<<

The Effect of Smoke on Germination: Global Patterns and Regional Prospects for the Southern High Plains

By

Yanni Chen B.S.

A Thesis

In

WILDLIFE, AQUATIC, WILDLANDS SCIENCE AND MANGEMENT

Submitted to the Graduate Faculty of Tech University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

Approved

Robert D. Cox Chair of Committee

Philip S. Gipson

John Baccus

Norman W. Hopper

Mark Sheridan Dean of the Graduate School

May, 2014 Copyright 2014, Yanni Chen Texas Tech University, Yanni Chen, May 2014

Acknowledgments

I would like to thank Texas Tech University and the department of Natural

Resources Management. They offered me various sources to support my academic learning, and provided a safe, friendly environment to focus on my studies. The staff and faculty in the department were always kind and helpful, and willing to offer suggestions.

I could not skip expressing my thankfulness to the landowners and managers who were kindly willing to allow me to conduct my smoke studies on their properties.

Without their permission, this thesis would have been impossible. Likewise, I would like to express my great appreciation to my volunteers. They helped by driving to the study sites and collecting the data. It’s hard to imagine what would have happened without their support.

I also owe special thanks to Dr. Cox and Dr. Gipson. Dr. Cox, who worked as my major advisor, used his gentleness and patience to lead me through three years’ of study.

He not only worked with me on my academic progress, he also acted like a role model for me about how to balance work and life. Likewise, I feel I am lucky to work with Dr.

Gipson, who is very wise. He not only advised me on my project but also shared his life experiences with me as a kind friend. I’m also grateful for Dr. Baccus and Dr. Hopper, who both served on my committee and provided much valuable advice.

Finally, I owe debts of gratitude to my family. My son always generated happiness for me, especially when I was ready to melt down by the pressure, and my husband was always patient to share my feelings. I also want to deliver my appreciation to my parents-in-law; their physical and emotional supports were very important to my ii Texas Tech University, Yanni Chen, May 2014 accomplishments. Last, thanks for my mom and dad, who always have my back and are my eternal support.

iii Texas Tech University, Yanni Chen, May 2014

Table of Contents

Acknowledgments...... ii

Table of Contents ...... iv

Abstract ...... vi

List of Tables ...... vii

List of Figures ...... ix

I Introduction -- -derived smoke and its potential application for shortgrass prairie restoration ...... 1

The Influence of Plant-derived Smoke Application on Seed Germination ...... 2

Natural Shortgrass Prairie ...... 3

The Potential Need for Restoration in Shortgrass Prairie ...... 5

Literature Cited ...... 8

II Meta-analysis of the Effect of Smoke on Seed Germination ...... 13

Introduction ...... 13

Methods ...... 16

Results ...... 20

Discussion...... 22

Literature Cited ...... 26

III Shortgrass Prairie Soil Seed banks Composition in the Southern High Plains...... 34

iv Texas Tech University, Yanni Chen, May 2014

Introduction ...... 34

Methods ...... 37

Results ...... 40

Discussion...... 41

Literature Cited ...... 44

VI Test of In-Situ Smoke Application as a Restoration Treatment in the Southern High

Plains, Texas ...... 55

Introduction ...... 55

Methods ...... 58

Results ...... 61

Discussion...... 62

Literature Cited ...... 66

V The Potential of Plant-derived Smoke Application on Soil Seed Banks in Shortgrass

Prairie Restoration ...... 78

Introduction ...... 78

Literature Cited ...... 80

A Qualified publications used in meta-analysis ...... 81

B Information for Binary Logistic Analysis ...... 88

C Species from Binary Logistic Analysis...... 150

v Texas Tech University, Yanni Chen, May 2014

Abstract

Smoke as a seed germination promoter has been well recognized in many countries. It was first discovered in a fire-prone area, but has since been studied and applied even in fire free areas. It has been proven to exist in endangered species, medical species, and crops, and it is especially well recognized as useful for post-mining restoration.

In my thesis, I designed three studies to evaluate the possibility of using smoke to promote restoration in shortgrasss prairie. First, I conducted a meta-analysis of smoke tests from around the globe to detect common patterns of seed response to smoke. The results showed that certain taxonomic orders have a higher chance of responding to smoke application. It also indicated that the smoke response may be more associated with the of species than with local adaption. Second, I tested the soil seed bank composition in the southern High Plains in shortgrass prairie. I observed a limited number of woody species seedlings, indicating a high potential for using soil seed banks in this region as a seed source for restoration. Third, I conducted an in-situ smoke water test. These final results showed that high concentration smoke water can promote the density of total germinants in field applications to soil seedbanks.

Overall, smoke appears likely to work as an in-situ treatment in shortgrass prairie to increase the density of total seedlings. However, with the relatively small numbers of grass species I observed in the soil seed banks, if the intention of restoration is to increase the biomass of the plant community, restoration via smoke-induced germination of must increase the number of grass species. vi Texas Tech University, Yanni Chen, May 2014

List of Tables

2.1 Binary Logistic Regression Analysis of all recorded species for germination test condition (model -2 Log likelihood = 2079.471). Bold fonts indicate that the test condition played a role in predicting seed germination response to smoke (p < 0.05)...... 30 2.2 Results of each step for reducing from the full parameter model in binary logistic regression a backward likelihood ratio test (significant level is 0.05 and cut off value is 0.1). The dependent variable was seed germination response and independent variables were order, growth form, fire-relation, seed source, smoke application, In/Ex-situ, order*fire-relation, order *growth form, fire-relation * growth form, order * fire-relation * growth form...... 30 2.3 Best model through binary logistic regression backward log likelihood ratio test (significant level is 0.05 and cut off value is 0.1). Bold fonts indicate the model will be significantly changed if the variable removed (p < 0.05)...... 31 2.4 Potential important seed characteristics identified from the full parameter model in a binary logistic regression backward log likelihood ratio test (p <0.05). Bold fonts indicate variables for which the model will be significantly changed if removed (p <0.05)...... 31 2.5 Ranking of important seed characteristics used to build the model for predicting smoke response of seed germination of fire related/non fire related species. Bold fonts indicate orders that have important roles in the prediction model (P < 0.10, orders in bold were in comparison to )...... 32 2.6 Predictability tests of high contribution for orders identified as important via binary logistic regression in the seed characteristics parameter test (, , , , and Myrtales Table 2.4) (confidence interval = 0.05). Response 1= positive response, negative response and idiosyncratic; 0 = neutral...... 33 3.2 Identical germination species from soil seed bank samples in seven study sites. The bold orders (Asterales, Limiales and Ericales) are high predicable orders for smoke response...... 49 4.1 Latitude, longitude and soil type information for five study sties ...... 69 vii Texas Tech University, Yanni Chen, May 2014

4.2 Experimental design for in-situ seed and smoke application for restoration...... 69 4.3 Identified species from five sites, include both counting species and species record for species richness. The bold order Asterales is a high predicable order for smoke response...... 70 4.4 Multivariable tests for site, smoke treatment, seed treatment. Confidence interval is 95%. The variable in bold means it significantly contributes to the dependent variables compared with other independent variables (p < 0.05)...... 72

viii Texas Tech University, Yanni Chen, May 2014

List of Figures

3.1 Seven study sites of soil seed banks composition test with precipitation zones...... 51 3.2 The number of species (species richness) recorded in soil seed bank samples from each seed bank study site on the Southern High Plains, Texas. Error bars represent standard error and different letters indicate significant differences between each location (p = 0.05)...... 52 3.3 The number of grass seedlings recorded in soil seed bank samples from each seed bank study site on the Southern High Plains, Texas. Error bars represent standard error and different letters indicate significant differences between each location (p = 0.05)...... 52 3.4 The number of forb seedlings recorded in soil seed bank samples from each seed bank study site on the Southern High Plains, Texas. Error bars represent standard error and different letters indicate significant differences between each location (p = 0.05)...... 53 3.5 The number of total seedlings recorded in soil seed bank samples from each seed bank study site on the Southern High Plains, Texas. Error bars represent standard error and different letters indicate significant differences between each location (p = 0.05)...... 53 3.6 General patterns of species richness, the density of grass, forb and total seedlings recorded in soil seed bank samples from each study site on the Southern High Plains, Texas...... 54 4.1 Five study site with smoke application with two precipitation zones...... 73 4.2 The number of species (species richness) per square meter at each study location during smoke application tests in the Southern High Plains, Texas. Error bars represent standard errors, and different letters indicate significant difference between each location (p = 0.05)...... 74 4.3 The number of forb seedlings per square meter at each study location during smoke application tests in the Southern High Plains, Texas. Error bars represent standard errors, and different letters indicate significant difference between each location (p = 0.05)...... 74

