnacles have previously been reported to occur on other sea snakes (Jeffries & Voris, 1979; Yamato et al., 1996), no such records exist for P. platurus along the coasts of Mexico. The lepadomorph, Conchoderma virgatum is a cosmopolitan species occurring in tropical and temperate waters. This species has been found attached to a wide variety of animal life and other objects (Harper, 1995). At shallow depths (<50 m), C. virgatum is an important fouling species that can rapidly get established, producing high biomass and abundance. In the Mexican Pacific, it has been recorded from La Gloria, Jalisco, on the turtle, Lepidochelys olivacea (Eschscholtz, 1829) (cf. Hernández & Valadéz, 1998). The pelagic Dosima fascicularis is an abundant species in the temperate waters of both hemispheres. It is a fugitive species, characterized by a rapid colonization of bare substrates, it can reproduce after only 45 days following settlement, and it is frequently overgrown by other fouling organisms as succession proceeds, including other barnacles (Blankley, 1985). No previous records of this species in Mexican waters exist. © Koninklijke Brill NV, Leiden, 2004 Crustaceana 77 (6): 761-764 Also available online: www.brill.nl 762 NOTES AND NEWS Fig. 1. The sea snake, Pelamis platurus (L., 1766) with barnacle clusters on the tail consisting of Conchoderma virgatum (Spengler, 1790) and Dosima fascicularis (Ellis & Solander, 1786). The single P. platurus collected had 63 barnacles, 61 C. virgatum and 2 D. fas- cicularis, forming two clusters (fig. 1). The sea snake with the barnacles is deposited in the Colección Nacional de Crustáceos (CNCR), Instituto de Biología, Universidad Nacional Autónoma de México, with catalogue number CNCR 21022. The two attachment sites were tearing off the delicate skin of the snake. Only two cypris larvae were found. The average capitulum length of C. virgatum was 11.3 mm (range 1.5-20 mm), while the two D. fascicularis measured 4.1 and 3.7 mm, respectively. This occurrence pattern is consistent with the strategies used by the two barnacle species, suggesting that D. fascicularis got established first and was later excluded by C. virgatum. However, the distribution of D. fascicularis in waters off the coast of North America indicates that it is abundant down to southern California, and rare or absent in warmer waters to the south. Its presence off the coasts of Jalisco, where superficial water temperature is above 25◦C, may be the result of a latitudinal migration of the snake. Of the 61 C. virgatum, 27 (44%) were gravid (fig. 2). The mean capitulum length of gravid individuals was 15.8 ± 2.2 mm (range 11.7-20 mm). Eckert & Eckert (1987) reported for C. virgatum, collected from the turtle Dermochelys.
Recommended publications
  • (Cirripedia : Thoracica) Over the Body of a Sea Snake, Laticauda Title Semifasciata (Reinwardt), from the Kii Peninsula, Southwestern Japan
    Distribution of Two Species of Conchoderma (Cirripedia : Thoracica) over the Body of a Sea Snake, Laticauda Title semifasciata (Reinwardt), from the Kii Peninsula, Southwestern Japan Yamato, Shigeyuki; Yusa, Yoichi; Tanase, Hidetomo; Tanase, Author(s) Hidetomo PUBLICATIONS OF THE SETO MARINE BIOLOGICAL Citation LABORATORY (1996), 37(3-6): 337-343 Issue Date 1996-12-25 URL http://hdl.handle.net/2433/176259 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Pub!. Seto Mar. Bioi. Lab., 37(3/6): 337-343, 1996 337 Distribution of Two Species of Conchoderma (Cirripedia: Thoracica) over the Body of a Sea Snake, Laticauda semifasciata (Reinwardt), from the Kii Peninsula, Southwestern Japan SHIGEYUKI YAMATO, YOICHI YUSA and HIDETOMO TANASE Seto Marine Biological Laboratory, Kyoto University, Shirahama, Wakayama 649-22, Japan Abstract Two species of Conchoderma were found on a sea snake, Laticauda semifas­ ciata (Reinwardt), collected on the west coast of the Kii Peninsula. A total of 223 individuals of C. virgatum and 6 of C. hunteri in 19 clumps were attached to the snake's body. The barnacles ranged in size from 1.4 mm (cypris larvae) to 18.2 mm in capitulum length in C. virgatum, and from 10.7 to 14.4 mm in C. hunteri. The size of the smallest gravid individuals in both species was between 10 and 11 mm. The distribution of C. virgatum on the snake was non-random both longitudinally and dorso-ventrally, with more barnacles in the posterior region and on the ventral side of the snake, respectively. The proportion of gravid individuals increased towards the tail.
    [Show full text]
  • Epibiotic Associates of Oceanic-Stage Loggerhead Turtles from the Southeastern North Atlantic
    Acknowledgements We thank the biology students of the occasional leatherback nests in Brazil. Marine Turtle Federal University of Paraíba (Pablo Riul, Robson G. dos Newsletter 96:13-16. Santos, André S. dos Santos, Ana C. G. P. Falcão, Stenphenson Abrantes, MS Elaine Elloy), the marathon MARCOVALDI, M. Â. & G. G. MARCOVALDI. 1999. Marine runner José A. Nóbrega, and the journalist Germana turtles of Brazil: the history and structure of Projeto Bronzeado for the volunteer field work; the Fauna department TAMAR-IBAMA. Biological Conservation 91:35-41. of IBAMA/PB and Jeremy and Diana Jeffers for kindly MARCOVALDI, M.Â., C.F. VIEITAS & M.H. GODFREY. 1999. providing photos, and also Alice Grossman for providing Nesting and conservation management of hawksbill turtles the TAMAR protocols. The manuscript benefited from the (Eretmochelys imbricata) in northern Bahia, Brazil. comments of two referees. Chelonian Conservation and Biology 3:301-307. BARATA, P.C.R. & F.F.C. FABIANO. 2002. Evidence for SAMPAIO, C.L.S. 1999. Dermochelys coriacea (Leatherback leatherback sea turtle (Dermochelys coriacea) nesting in sea turtle), accidental capture. Herpetological Review Arraial do Cabo, state of Rio de Janeiro, and a review of 30:38-39. Epibiotic Associates of Oceanic-Stage Loggerhead Turtles from the Southeastern North Atlantic Michael G. Frick1, Arnold Ross2, Kristina L. Williams1, Alan B. Bolten3, Karen A. Bjorndal3 & Helen R. Martins4 1 Caretta Research Project, P.O. Box 9841, Savannah, Georgia 31412 USA. (E-mail: [email protected]) 2 Scripps Institution of Oceanography, Marine Biology Research Division, La Jolla, California 92093-0202, USA, (E-mail: [email protected]) 3 Archie Carr Center for Sea Turtle Research and Department of Zoology, University of Florida, P.O.
    [Show full text]
  • Dosima Fascicularis (Ellis & Solander, 1786) (Crustacea, Cirripedia) from the Galician Istributio D
    Check List 10(3): 669–671, 2014 © 2014 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution N First record of the buoy barnacle Dosima fascicularis (Ellis & Solander, 1786) (Crustacea, Cirripedia) from the Galician ISTRIBUTIO D * RAPHIC G beaches (NW Spain) after the Prestige oil spill EO G Juan Junoy and Jorge Junoy N O EU-US Marine Biodiversity [email protected] Group, Franklin Institute and Departamento de Ciencias de la Vida, AP 20. Campus Universitario, Universidad de Alcalá, 28805 Alcalá de Henares, Spain. OTES * Corresponding author. E-mail: N Abstract: Dosima fascicularis The presence of the buoy barnacle is first documented for Spanish waters. More than the half of the specimens collected was attached to tar pellets from the Prestige oil spill. DOI: 10.15560/10.3.669 Dosima fascicularis (Ellis & Solander, 1786) is a presumablycollected along from the the 1470 Prestige m of oil the spill; beach other longitude. attachment The stalked barnacle which capitulum bears five large plates. surfacesfloats of 53.8%were Velellaof the specimens were Sargassumattached to bladderstar balls, It is the unique barnacle that constructs its own float, a attachmentfoamy mass surfaces described (Darwin as similar 1851; to Minchin polystyrene, 1996; usingRyan tests (15.3%), floating items as feathers, tar balls and plastic particles as (7.6%) and feathers (2.5%). 20.8% of buoy barnacles lacked an obvious attachment object (Figure 2). theand BritishBranch Islands2012). The and species Baltic Seais widespread (Darwin 1851) in temperate but its sizeThe recorded average for thecapitulum species lengthwas 37 ofmm the in Europeancollected presenceand subtropical in European ocean waters,coast is reaching unusual in(O’ the Riodan NE Atlantic 1967; specimens was 17.7 mm (range 13–22 mm).