ix Texas Tech University, Yanni Chen, May 2014

4.4 The number of grass seedlings per square meter at each study location during smoke application tests in the Southern High Plains, Texas. Error bars represent standard errors, and different letters indicate significant difference between each location (p = 0.05)...... 75 4.5 The number of woody seedlings per square meter at each study location during smoke application tests in the Southern High Plains, Texas. Error bars represent standard errors, and different letters indicate significant difference between each location (p = 0.05)...... 75 4.6 The number of total seedlings per square meter at each study location during smoke application tests in the Southern High Plains, Texas. Error bars represent standard errors, and different letters indicate significant difference between each location (p = 0.05)...... 76 4.7 The number of forb seedlings per square meter at each smoke application concentration level cross study sites in the Southern High Plains, Texas. Error bars represent standard errors, and different letters indicate significant difference between each location (p = 0.05)...... 76 4.8 The number of total seedlings per square meter at each smoke application concentration level cross study sites in the Southern High Plains, Texas. Error bars represent standard errors, and different letters indicate significant difference between each location (p = 0.05)...... 77

x Texas Tech University, Yanni Chen, May 2014

Chapter I

Introduction -- Plant-derived smoke and its potential application for shortgrass prairie restoration

In the life cycle of a plant, a seed represents the termination of the last generation as well as the beginning of a new generation. As the connection between generations, seeds pass along genetic information and maintain each species’ characteristics. Ideally seeds should germinate immediately after ripening to maximize reproduction (Baskin &

Baskin 1998, Fenner & Thompson 2005). However, ideal germination conditions may not be common, since seed germination is influenced by various environmental factors, including light, moisture, and temperature, that may fluctuate in complex ways. To preserve productivity in uncertain conditions, many species developed self-protecting mechanisms, such as seed dormancy (Baskin & Baskin 1998, Fenner & Thompson 2005,

Finch-Savage & Leubner-Metzger 2006).

Naturally, seeds of many species do not germinate immediately after ripening and exhibit dormancy to prevent germination under conditions are unsuitable for survival

(Fenner & Thompson 2005). This minimizes the cost of biological processes and saves energy for none optimum environmental conditions. Based on the morphological and physiological properties of seeds, Baskin and Baskin (1998, 2004) proposed a comprehensive classification system of seed dormancy, which included physiological dormancy, morphological dormancy, morphophysiological dormancy, physical dormancy, and combinational dormancy.

1 Texas Tech University, Yanni Chen, May 2014

The Influence of Plant-derived Smoke Application on Seed Germination

Smoke, as a fire by-product, in fire-prone areas, was identified as a seed germination promoter in 1990 (de Lange and Boucher 1990). Research addressing germination response to smoke has occurred in fire prone areas, such as Fynbos in

(see Brown et al. 2003 as a review), in America (Keeley and

Fotheringham 1998), dry deciduous forest in India (Singh and Raizada 2010), and

Eucalyptus woodland in (Enright and Kintrup 2001). However, a considerable number of studies have indicated that smoke application also can influence seed germination in fire-free areas (Pierce et al. 1995, Figueroa and Cavieres 2012).

Furthermore, plant-derived smoke application research has expanded to agricultural and horticultural species (Kulkarni et al. 2011), medical species, and weeds (Sparg et al. 2005,

Stevens et al. 2007), and has shown promise for stimulating germination and seedling growth in other economically valuable species (see Kulkarni et al. 2011 as a review).

Smoke affects the water uptake process in seed germination by changing the permeability of the internal cuticle via increased the number and size of permeates

(Egerton-Warburton 1998, Jain et al. 2008). Three active compounds in plant-derived smoke have been identified: karrikins, a family of butenolides related to 3-methyl-2H- furo[2,3-c]pryan-2-one (Flematti et al. 2004, van Staden et al. 2004); cyanohydrins

(Flematti et al. 2011); and 3,4,5-trimethylfuran-2(5H)-one (Light et al. 2010). Karrikins and cyanohydrins are both germination promoters; on the contrary, 3,4,5-trimethylfuran is a germination inhibitor with unclear dynamics (Seigler 1998, Soos et al. 2010, Flematii

2 Texas Tech University, Yanni Chen, May 2014 et al. 2011, Flematti et al. 2013,). Nelson et al. (2012) provides a thorough review of this topic.

Smoke has been tested and recognized as having potential as a restoration treatment for years, and has proven fruitful for this in Australia. Rokich and Dixon (2007) identified smoke-stimulated seed germination across phylogeny, life form, seed- dormancy class, type, and fire regions; summarized multiple restoration studies in

Banksia woodlands; compared physical restoration techniques such as soil-stabilizers

(like polymer gels, bitumen, oil-shale solid waste, and jute-matting) to topsoil seed banks, application of seed-coating, earlier sowing time, soil raking and others, and found smoke played a significant role in seed germination. Some in-situ smoke-stimulated seed germination tests have shown that smoke application has a potential role in large-scale restoration (Ashton et al. 1997, Roche et al. 1997, Enright and Kintrup 2001, Lloyd et al.

2000, Read et al. 2000, Rokich and Dixon 2007). Studies of the effect of smoke on soil seed banks produced similar management suggestions (Ablla et al. 2007, Ablla 2009).

Natural Shortgrass Prairie

“To the north were endless plains, plains so unchanging, so flat and treeless, that not a mound, not a stick or bush rose to disfigure their smooth flow to the horizons. Where they ended, no one could say. They ended in the sky."

------Terrell 1962

The historical vegetation image described by Terrel (1962) offered an early description of shortgrass prairie as a flat and featureless plain with no and no ,

3 Texas Tech University, Yanni Chen, May 2014 though Bailey (1905) mentioned mesquite was present in the general area of Big Spring,

Texas at the southern end of the Great Plains. Located on the southeast of the overall

Great Plains region, the original area of the shortgrass prairie is estimated to have been

7,800,000 ha in Texas, 1,300,000 in Oklahoma, 179,000 in South Dakota, 3,000,000 ha in and 5,900,000 ha in (Sampson and Knopf 1994). Over most of this range, the prairie has a semiarid continental climate; annual precipitation between

300 mm to 500 mm from west to east, and typically distribute between May and

September (Wester 2007). Soil types include clay loams, silt loams, and sandy loans

(Ford and McPherson 1996).

Shortgrass Prairie communities are dominated by grasses, mainly blue gramma

(Bouteloua gracilis). Other common grass species include grasses such as buffalograss

(Buchloe dactyloides), little bluestem (Schizachyrium scoparium), sand dropseed

(Sporobolus cryptandrus), sideoats grama (Bouteloua curtipendula), tobosa (Hilaria mutica), vine-mesquite (Panicum obtusum), three awns ( spp.), lovegrass

(Eragrostis spp.), tridens (Tridens spp), galleta (Hilaria Jamesii), bush muhly

(Muhlenbergia porteri) and cottontop (Digitaria californica) (Ford and

McPherson 2006).

Forbs and shrubs may not be major components of total biomass, but they contribute to biodiversity especially in wet years (Ford and McPerson 2006). Common species are annual broomweed ( dracunculoides), western ragweed

(Ambrosia psilostachya), horsetail conyza (Conyza candensis), silver- night shade

(Solanum elaeagnifolium), croton (Croton spp.), summercypress (Kochia scoparia),

4 Texas Tech University, Yanni Chen, May 2014 globemallow (Sphaeralcea spp.), sand sagebrush (Artemisia filifolia), broom snakeweed

(Gutierrezia sarothrae), yucca (Yucca spp.), fourwing salt bush ( canescens) and cactus (Opunita spp.) (Ford and McPherson 1996).

Arthropods, birds, and mammals live and breed in Shortgrass Prairie and contribute ecological functions as decomposers, pollinators, herbivores, and prey or predators. Over 100 species of arthropods were detected on the Kiowa National

Grassland proposed Research Area (Ford and McPherson 1996) and many species of birds come and go each year as seasonal migrants, while others breed domestically. Deer

(Odocoileus spp.) are a common subject of habitat studies in shortgrass prairie, as are as prairie dogs (Cynomys ludovicianus) (Boeker et al. 1972, Stapp 1998).