    [Show full text]
  • A Checklist of Turtle and Whale Barnacles
    Journal of the Marine Biological Association of the United Kingdom, 2013, 93(1), 143–182. # Marine Biological Association of the United Kingdom, 2012 doi:10.1017/S0025315412000847 A checklist of turtle and whale barnacles (Cirripedia: Thoracica: Coronuloidea) ryota hayashi1,2 1International Coastal Research Center, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8564 Japan, 2Marine Biology and Ecology Research Program, Extremobiosphere Research Center, Japan Agency for Marine–Earth Science and Technology A checklist of published records of coronuloid barnacles (Cirripedia: Thoracica: Coronuloidea) attached to marine vertebrates is presented, with 44 species (including 15 fossil species) belonging to 14 genera (including 3 fossil genera) and 3 families recorded. Also included is information on their geographical distribution and the hosts with which they occur. Keywords: checklist, turtle barnacles, whale barnacles, Chelonibiidae, Emersoniidae, Coronulidae, Platylepadidae, host and distribution Submitted 10 May 2012; accepted 16 May 2012; first published online 10 August 2012 INTRODUCTION Superorder THORACICA Darwin, 1854 Order SESSILIA Lamarck, 1818 In this paper, a checklist of barnacles of the superfamily Suborder BALANOMORPHA Pilsbry, 1916 Coronuloidea occurring on marine animals is presented. Superfamily CORONULOIDEA Newman & Ross, 1976 The systematic arrangement used herein follows Newman Family CHELONIBIIDAE Pilsbry, 1916 (1996) rather than Ross & Frick (2011) for reasons taken up in Hayashi (2012) in some detail. The present author Genus Chelonibia Leach, 1817 deems the subfamilies of the Cheonibiidae (Chelonibiinae, Chelonibia caretta (Spengler, 1790) Emersoniinae and Protochelonibiinae) proposed by Harzhauser et al. (2011), as well as those included of Ross & Lepas caretta Spengler, 1790: 185, plate 6, figure 5.
    [Show full text]
  • Checklist of the Australian Cirripedia
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Jones, D. S., J. T. Anderson and D. T. Anderson, 1990. Checklist of the Australian Cirripedia. Technical Reports of the Australian Museum 3: 1–38. [24 August 1990]. doi:10.3853/j.1031-8062.3.1990.76 ISSN 1031-8062 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia ISSN 1031-8062 ISBN 0 7305 7fJ3S 7 Checklist of the Australian Cirripedia D.S. Jones. J.T. Anderson & D.l: Anderson Technical Reports of the AustTalfan Museum Number 3 Technical Reports of the Australian Museum (1990) No. 3 ISSN 1031-8062 Checklist of the Australian Cirripedia D.S. JONES', J.T. ANDERSON*& D.T. AND ER SON^ 'Department of Aquatic Invertebrates. Western Australian Museum, Francis Street. Perth. WA 6000, Australia 2School of Biological Sciences, University of Sydney, Sydney. NSW 2006, Australia ABSTRACT. The occurrence and distribution of thoracican and acrothoracican barnacles in Australian waters are listed for the first time since Darwin (1854). The list comprises 204 species. Depth data and museum collection data (for Australian museums) are given for each species. Geographical occurrence is also listed by area and depth (littoral, neuston, sublittoral or deep). Australian contributions to the biology of Australian cimpedes are summarised in an appendix. All listings are indexed by genus and species. JONES. D.S.. J.T. ANDERSON & D.T. ANDERSON,1990. Checklist of the Australian Cirripedia.
    [Show full text]
  • Marine Litter As Habitat and Dispersal Vector
    Chapter 6 Marine Litter as Habitat and Dispersal Vector Tim Kiessling, Lars Gutow and Martin Thiel Abstract Floating anthropogenic litter provides habitat for a diverse community of marine organisms. A total of 387 taxa, including pro- and eukaryotic micro- organisms, seaweeds and invertebrates, have been found rafting on floating litter in all major oceanic regions. Among the invertebrates, species of bryozoans, crus- taceans, molluscs and cnidarians are most frequently reported as rafters on marine litter. Micro-organisms are also ubiquitous on marine litter although the compo- sition of the microbial community seems to depend on specific substratum char- acteristics such as the polymer type of floating plastic items. Sessile suspension feeders are particularly well-adapted to the limited autochthonous food resources on artificial floating substrata and an extended planktonic larval development seems to facilitate colonization of floating litter at sea. Properties of floating litter, such as size and surface rugosity, are crucial for colonization by marine organ- isms and the subsequent succession of the rafting community. The rafters them- selves affect substratum characteristics such as floating stability, buoyancy, and degradation. Under the influence of currents and winds marine litter can transport associated organisms over extensive distances. Because of the great persistence (especially of plastics) and the vast quantities of litter in the world’s oceans, raft- ing dispersal has become more prevalent in the marine environment, potentially facilitating the spread of invasive species. T. Kiessling · M. Thiel Facultad Ciencias del Mar, Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile L. Gutow Biosciences | Functional Ecology, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany M.
    [Show full text]
  • Download PDF File
    Scientific Note Record of coastal colonization of the Lepadid goose barnacle Lepas anatifera Linnaeus, 1758 (Crustacea: Cirripedia) at Arraial do Cabo, RJ 1 1,2 LUIS FELIPE SKINNER & DANIELLE FERNANDES BARBOZA 1Universidade do Estado do Rio de Janeiro (UERJ), Laboratório de Ecologia e Dinâmica Bêntica Marinha, São Gonçalo, Rio de Janeiro. Rua Francisco Portela 1470, Patronato, São Gonçalo, RJ. 24435-005. 2Bolsista PROATEC, UERJ. E-mail: [email protected] Abstract. In this note we record the occurence of Lepas anatifera (Cirripedia) on the hull of a coastal supply boat that operates only in restricted inshore waters of Arraial do Cabo. This species is usually found on tropical and subtropical oceanic waters and, at region, could be classified as transient species. Key words: marine fouling, barnacle, recruitment, inshore transport, species distribution, Cabo Frio upwelling Resumo. Registro de colonização costeira da craca pedunculada Lepas anatifera Linnaeus, 1758 (Crustacea: Cirripedia) na costa de Arraial do Cabo, RJ. Nesta nota nós registramos a ocorrência de Lepas anatifera (Cirripedia) no casco de uma pequena embarcação que opera exclusivamente em águas costeiras de Arraial do Cabo. Esta espécie é típica de águas oceânicas de regiões tropicais e subtropicais e pode ser classificada como transiente na região. Palavras chave: incrustação marinha, craca, recrutamento, transporte costeiro, distribuição de espécies, ressurgência de Cabo Frio Lepas anatifera Linnaeus, 1758 (Fig. 1) is a and not by larval preference. pedunculate goose barnacle with cosmopolitan At Cabo Frio region is frequent to find many distribution (Young 1990, 1998). They are found individuals that arrived to the coast on floating mainly on oceanic waters from tropical and debris.
    [Show full text]
  • The Genus Hippolyte Leach, 1814
    The genus Hippolyte Leach, 1814 (Crustacea: Decapoda: Cari- dea: Hippolytidae) in the East Atlantic Ocean and the Medi- terranean Sea, with a checklist of all species in the genus C. d'Udekem d'Acoz Udekem d'Acoz, C. d'. The genus Hippolyte Leach, 1814 (Crustacea; Decapoda; Caridea; Hippolytidae) in the East Atlantic Ocean and the Mediterranean Sea, with a checklist of all species in the genus. Zool. Verh. Leiden 303, 30.ix.1996: 1-133, figs 1-50, tab. 1.—ISSN 0024-1652/ISBN 90-73239-45-1. C. d'Udekem d'Acoz, Avenue du bois des collines 34, 1420 Braine-l'Alleud, Belgium. [Research Asso- ciate at the Institut royal des Sciences naturelles de Belgique, Brussels]. Key words: Crustacea; Decapoda; Caridea; Hippolytidae; Hippolyte; shrimp; systematics; discontinu- ous variations; neoteny; ecology; East Atlantic; Mediterranean; world species list. The genus Hippolyte Leach in the East Atlantic and the Mediterranean is revised and a list of the world species is given. Eleven species occur in the area studied: H. coerulescens (Fabricius), H. garciarasoi spec. nov., H. inermis Leach, H. lagarderei d'Udekem d'Acoz, H. leptocerus (Heller), H. leptometrae Ledoyer, H. niezabitowskii spec. nov., H. palliola Kensley, H. prideauxiana Leach, H. sapphica d'Udekem d'Acoz, H. varians Leach. An elaborate key, complete descriptions and illustrations of all species are provided, while their ecology is discussed in detail. A morphological account is also given for the spe- cies occuring in the Suez Canal: H. proteus (Paulson) and H. ventricosa H. Milne Edwards. It is shown that H. prideauxiana (previously H. huntii) and H.