The Potential Need for Restoration in Shortgrass Prairie

During the late 19th century, the Anglo-European migration into these areas introduced grazing by domesticated cattle and sheep, which greatly reduced fire fuel and decreased fire frequency (Ford and McPherson 1996). Additionally, fire suppression programs, started in the 1950s, altered ecological processes, which increased non-native species invasion and promoted less fire tolerant species (Burkhardt and Tisdale 1976,

Ford and McPerson 1996).

Increase in the human population was accompanied by greater demand for natural resources through activities such as cattle grazing, agriculture and construction. For instance, the city of Lubbock, the largest city in northwest Texas, has increased in population from 31,853 (1940) to 149,101 (1970) to 236,065 (2012), and similar rates of

5 Texas Tech University, Yanni Chen, May 2014 increase (though not of absolute magnitude) occured at other nearby cities (Hill 2011).

Through all these factors, the shortgrass prairie was highly degraded (Abbe and Carlson

2008). Approximately < 25% of the shortgrass prairie now exists in native vegetation

(National Grassland Management Review Team 1995).

Studies of restoration in shortgaras prairies have covered such topics as fire (Ford and McPerson 1996, Brockway et al. 2002), soil seed banks (Kinucan and Smeins 1992,

Haukos and Smith 1993), and ex-situ smoke promotion of seed germination (Chou et al.

2012, Schwilk and Zavala 2012). However, few publications mention soil seed banks in the shortgrass prairie and in-situ smoke effects for shortgrass prairie species. Chou et al.

(2012) identified smoke effects on germination of broom snakeweed (Gutierrezia sarothrae) and groundplum miklvetch ( crassicarpus), which were promoted by 1:5 and 1:100 dilutions of smoke water treatments. Golden tickseed (Coreopsis tinctoria), broom snakeweed (Gutierrezia sarothrae), blue sage (Salvia reflexa), southern crabgrass (Digitaria ciliaris) and switchgrass (Panicum virgatum) were inhibited by certain levels of smoke water (Chou et al. 2012). Likewise, under cold stratification,

Bouteloua gracilis, Penstemon cobea, Salvia coccinea, and Salvia farinacea were promoted by smoke application and Coreopsis basalis was inhibited (Schiwilk and

Zavala 2012).

To address the potential needs for restoration in shortgrass prairie and limitations of knowledge about the effect of smoke in shortgrass prairie (Chou et al. 2011, Schiwilk and

Zavala 2012), I studied three questions: 1) is there a general pattern of smoke response by species on a global scale, 2) what is the soil seed bank composition in the southern High

6 Texas Tech University, Yanni Chen, May 2014

Plains (near Lubbock), and 3) how will smoke application work on native shortgrass prairie species in-situ.

In Chapter II, I described the general patterns of germination response to smoke through a meta-analysis of plant-derived smoke tested species on a global scale. In

Chapter III, I report the soil seed bank composition in the southern Great Plain with the aim of understanding how smoke-stimulated germination may influence recovery after disturbance. In Chapter IV, I report the effects of smoke water on in-situ soil seed banks and four native shortgrass prairie species. Chapter V, places the results of all my studies in the context of shortgrass prairie restoration and proposes some management suggestions.

7 Texas Tech University, Yanni Chen, May 2014

Literature Cited

Abbe, D. R., & Carlson, P. H. (2008). Historic Lubbock County: An Illustrated History. Historical Publishing Network Books. Abella, S. R. (2009). Smoke-cued emergence in plant species of Ponderosa Pine forests: Contrasting greenhouse and field results. , 5(1), 22-37. Abella, S. R., Springer, J. D., & Covington, W. W. (2007). Seed banks of an Arizona Pinus ponderosa landscape: responses to environmental gradients and fire cues. Canadian Journal of Forest Research, 37(3), 552-567. Ashton, D. H., Enright, N. J., Goldblum, D., & Ata, P. (1997). The independent effects of heat, smoke and ash on emergence of seedlings from the soil seed bank of a healthy woodland in Grampians (Gariwerd) National Park, western . Australian Journal of Ecology, 22(1), 81-88. Bailey, V. 1905. Biological survey of Texas. North American Fauna No. 25. USDA Biological Survey, , DC. 222 p. Baskin, C. C., & Baskin, J. M. (1998). Seeds: ecology, biogeography, and evolution of dormancy and germination: Academic press, San Diego. Baskin, J. M., & Baskin, C. C. (2004). A classification system for seed dormancy. Seed Science Research, 14(1), 1-16. Boeker, E. L., Scott, V. E., Reynolds, H. G., & Donaldson, B. A. (1972). Seasonal food habits of mule deer in southwestern . The Journal of Wildlife Management, 36(1), 56-63. Boucher, C., & Meets, M. (2004). Determination of the relative activity of aqueous plant- derived smoke solutions used in seed germination. South African Journal of , 70(2), 313-318. Brockway, D. G., Gatewood, R. G., & Paris, R. B. (2002). Restoring fire as an ecological process in shortgrass prairie ecosystems: initial effects of prescribed burning during the dormant and growing seasons. Journal of Environmental Management, 65(2), 135-152. Brown, N. A. C., van Staden, J., Daws, M. I., & Johnson, T. (2003). Patterns in the seed germination response to smoke in from the Cape Floristic Region, . South African Journal of Botany, 69(4), 514-525. Burkhardt, J. W., & Tisdale, E. (1976). Causes of juniper invasion in southwestern . Ecology, 57(3), 472-484.

8 Texas Tech University, Yanni Chen, May 2014

Chou, Y.-F., Cox, R. D., & Wester, D. B. (2012). Smoke water and heat shock influence germination of shortgrass prairie species. Rangeland Ecology & Management, 65(3), 260-267. Chumpookam, J., Lin, H.-L., & Shiesh, C.-C. (2012). Effect of smoke-water on seed germination and seedling growth of papaya (Carica papaya cv. Tainung No. 2). Hortscience, 47(6), 741-744. De Lange, J. H., & Boucher, C. (1990). Autecological studies on audouinia- capitatabruniaceae I. plant-derived smoke as a seed germination cue. South African Journal of Botany, 56(6), 700-703. Demir, I., Ozuaydin, I., Yasar, F., & Van Staden, J. (2012). Effect of smoke-derived butenolide priming treatment on pepper and salvia seeds in relation to transplant quality and catalase activity. South African Journal of Botany, 78, 83-87. Egerton-Warburton, L. M. (1998). A smoke-induced alteration of the sub-testa cuticle in seeds of the post-fire recruiter, Emmenanthe penduliflora Benth. (Hydrophyllaceae). Journal of Experimental Botany, 49(325), 1317-1327. Enright, N. J., & Kintrup, A. (2001). Effects of smoke, heat and charred on the germination of dormant soil-stored seeds from a Eucalyptus baxteri heathy- woodland in Victoria, SE Australia. Austral Ecology, 26(2). Fenner, M., & Thompson, K. (2005). The ecology of seeds: Cambridge Univisity Press, Cambridge. Figueroa, J. A., & Cavieres, L. A. (2012). The effect of heat and smoke on the emergence of exotic and native seedlings in a Mediterranean fire-free matorral of central . Revista Chilena De Historia Natural, 85(1), 101-111.