    [Show full text]
  • Ren L. Eckert and Scott A. Eckert
    JOURNAL OF CRUSTACEAN BIOLOGY, 7(4): 682-690. 1987 ren L.Eckert and Scott A. Eckert ABSTRACT Leatherback sea turtles (Dermochelys corracea) nesting at regular time intervals on Sandy Point, St. Croix. U.S. Virgin Islands, provided an opportunity TO obtain multipie measure- ments of Conchoderma wrgaium, a pedunculate epibiotic cimped. Mean capnuiar length for gravid C. virgatum was 12.4 mm (SD = 1.8, range 8.8-1 5.9 mm). A growth curve was predicted after fitting paired measurements (capture and recapture) from 43 individuals to a von Bertalanffv growth interval equation. Estimates of asymptotic length and intrinsic growth rate were made using nonlinear least-squares regression procedures. The predicted asymptotic size of 14.6-rnm capitular length is consideraoly less than that reported elsewhere for the species. It is possible that stress associated with the terrestrial nesting phase of the host prevented the barnacles from attaining full growth potential. Considerable plasticity in both maximum size and intrinsic growth rate may exist between populations exposed to different physio-ecological regimes. Conchoderma vzrgatum (Spengler, 1790) is a lepadomorph or pedunculate cir- riped known from tropical and temperate waters (Stubbmgs, 1967). Geographic distribution records for C. virgaium attached to fishes are summarized by Dawson (1 969). Opportunistic settlement on fishes, whales, sea turtles, crabs, ships, buoys, cables, and other artifacts isolated from shore is summarized by Hastings (1972). Additional host records are spread widely throughout the literature and include mako sharks (Williams. 1978), sea turtles (Annandale. 1909: Chevreux and de Guerne. 1893; Crozier, 19 16; Foster, 1978; Hubbs, 1977: Hughes, 1974; Monroe and Limpus, 1979), sea snakes (Annandale, 1909), whales (Clarke, 1966), pelagic crabs (Jerde, 1967; Moazzam and Rizvi.
    [Show full text]
  • Macquarie University PURE Research Management System
    Macquarie University PURE Research Management System This is the Accepted Manuscript version of the following article: Shine, R., Goiran, C., Shilton, C., Meiri, S., Brown, G. P. (2020) The life aquatic: an association between habitat type and skin thickness in snakes. Biological Journal of the Linnean Society, vol. 128, no. 4, pp. 975–986. which has been published in final form at: Access to the published version: https://doi.org/10.1093/biolinnean/blz136 Version archived for private and non-commercial use with the permission of the author/s and according to publisher conditions. For further rights please contact the publisher. 1 The Life Aquatic: an association between habitat type and 2 skin thickness in snakes 3 4 RICHARD SHINE1*, CLAIRE GOIRAN2, CATHERINE SHILTON3, 5 SHAI MEIRI4,5 and GREGORY P. BROWN1 6 7 1Department of Biological Sciences, Macquarie University, NSW 2019, Australia 8 2LabEx Corail & ISEA, Université de la Nouvelle-Calédonie, BP R4, 98851 Nouméa cedex, 9 New Caledonia 10 3Berrimah Veterinary Laboratories, Northern Territory Department of Primary Industry and 11 Resources, Darwin, Northern Territory, Australia 12 4School of Zoology, Tel-Aviv University, 6997801 Tel Aviv, Israel 13 5The Steinhardt Museum of Natural History, Tel-Aviv University, 6997801 Tel Aviv, Israel 14 15 *Corresponding author. E-mail: [email protected] 16 17 SHORT RUNNING TITLE: SKIN THICKNESS IN SNAKES 18 19 20 21 Manuscript for consideration in Biological Journal of the Linnean Society 22 3 July 2019 23 1 24 25 An aquatic animal faces challenges not encountered by its terrestrial counterparts, promoting 26 adaptive responses in multiple traits.
    [Show full text]
  • Xiphias Gladius, Linnaeus, 1758) and Comprehensive Overview
    SCRS/2020/058 Collect. Vol. Sci. Pap. ICCAT, 77(3): 343-374 (2020) ADDITIONS TO THE ITALIAN ANNOTATED BIBLIOGRAPHY ON SWORDFISH (XIPHIAS GLADIUS, LINNAEUS, 1758) AND COMPREHENSIVE OVERVIEW Antonio Di Natale1 SUMMARY After the very first attempt to list together the many papers published so far on swordfish (Xiphias gladius) by Italian scientists, concerning the biology of this species, the fisheries and many other scientific and cultural issues, it was necessary to prepare an addition to the annotated bibliography published in 2019. Therefore, the present paper provides 185 additional papers, all annotated with specific keywords, which brings the available papers on this species up to 715, all duly annotated. This paper also provides an overview of the papers published over the centuries and decades, the main authors and the score of the main topics and themes included in the papers. This updated bibliography was set together to serve the scientists and to help them in finding some rare references that might be useful for their work. RÉSUMÉ Après la première tentative d’établir une liste des nombreux articles publiés à ce jour sur l'espadon (Xiphias gladius) par des scientifiques italiens, concernant la biologie de cette espèce, la pêche et bien d'autres questions scientifiques et culturelles, un complément à la bibliographie annotée publiée en 2019 s’est avéré nécessaire. Par conséquent, le présent document fournit 185 articles supplémentaires, tous annotés avec des mots clés spécifiques, ce qui porte à 715 le nombre d'articles disponibles sur cette espèce, tous dûment annotés. Ce document fournit également un aperçu des articles publiés au cours des siècles et des décennies, les principaux auteurs et la note des principaux sujets et thèmes inclus dans ceux-ci.
    [Show full text]
  • Coral Cap Species of Flower Garden Banks National Marine Sanctuary
    CORAL CAP SPECIES OF FLOWER GARDEN BANKS NATIONAL MARINE SANCTUARY Classification Common name Scientific Name Bacteria Schizothrix calcicola CORAL CAP SPECIES OF FLOWER GARDEN BANKS NATIONAL MARINE SANCTUARY Classification Common name Scientific Name Algae Brown Algae Dictyopteris justii Forded Sea Tumbleweeds Dictyota bartayresii Dictyota cervicornis Dictyota dichotoma Dictyota friabilis (pfaffii) Dictyota humifusa Dictyota menstrualis Dictyota pulchella Ectocarpus elachistaeformis Leathery Lobeweeds, Encrusting Lobophora variegata Fan-leaf Alga Peacock's Tail Padina jamaicensis Padina profunda Padina sanctae-crucis Rosenvingea intricata Gulf Weed, Sargassum Weed Sargassum fluitans White-vein Sargassum Sargassum hystrix Sargasso Weed Sargassum natans Spatoglossum schroederi Sphacelaria tribuloides Sphacelaria Rigidula Leafy Flat-blade Alga Stypopodium zonale Green Algae Papyrus Print Alga Anadyomene stellata Boodelopsis pusilla Bryopsis plumosa Bryopsis pennata Caulerpa microphysa Caulerpa peltata Green Grape Alga Caulerpa racemosa v. macrophysa Cladophora cf. repens Cladophoropsis membranacea Codium decorticatum Dead Man’s Fingers Codium isthmocladum Codium taylori Hair Algae Derbesia cf. marina Entocladia viridis Large Leaf Watercress Alga Halimeda discoidea Halimeda gracilis Green Net Alga Microdictyon boergesenii Spindleweed, Fuzzy Tip Alga Neomeris annulata Struvea sp. CORAL CAP SPECIES OF FLOWER GARDEN BANKS NATIONAL MARINE SANCTUARY Classification Common name Scientific Name Udotea flabellum Ulva lactuca Ulvella lens Elongated
    [Show full text]