Finch‐Savage, W. E., & Leubner‐Metzger, G. (2006). Seed dormancy and the control of germination. New Phytologist, 171(3), 501-523. Flematti, G. R., Ghisalberti, E. L., Dixon, K. W., & Trengove, R. D. (2004). A compound from smoke that promotes seed germination. Science, 305(5686), 977-977. Flematti, G. R., Merritt, D. J., Piggott, M. J., Trengove, R. D., Smith, S. M., Dixon, K. W., et al. (2011). Burning vegetation produces cyanohydrins that liberate cyanide and stimulate seed germination. Nature Communications, 2, 360. Flematti, G. R., Waters, M. T., Scaffidi, A., Merritt, D. J., Ghisalberti, E. L., Dixon, K. W., et al. (2013). Karrikin and cyanohydrin smoke signals provide clues to New Endogenous plant signaling compounds. Molecular Plant, 6(1), 29-37. Ford, P. L., & McPherson, G. R. (1996). Ecology of fire in shortgrass prairie of the southern Great Plains. Department of Agriculture Forest Service General Technical Repor, 20-39. 9 Texas Tech University, Yanni Chen, May 2014

Haukos, D. A., & Smith, L. M. (1993). Seed-bank composition and predictive ability of field vegetation in playa lakes. Wetlands, 13(1), 32-40. Hill, R. (2011). Lubbock. Postcard History Series. Arcadia Publishing, Charleston. Grassland, C. S. D., Shrubland, I. B. B. S., Sagebrush, W. G. P. S., Prairie, W. G. P. S., Meadow, R. M. A. M. W., & Forest, R. M. M. M. C. (2013). Restoration and management of rare or declining . Jain, N., Ascough, G. D., & Van Staden, J. (2008). A smoke-derived butenolide alleviates HgCl2 and ZnCl2 inhibition of water uptake during germination and subsequent growth of tomato - Possible involvement of aquaporins. Journal of Plant Physiology, 165(13), 1422-1427. Jain, N., Kulkarni, M. G., & van Staden, J. (2006). A butenolide, isolated from smoke, can overcome the detrimental effects of extreme temperatures during tomato seed germination. Plant Growth Regulation, 49(2-3), 263-267. Keeley, J. E., & Fotheringham, C. J. (1998). Mechanism of smoke-induced seed germination in a post-fire chaparral annual. Journal of Ecology, 86(1), 27-36. Kinucan, R. J., & Smeins, F. E. (1992). Soil seed bank of a semiarid texas grassland under 3 long-term (36-years) Grazing regimes. American Midland Naturalist, 128(1), 11-21. Kulkarni, M. G., Light, M. E., & Van Staden, J. (2011). Plant-derived smoke: Old technology with possibilities for economic applications in agriculture and horticulture. South African Journal of Botany, 77(4). Light, M. E., Burger, B. V., Staerk, D., Kohout, L., & Van Staden, J. (2010). Butenolides from Plant-Derived Smoke: Natural Plant-Growth Regulators with Antagonistic Actions on Seed Germination. Journal of Natural Products, 73(2), 267-269. Lloyd, M. V., Dixon, K. W., & Sivasithamparam, K. (2000). Comparative effects of different smoke treatments on germination of Australian native plants. Austral Ecology, 25(6), 610-615. Malabadi, R. B., & Kumar, S. V. (2006). Smoke induced germination of some important medicinal plants. Journal of Phytological Research, 19(2), 221-226. Malabadi, R. B., & Kumar, S. V. (2008). Effect of smoke on seed vigour response of selected vigour response of seleted medinal plants. Journal of Phytological Research, 21(1), 71-75. National Grasslands Management Review Team. (1995). National grasslands management review report. October 30 – November 8. USDA Forest Service Report.

10 Texas Tech University, Yanni Chen, May 2014

Nelson, D. C., Flematti, G. R., Ghisalberti, E. L., Dixon, K., & Smith, S. M. (2012). Regulation of seed germination and seedling growth by chemical signals from burning vegetation. Annual Review of Plant Biology, 63, 107-130. Pierce, S. M., Esler, K., & Cowling, R. M. (1995). Smoke-induced germiantion of succulents (Mesembryathemaceae) from fire-prone and fire-free habitats in south- Africa. Oecologia, 102(4), 520-522. Read, T. R., Bellairs, S. M., Mulligan, D. R., & Lamb, D. (2000). Smoke and heat effects on soil seed bank germination for the re-establishment of a native forest community in . Austral Ecology, 25(1), 48-57. Roche, S., Koch, J. M., & Dixon, K. W. (1997). Smoke enhanced seed germination for mine rehabilitation in the southwest of . Restoration Ecology, 5(3), 191-203. Rokich, D. P., & Dixon, K. W. (2007). Recent advances in restoration ecology, with a focus on the woodland and the smoke germination tool. Australian Journal of Botany, 55(3), 375-389. Sampson, F., & Knopf, F. (1994). Prairie conservation in .BioScience, 418- 421. Schwilk, D. W., & Zavala, N. (2012). Germination response of grassland species to plant- derived smoke. Journal of Arid Environments, 79, 111-115. Seigler, D. S. (1998). Cyanogenic glycosides and cyanolipids. In Plant Secondary Metabolism pp. 273-299. Springer US. Singh, A., & Raizada, P. (2010). Seed germination of selected dry decidous trees in response to fire and smoke. Journal of Tropical Forest Science, 22(4), 465-468. Soos, V., Sebestyen, E., Juhasz, A., Light, M. E., Kohout, L., Szalai, G., et al. (2010). Transcriptome analysis of germinating maize kernels exposed to smoke-water and the active compound KAR. Bmc Plant Biology, 10(1), 236. Sparg, S. G., Kulkarni, M. G., Light, M. E., & Van Staden, J. (2005). Improving seedling vigour of indigenous medicinal plants with smoke. Bioresource Technology, 96(12), 1323-1330. Sparg, S. G., Kulkarni, M. G., & van Staden, J. (2006). Aerosol smoke and smoke-water stimulation of seedling vigor of a commercial maize . Crop Science, 46(3), 1336-1340. Stapp, P. (1998). A reevaluation of the role of prairie dogs in Great Plains grasslands. Conservation Biology, 12(6), 1253-1259.

11 Texas Tech University, Yanni Chen, May 2014

Stevens, J. C., Merritt, D. J., Flematti, G. R., Ghisalberti, E. L., & Dixon, K. W. (2007). Seed germination of agricultural weeds is promoted by the butenolide 3-methyl-2 H-furo[2,3- c]pyran-2-one under laboratory and field conditions. Plant & Soil, 298(1-2), 113-124. Terrell, J. H. (1962). Journey into darkness. Morrow, New York, 289 p. van Staden, J., Jager, A. K., Light, M. E., & Burger, B. V. (2004). Isolation of the major germination cue from plant-derived smoke. South African Journal of Botany, 70(4), 654-659. Wester, D. B. (2007). The Southern High Plains: A history of vegetation, 1540 to present. Proceedings: Shrubland dynamics-fire and water; 10-12 August 2004; Lubbock, TX, USA, 24-47. Zhou, J., Kulkarni, M. G., Huang, L. Q., Guo, L. P., & Van Staden, J. (2012). Effects of temperature, light, nutrients and smoke-water on seed germination and seedling growth of Astragalus membranaceus, Panax notoginseng and Magnolia officinalis - Highly traded Chinese medicinal plants. South African Journal of Botany, 79, 62-70.

12 Texas Tech University, Yanni Chen, May 2014

Chapter II

Meta-analysis of the Effect of Smoke on Seed Germination

Introduction

Some species do not germinate under otherwise optimal conditions and may not respond to other dormancy breakers, but may germinate after fire. These species, now called fire ephemerals, have been observed by biologists and ecologists in fire-prone areas. Based on these observations, researchers hypothesized that some aspect of fire environment may have promotive effects on seed germination and tested fire cues such as heat, ash, nitrite and charred wood. In 1990, De Lange and Boucher tested the effects of smoke produced from a mixture of dry and fresh plants on seed germination. Their results identified a new way to release seed dormancy: smoke stimulation (De Lange and

Boucher 1990).

Smoke stimulates germination through several active compounds. One compound is karrikinolide (Flematti et al. 2004, Dixon et al. 2009). Its characteristics fit well as a fire cue being stable under a high temperature, water-soluble, and active over a wide range of concentrations. In 2011, Flematti et al. (2011) isolated a second smoke active compound, glyceronitrile, which may explain differences in germination studies between whole smoke and karrikinolide (Downes et al. 2010). Glyceronitril is stable for years and releases cyanide (Flematti et al. 2011), which is a seed germination promoter at low concentrations while also well known as a toxicity towards lving organisms (Siegien and

13 Texas Tech University, Yanni Chen, May 2014

Bogatek 2006). Another compound, 3,4,5-trimethylfuran-2(5H)-one, can inhibit germination and reduce the effect of karrikinolide (Light et al. 2010).

Species from fire-prone ecosystems around the world, such as Fynbos (see

Brown et al. 2003 as a review) and Sudanian savanna-woodland (Dayamba et al. 2010) in

Africa, Eucalyptus woodland in Australia (Enright and Kintrup 2001), shrubby woodlands in central Spain (Perez-nandez and Rodriguez-echeverria 2003), dry deciduous forest in India (Singh and Raizada 2010), pine-oak and mixed forest in Mexico

(Zuloaga-Aguilar et al. 2011) and California chaparral (Keeley and Fotheringham 1998) were all tested and showed responsiveness to smoke. Smoke effects on seed germination also extend to fire-free ecosystems, such as Karoo in South Africa (Pierce et al. 1995) and evergreen matorral in Chile (Figueroa and Cavieres 2012).

The effects of smoke on seed germination are also widespread among plant families. For example, Brown et al. (2003) summarized test results for 301 species from

Fynbos in South Africa and found that nearly half of the species (49.8%) were significantly improved in germination by smoke treatment, including some families important for horticulture. Species in the , Bruniaceae, Crassulaceae,

Ericaceae, Geraniaceae, Mesembryanthemaceae, Proteaceae and Restionaceae were responsive to smoke treatment.

In conservation, smoke application has attracted considerable attention because it is often active in endangered species and habitats (Dixon et al. 1995, Willis et al. 2003).

Furthermore, smoke applications play a role in agriculture and horticulture (see Kulkarni

14 Texas Tech University, Yanni Chen, May 2014 et al. 2011 as a review), medication (Sparg et al. 2005, Zhou et al. 2011), and restoration

(Roche et al. 1997, Rokich et al. 2002, Crosti et al. 2003, Shebitz et al. 2009).

Since the first discovery that plant-derived smoke can influence germination, several types of smoke application have been developed, including aerial smoke, smoke water, and smoke related extracts. During the past 20 years, studies on smoke’s affect on seed germination have been fruitful. At least 415 papers have been published that report smoke effects on seed germination, ranging in focus from dynamics to mechanism and application. Some studies tested several species from one particular ecosystem, such as tallgrass (Jefferson et al. 2008) and shortgrass prairie (Chou et al. 2012, Schwilk and

Zavala 2012); some tests have been conducted for restoration purposes (Roche et al. 1997,

Enright and Kintrup 2001), and other tests for promoting commercial production

(Malabadi and Kumar 2008, Wada and Reed 2011).

Several papers have attempted to summarize some common characteristics of smoke responsive species. For example, Brown et al. (2003) analyzed life history traits of fynbos species history traits. They concluded that geophytic growth form can be a predictor and that non-serotinous species are more likely to respond more to smoke than serotinous species. Keely and Bond (1997) compared species from South African fynbos and Californian chaparral and found germination response was not randomly distributed among growth forms, but that annual species responded more often to smoke and charate than other species.

Through transcriptome analysis of maize response to smoke-water and KAR1,

Soos et al. (2010) discovered smoke application acts as an environmental signal to trigger

15 Texas Tech University, Yanni Chen, May 2014 germination. They predicted that smoke responsive species, whether native to fire prone areas or not, may have a receptor which diverged from one common ancestor.

During the past 25 years, over 1000 species have been tested directly or indirectly with smoke related applications, and the active compounds in these smoke applications have been identified (Flematti et al. 2004, Flematti et al. 2011). There is no doubt that smoke application can promote germination of some species, and is valuable in conservation, restoration, and commerce (van Staden 2000). However, it is not feasible to test every single species in a region, much less in the world, with limited time and resources. Therefore, I searched for and recorded all published reports of smoke/germination species tests with the aim of developing predictions about how individual species, as yet untested, might respond to smoke treatment. This approach should allow insight into how pervasive the effect is, as well as its potential for use as a management tool in untested ecosystems.

Methods

Data collection

In 2012 and 201, 3 I used the keywords “smoke” and “seed” to search for publications in the online database “Web of Knowledge” (Thomson Reuters™ 2013). I included only papers from January 1990 to August 2013, since the effect of smoke on seed germination was first described in 1990 (De Lange and Boucher 1990). This resulted in 848 publications, which I carefully screened to identify articles that contained

16 Texas Tech University, Yanni Chen, May 2014 identified species tested for the effect of smoke or its active compounds on seed germination, and included a statistical analysis of the test. This resulted in 149 publications. I further screened these articles for papers that reported the final average germination percentage (ex-situ) or seedling density (in-situ) of the control treatment; and evaluated the effect of smoke on seed germination or seedling density through tests such as a paired t-test, ANOVA and MNOVA) at 5% confidence intervals. This provided 115 qualified papers (Appendix I).

I recorded each species and its response to smoke application reported in these papers. I further recorded the response of each tested species to smoke or its active compound by comparison to the overall germination percentage (ex-situ germination test) or density (in-situ germination test) of the control. I accepted the control treatment as applying identical conditions (i.e., light/dark ratio, burial, temperature) as other treatments, except for smoke treatment. When multiple fire cues were tested (i.e. heat, smoke, or ash), any combination tests were considered separate from single smoke application tests. However, I did not separate plant growth regulator (such as GA3) tests.

Smoke responses by each species were categorized as positive, negative, idiosyncratic, or neutral. In analyzing how smoke application breaks dormancy, I recorded seeds without dormancy (>75% of germination in the control; Keeley and Fotheringham 1998) as not applicable (na) in the analysis category for “response”.

Four categories of species characteristics were recorded: species, family, life span, and fire-relation, whether the species was from fire prone ecosystems or fire free ecosystems. Three categories of test condition were also analyzed: in/ex- situ, type of 17 Texas Tech University, Yanni Chen, May 2014 smoke application, seed source, and germination response. Every publication reported test conditions, but not all the publications reported all the species information I required for the analysis. Therefore, any missing information was obtained through regional plant databases such as the USDA PLANTS Database (Natural Resources Conservation

Service, United States Department of Agriculture, USA) for North American species;

FloraBase (Department of Parks and Wildlife, Western Australian Herbarium, Australia) and PlantNET (National Herbarium of NSW, Royal Botanic Garden, Australia) for

Australian species; and PlantZAfrica (South African National Biodiversity Institute,

South Africa) for African species. Because the publications spanned 23 years, information about plant families was unified according to the standard listed on the

Angiosperm Phylogeny Website (Stevens, 2001, Missouri Botanical Garden). I also recorded the order for each species based on the species’ family and index on the

Angiosperm Phylogeny Website (Stevens, 2001, Missouri Botanical Garden).

Data analysis

Data were analyzed using binary logistic regression with a likelihood-ratio test for model fit in SPSS (SPSS version 22) to test the influence of variables on seed response to smoke application. For each individual test, categories of species information and test categories were as follows: (1) smoke response (1= positive, negative and idiosyncratic; 0

= neutral; na = not applicable and were not analyzed); (2) smoke application (1= aqueous smoke solution, 0 = aerial smoke); (3) seed source ( 1 = individual seeds, 0 = seed bank);

(4) In/Ex-situ (1 = Ex-situ, 0 = In-situ); (5) growth form (0 = annual, annual biennial,

18 Texas Tech University, Yanni Chen, May 2014 biennial, 1 = perennial); (6) fire-relation (1 = fire related, 0 = fire free); (7) orders

(analyzed via dummy variable). Missing variables in the analysis were excluded.

Binary Logistic Regression Analysis of all recorded species

I analyzed all tests on condition parameters in the prediction model. Independent variables were germination conditions (seed source, smoke application and In/Ex-situ) and the dependent variable was response of seed germination with smoke application.

Binary Logistic Regression Analysis of partial species with fire-relation information

I also analyzed all qualified testS on germination condition and species characteristics with binary logistic regression through stepwise (backward log likelihood ratio) analysis. Independent variables included species characteristics (order, growth form, and fire-relation), interaction between species characteristics (order * growth form, growth form * fire-relation, order * fire-relation) and germination conditions (seed source, smoke application, In/Ex-situ); dependent variable smoke response on seed germination with smoke application.

Further, I used the identified important species characteristics (significant change in prediction model, p < 0.05) as an independent variable to examine their relationship with seed germination response. Orders with less than five species tested were excluded from the analysis.

Finally, five orders identified in the previous analysis were tested with a binary prediction model to verify model fit.

19 Texas Tech University, Yanni Chen, May 2014

Results

Binary Logistic Regression Analysis of all recorded species

I found 1662 qualified seed germination tests, which included 974 species from

105 families in 39 orders (Appendix B). Nine orders (Saxifragales, Sapindales,

Rhamnales, Proteales, Liliales, Lamiales, Dioscoreales, Dilleniales, and Cornales) had over 50% of species tested respond to smoke application.

The binary logistic regression model was not well fit (based on the -2 Log likelihood, estimation 2097.471), but seed source and smoke application were identified as significant influences on the seed germination tests (p < 0.05) (Table 2.1).

Binary Logistic Regression Analysis of Partial species with fire-relation information

There were 283 species that contained information about the germination test

(seed source, smoke application, in/ex-situ) and seed characteristics (order, family, growth form, fire-relation). These species represent of 38 families from 15 orders

(Appendix C). The backward likelihood ratio methods presevered order, seed source, growth form, smoke application, fire-relation, growth form * order, and fire-relation * growth form in the best fit model (p < 0.1). Among these parameters two test conditions

(seed source and smoke application), two seed characteristics (order and growth form) and one seed character interaction (fire-relation * order) were identified as important in the model (p < 0.05, Table 2.2 and Table 2.3).

20 Texas Tech University, Yanni Chen, May 2014

Identified Species Figure Parameter Tests

Identified species characteristics (order, growth form, and fire-relation * order) were used in a binary regression (all parameters entered at once) to detect the main contributors to the seed germination response in the smoke application predictive model.

Order and fire-relation * order were the main contributors to the prediction model (p <

0.05, Table 2.4). The growth form of species also contributed to the model (p < 0.1, Table

2.4).

Seeds of orders (Caryophyllales, Lamiales, Myrtales and Ericales) were identified as high contributors to the prediction of seed germination response to smoke application

(p < 0.05, Table 2.5). Seeds of Asterales were also categorized as having a high probability of responding to smoke in seed germination when treated by smoke applications (p < 0.05, Table 2.5).

Predictability Test of Identified High Smoke Response Orders

The prediction model of Caryophyllales, Lamiales, Myrtales, Asterales and

Ericales with the parameters of order, growth form, and order * fire-relation showed that though the overall percentage of prediction was low (68.1%), the model had a 93.8 % correct prediction of the smoke response (Table 2.6).

21 Texas Tech University, Yanni Chen, May 2014

Discussion

Seed germination condition influences smoke effect on seed germination

I identified important test condition parameters (seed source and smoke application), and excluded in/ex-situ test locations from the prediction model, though the model was lacked precision based on the log likelihood standard. This indicated that the test location (ex-situ or in-situ) in well-designed and controlled seed germination tests may not influence seed response to smoke application, though seed source (individual seed or seeds stored in the soil seed bank) and type of smoke application (aerial smoke, aqueous smoke solution or active compound) will influence smoke effects on seed germination.

Further germination conditions were tested bycombining with seed characters using the seeds contained fire-relation information (from fire-prone areas or from fire free regions). The results confirmed that seed source and smoke application play important roles in the prediction of seed germination response tosmoke application.

In comparison to individual seeds, soil seed banks contain a variety of species which were assembled from the above ground community. Above ground vegetation might have different survival strategies based on functional traits of species in a community which may leave legacies in soil seed banks (Templeton and Levin 1979,

Pausas et al. 2004, Baralota et al. 2012,). Keeley and Fotheringham (1998) identified 25 chaparral species that responded to smoke application but did not respond to heat-shock.

Studies that conducted on soil seed banks shown different fire cues may promote

22 Texas Tech University, Yanni Chen, May 2014 different species. For instance, soil seed banks in only had one species that responded to smoke in comparison to 19 species that responded to heat-shock (Ward et al.

1997). Conversely, various species in Eucalyptus baxteri heathy-woodland soil seed banks responded to smoke, heat, smoke and heat, smoke and heat and ash, and or didn’t respond at all (Enright and Kintrup 2001); similar results have been found for dry sclerophyll eucalypt open forest community (Read et al. 2000). Moreover, ponderosa pine forest species in the soil seed bank had more biotic and abiotic variables than seeds were tested individually (Abella 2009).

Smoke application can be done in three main ways: aerial smoke, aqueous smoke solution, and active compound (karrikins). I tested differences between aerial and aqueous smoke application by statistical analysis. The results showed that they may have different effects on seed germination. Smoke has three identified active compounds: karrikins (Flematti et al. 2004, van Staden et al. 2004), cyanohydrins (Flematti et al. 2011) and 3,4,5-trimethylfuran-2(5H)-one (2) (Light et al. 2010). However, how these active compounds work through water or air and interact with each other in promoting or inhibiting seed germination remains unclear. Various seed responses can be characterized as: 1) response to both aerial and liquid smoke, such as Conostylis candicans (Lloyd et al.

2000); 2) or response to only aerial smoke application, such as Banksia attenutata

(Rokich et al. 2002). Most species that responded to aqueous smoke solution did respond to aerial smoke as well (Roche et al. 1997, Rokich et al. 2002).

23 Texas Tech University, Yanni Chen, May 2014

Patterns of seed characteristics in smoke response species

The response of seeds to smoke was first described in a fire-prone region (fybos,

Africa), but can occur in fire-related and non-fire-related species equally. Some of the response dynamics were revealed as changing water uptake during germination and subsequent growth (Jain et al. 2008) and accelerating ubiquitination of proteins (Soos et al. 2010). In the predictability test of seed characteristics on seed germination response to smoke application, I identified two parameters (fire-relation, and fire-relation * order * growth form) that were removable from the parameter list. Among three parameters

(order, growth form, fire-relation * order), order and order * fire-relation showed significant importance for predicting seed response to smoke application. Parameters associated with the environment of fire-relation and growth form were not as strong as the genetic related parameter, order, which indicates that the smoke response may be associated with plant evolution rather than environmental adaptions. Similar results have been observed from smoke dynamic tests on maize (Soos et al. 2000). Furthermore, I found order to be an important prediction, which is used to summarise seed dormancy and seed phylogenetic system (Finch-Savage and Leubner-Metzger 2006).

Growth form was also included in the final model, with considerable impact on seed germination response to smoke application, which agrees with Brown et al, who found that geophytic growth form was a robust predictor of response to smoke (Brown et al. 2003).

24 Texas Tech University, Yanni Chen, May 2014

In comparison with a previous study that tried to find characteristics of seeds that would predict seed response to smoke application (Brown et al. 2003), this is the first study that used quantitative methods to predict smoke response across ecosystems. In this study, I started with evolutionary aspects of plants including plant characteristics of growth form, order and fire-relation, instead of just seed characteristics. Further, in my prediction model, I included the test environment to smoke responses, which have not been quantitatively analyzed previously. Overall, the prediction model plays well for some orders, though conclusive for all species.

25 Texas Tech University, Yanni Chen, May 2014

Literature Cited

Brown, N. A. C., van Staden, J., Daws, M. I., & Johnson, T. (2003). Patterns in the seed germination response to smoke in plants from the Cape Floristic Region, South Africa. South African Journal of Botany, 69(4), 514-525.

Chou, Y.-F., Cox, R. D., & Wester, D. B. (2012). Smoke water and heat shock influence germination of shortgrass prairie species. Rangeland Ecology & Management, 65(3).

Crosti, R., Tieu, A., & Dixon, K. W. (2003). Promoting germination of native species using smoke for land restoration and nursery production in Australia. Nursery production and stan establishment of broad- to promote sustainable forest management. 55-64p.

Dayamba, S. D., Sawadogo, L., Tigabu, M., Savadogo, P., Zida, D., Tiveau, D., et al. (2010). Effects of aqueous smoke solutions and heat on seed germination of herbaceous species of the Sudanian savanna-woodland in Burkina Faso. Flora, 205(5).

De Lange, J. H., & Boucher, C. (1990). Autecological studies on audouinia- capitatabruniaceae I. plant-derived smoke as a seed germination cue. South African Journal of Botany, 56(6), 700-703.

Dixon, K. W., Merritt, D. J., Flematti, G. R., & Ghisalberti, E. L. (2009). Karrikinolide - a phytoreactive compound derived from smoke with applications in horticulture, ecological restoration and agriculture. In M. Johnston, M. J. O. Dragovic, & R. A. Criley (Eds.), Vi International Symposium on New Floricultural Crops (Vol. 813, pp. 155-170, Acta Horticulturae).

Dixon, K. W., Roche, S., & Pate, J. S. (1995). The promotive effect of smoke derived from burnt native vegeation on seed-germination of western-Australian plants. Oecologia, 101(2).

Downes, K. S., Lamont, B. B., Light, M. E., & van Staden, J. (2010). The fire ephemeral Tersonia cyathiflora (Gyrostemonaceae) germinates in response to smoke but not the butenolide 3-methyl-2H-furo 2,3-c pyran-2-one. Annals of Botany, 106(2).

Enright, N. J., & Kintrup, A. (2001). Effects of smoke, heat and charred wood on the germination of dormant soil-stored seeds from a Eucalyptus baxteri heathy- woodland in Victoria, SE Australia. Austral Ecology, 26(2), 132-141.

26 Texas Tech University, Yanni Chen, May 2014

Figueroa, J. A., & Cavieres, L. A. (2012). The effect of heat and smoke on the emergence of exotic and native seedlings in a Mediterranean fire-free matorral of central Chile. Revista Chilena De Historia Natural, 85(1), 101-111.

Flematti, G. R., Ghisalberti, E. L., Dixon, K. W., & Trengove, R. D. (2004). A compound from smoke that promotes seed germination. Science, 305(5686), 977-977.

Flematti, G. R., Merritt, D. J., Piggott, M. J., Trengove, R. D., Smith, S. M., Dixon, K. W., et al. (2011). Burning vegetation produces cyanohydrins that liberate cyanide and stimulate seed germination. Nature Communications, 2.

Ghebrehiwot, H. M., Kulkarni, M. G., Kirkman, K. P., & Van Staden, J. (2008). Smoke- Water and a Smoke-Isolated Butenolide Improve Germination and Seedling Vigour of Eragrostis tef (Zucc.) Trotter under High Temperature and Low Osmotic Potential. Journal of Agronomy & Crop Science, 194(4), 270-277.

Jefferson, L. V., Pennacchio, M., Havens, K., Forsberg, B., Sollenberger, D., & Ault, J. (2008). Ex situ germination responses of Midwestern USA prairie species to plant-derived smoke. American Midland Naturalist, 159(1), 251-256, 2.

Keeley, J. E., & Bond, W. J. (1997). Convergent seed germination in South African fynbos and Californian chaparral. Plant Ecology, 133(2), 153-167.

Keeley, J. E., & Fotheringham, C. J. (1998). Smoke-induced seed germination in California chaparral. Ecology, 79(7), 2320-2336.

Kulkarni, M. G., Light, M. E., & Van Staden, J. (2011). Plant-derived smoke: Old technology with possibilities for economic applications in agriculture and horticulture. South African Journal of Botany, 77(4), 972-979.

Light, M. E., Burger, B. V., Staerk, D., Kohout, L., & Van Staden, J. (2010). Butenolides from plant-derived smoke: natural plant-growth gegulators with antagonistic actions on seed germination. Journal of Natural Products, 73(2), 267-269.

Malabadi, R. B., & Kumar, S. V. (2008). Effect of smoke on seed vigour response of selected medicinal plants. Journal of Phytological Research, 21(1), 71-75.

Pierce, S. M., Esler, K., & Cowling, R. M. (1995). Smoke-induced germiantion of succulents (Mesembryathemaceae) from fire-prone and fire-free habitats in south- Africa. Oecologia, 102(4), 520-522.

Read, T. R., Bellairs, S. M., Mulligan, D. R., & Lamb, D. (2000). Smoke and heat effects on soil seed bank germination for the re-establishment of a native forest community in New South Wales. Austral Ecology, 25(1), 48-57.Roche, S., Koch, J. M., & Dixon, K. W. (1997). Smoke enhanced seed germination for mine

27 Texas Tech University, Yanni Chen, May 2014

rehabilitation in the southwest of Western Australia. Restoration Ecology, 5(3), 191-203.

Rokich, D. P., Dixon, K. W., Sivasithamparam, K., & Meney, K. A. (2002). Smoke, mulch, and seed broadcasting effects on woodland restoration in Western Australia. Restoration Ecology, 10(2), 185-194.

Schwilk, D. W., & Zavala, N. (2012). Germination response of grassland species to plant- derived smoke. Journal of Arid Environments, 79, 111-115.

Shebitz, D. J., Ewing, K., & Gutierrez, J. (2009). Preliminary observations of using smoke-water to increase low-elevation Beargrass Xerophyllum tenax germination. Native Plants Journal, 10(1), 13-20.

Siegień, I., & Bogatek, R. (2006). Cyanide action in plants—from toxic to regulatory. Acta Physiologiae Plantarum, 28(5), 483-497.

Singh, A., & Raizada, P. (2010). Seed germination of selected dry decidous trees in response to fire and smoke. Journal of Tropical Forest Science, 22(4), 465-468.

Soos, V., Sebestyen, E., Juhasz, A., Light, M. E., Kohout, L., Szalai, G., et al. (2010). Transcriptome analysis of germinating maize kernels exposed to smoke-water and the active compound KAR. Bmc Plant Biology, 10.

Sparg, S. G., Kulkarni, M. G., Light, M. E., & Van Staden, J. (2005). Improving seedling vigour of indigenous medicinal plants with smoke. Bioresource Technology.

Sparg, S. G., Kulkarni, M. G., & van Staden, J. (2006). Aerosol Smoke and Smoke-Water Stimulation of Seedling Vigor of a Commercial Maize Cultivar. [Article]. Crop Science, 46(3), 1336-1340.

Van Staden, J., Brown, N. A. C., Jäger, A. K., & Johnson, T. A. (2000). Smoke as a germination cue. Plant Species Biology, 15(2), 167-178.

Wada, S., & Reed, B. M. (2011). Standardizing germination protocols for diverse raspberry and blackberry species. Scientia Horticulturae, 132, 42-49.

Willis, A. J., McKay, R., Vranjic, J. A., Kilby, M. J., & Groves, R. H. (2003). Comparative seed ecology of the endangered , Pimelea spicata and a threatening weed, Bridal Creeper: Smoke, heat and other fire-related germination cues. Ecological Management & Restoration, 4(1), 55-65.

Zhou, J., Van Staden, J., Guo, L. P., & Huang, L. Q. (2011). Smoke-water improves shoot growth and indigo accumulation in shoots of Isatis indigotica seedlings. South African Journal of Botany, 77(3), 787-789.

28 Texas Tech University, Yanni Chen, May 2014

Zuloaga-Aguilar, S., Briones, O., & Orozco-Segovia, A. (2011). Seed germination of montane forest species in response to ash, smoke and heat shock in Mexico. Acta Oecologica, 37(3), 256-262.

29 Texas Tech University, Yanni Chen, May 2014

Table 2.1 Binary Logistic Regression Analysis of all recorded species for germination test condition (model -2 Log likelihood = 2079.471). Bold fonts indicate that the test condition played a role in predicting seed germination response to smoke (p < 0.05).

Variable DF Sign. Exp(B) Seed source 1 .000 1.870 Smoke application 1 .032 1.253 In/Ex-situ 1 .201 1.169 Constant 1 .000 0.259

Table 2.2 Results of each step for reducing from the full parameter model in binary logistic regression a backward likelihood ratio test (significant level is 0.05 and cut off value is 0.1). The dependent variable was seed germination response and independent variables were order, growth form, fire-relation, seed source, smoke application, In/Ex- situ, order*fire-relation, order *growth form, fire-relation * growth form, order * fire- relation * growth form.

-2 Log Significance of the Step Remove variable likelihood Change 1 None 289.446a na 2 Fire-relation 289.446a 1 Fire-relation * Growth form * 3 290.392a 1 Order 4 In/Ex-situ 291.922a 0.285

30 Texas Tech University, Yanni Chen, May 2014

Table 2.3 Best model through binary logistic regression backward log likelihood ratio test (significant level is 0.05 and cut off value is 0.1). Bold fonts indicate the model will be significantly changed if the variable removed (p < 0.05).

Change in - Degree Significance Model Log Variable 2 Log of of the Likelihood Likelihood Freedom Change Order -159.845 27.768 14 0.015 Seed source -154.179 16.436 1 0 Growth form -148.613 5.305 1 0.021 Smoke application -148.507 5.092 1 0.024 Fire-relation * Order -154.155 16.387 8 0.037 Growth form * Order -154.516 17.11 10 0.072 Fire-relation * Growth form -147.689 3.455 1 0.063

Table 2.4 Potential important seed characteristics identified from the full parameter model in a binary logistic regression backward log likelihood ratio test (p <0.05). Bold fonts indicate variables for which the model will be significantly changed if removed (p <0.05).

Degree Model Log Change in -2 Log Significance of the Variable of Likelihood Likelihood Change Freedom

Order -183.68 37.328 14 0.001

Growth form -166.713 3.393 1 0.065

Fire-relation * -179.186 28.341 9 0.001 Order

31 Texas Tech University, Yanni Chen, May 2014

Table 2.5 Ranking of important seed characteristics used to build the model for predicting smoke response of seed germination of fire related/non fire related species. Bold fonts indicate orders that have important roles in the prediction model (P < 0.10, orders in bold were in comparison to Solanales).

Variable B S.E. Wald DF Sig. Exp(B) Order 24.593 14 0.039 Caryophyllales 3.314 1.568 4.469 1 0.035 27.495 Lamiales 2.88 1.2 5.761 1 0.016 17.818 Myrtales 2.348 1.339 3.073 1 0.08 10.462 Ericales 2.339 1.223 3.654 1 0.056 10.368 Proteales 1.926 1.33 2.098 1 0.148 6.864 1.122 1.512 0.55 1 0.458 3.07 Ranunculales 1.122 1.813 0.383 1 0.536 3.07 1.122 1.813 0.383 1 0.536 3.07 0.897 1.241 0.522 1 0.47 2.451 0.486 1.21 0.161 1 0.688 1.626 Brassicales 0.023 1.619 0 1 0.989 1.023 Asterales -0.265 1.383 0.037 1 0.848 0.768 -20.081 28420.72 0 1 0.999 0 -19.73 19820.41 0 1 0.999 0 Growth form -0.805 0 3.253 1 0.071 0.447 Fire-relation * Order 12.465 9 0.188 Fire-relation * Boraginales 23.506 28420.72 0 1 0.999 1.62E+10 Fire-relation * Rosales 22.007 23205.42 0 1 0.999 3.61E+09 Fire-relation * Fabales 21.071 19820.41 0 1 0.999 1.42E+09 Fire-relation * Asterales 2.429 0.96 6.404 1 0.011 11.353 Fire-relation * Brassicales 2.161 1.525 2.01 1 0.156 8.683 Fire-relation * Ranunculales 0.805 1.789 0.202 1 0.653 2.236 Fire-relation * Poales 0.383 0.625 0.376 1 0.54 1.467 Fire-relation * Apiales 0.063 1.389 0.002 1 0.964 1.065 Fire-relation * Caryophyllales -3.056 1.366 5.003 1 0.025 0.047 Constant -1.122 1.134 0.978 1 0.323 0.326

32 Texas Tech University, Yanni Chen, May 2014

Table 2.6 Predictability tests of high contribution for orders identified as important via binary logistic regression in the seed characteristics parameter test (Asterales, Caryophyllales, Ericales, Lamiales, and Myrtales Table 2.4) (confidence interval = 0.05). Response 1= positive response, negative response and idiosyncratic; 0 = neutral.

PREDICTED Response Percentage 0 1 Correct Observed Response 0 16 32 33.3 1 4 61 93.8

Overall Percentage 68.1 a. The cut value is 0.05

33 Texas Tech University, Yanni Chen, May 2014

Chapter III

Shortgrass Prairie Soil Seed banks Composition in the Southern High Plains

Introduction

Soil seed banks are critically important for plant communities and represent a store of preserved seeds that can increase the ability of a community to maintain its self and recover after a disturbance (Thompson 1992). Since 1918, when soil seed banks were first intensively studied (Brenchley 1918), they have become a frequent topic of research in plant ecology (e.g. see Major and Pyott 1966, Coffin and Lauenroth 1989, Cox and

Allen 2008, Xiao and Liu 2013). In many plant communities, the seed bank is both influenced by, and helps to determine recovery from, disturbances. Generally, the higher the probability that a plant community will experience periodic disturbance, the more likely that it will allocate energy to developing a seed bank (Cohen 1966, Fenner and

Thompson 2005, Bossuyt and Honnay 2008).

Seed bank composition is determined by input and output (Fenner and Thompson

2005). Seed rain from the local plant community is the main input source for seed banks and can be influenced by plants from the local above-ground vegetation as well as plants in other areas because of the effects of wind, water and animals (Simpson et al. 1989).

The major seed bank outputs are seed death and germination. Seeds may die due to aging or predation, or they may germinate; the output pathways are controlled by both environmental and endogenous factors (Baskin and Baskin 1998). These factors, in turn,

34 Texas Tech University, Yanni Chen, May 2014 are influenced by various disturbances that ultimately result in changes to the soil seed bank (Bekker et al. 1997, Bossuyt and Hermy 2001, Chang et al. 2001, Matus et al. 2005).

For example, long-term grazing can cause grazing tolerant species to accumulate in the soil seed bank (Gonzalez et al. 2010) and increase seed bank species richness compared to areas that were simply mowed (Jacquemyn et al. 2011). Furthermore, overgrazing and lack of grazing have both been shown to have negative effects on species diversity and density (Chaideftou et al. 2011, Jacquemyn at al. 2011). Invasive species (Albrecht 2011) and nutrient enrichment (Miao and Zou 2009) also can play a role in influencing soil seed banks. However, effects can be idiosyncratic; Goslee et al. (2009) studied fallowing effects in pasture grasses and weedy forbs and found no persistent change on either vegetation or seed bank composition.

There are some common factors across soil seed banks. First, soil seed banks conserve seeds of different shapes and sizes, which influence their distribution or location in seed banks (Bekker et al. 1998). Second, the similarity between above-ground vegetation and below-ground soil seed banks in grassland normally is lower than 60%

(Bakker and Berendes 1999), and the above-ground vegetation is usually under- represented in soil seed banks.

Shortgrass prairie has a recurring disturbance cycle based on historical fire intervals

(Wright and Bailey 1982). Fire is a crucial factor in maintaining short grass prairie plant communities, and has caused some communities to accumulate fire adapted species such as sand bluestem (Andropogan hallii) and switchgrass (Panicum virgatum) (Ford and

McPherson 1996); fire may also help to control honey mesquite (Prosopis glandulosa), a

35 Texas Tech University, Yanni Chen, May 2014 common invader of shortgrass prairie (Ford and McPherson 1996). Many annual or biannual species produce a large number of seeds that may be preserved in soil seed banks, which help to prevent species after fire (Fenner 2005, Bossuyt and

Honnay 2008). This effectively maximizes biodiversity, which fits well into the intermediate disturbance hypothesis (Connell 1978).

Currently, native landscapes are being replaced by urban, agricultural, and recreation areas, and increased demand for meat production is increasing grazing pressure on rangelands. suppression and overgrazing on rangelands can cause increased density of shrub species, resulting in a switch in the plant community equilibrium from

Shortgrass Prairie to a shrubland (Brockway et al. 2002).

Some researchers have mentioned the possibility of using soil seed banks in restoration of native communities (Muller et al. 1998, Mitlacher et al. 2002, Bossuyt and

Honnay 2008). Bekker et al. (1997) supported this idea in a study of European grassland soil seed banks which had short history of agricultural management or biodiversity degradation. Bossuyt et al. (2007) also mentioned that in conjunction with Ulex europaeus management, the soil seed bank might be useful in restoration, since 50% of the species identified from soil seed bank were core species for the target community.

Conversely, there continues to be disagreement about exactly how useful seed banks might be in a restoration setting. Dutoit and Alard (1995) found that over 80% of seeds in old chalk grassland are early succession species. Cox and Allen (2008) cautioned that the exotic species in soil-stored seed banks need careful consideration. Bossuyt and

36

Texas Tech University, Yanni Chen, May 2014

Honnay (2008) concluded two criteria determine whether the soil seed bank can be used in restoration: the presence/absence of target species and the dormancy of buried seeds.

As more shrubs, such as honey mesquite, have invaded shortgrass prairie areas, there is a need for more studies that address restoration techniques. As an essential part of the plant community, soil seed banks may provide a useful management option. In this study, my objective was to understand the role of soil seed banks in shortgrass Prairie. I sampled seven study sites in two different precipitation zones to examine differences in soil seed bank composition and density.

Methods

Study sites

The study was conducted in seven shortgrass prarie remnants in two different precipitation zones in the Southern High Plains (Figure 3.1 and Table 3.1; PRISM

Climate Group, 2012). From the north to the south, the study sites are Caprock Canyons

State Park & Trailway, Matador Wildlife Management Area, Gipson Farm, Muleshoe

Wildlife Refuge, Texas Tech Rangeland, Tahoka Lake Pasture, and the Beach Ranch.

Across the region, the average temperature rises from 4 °C in January to 26 °C in July, and most precipitation falls as rain during May, June, August and September (Wester

2007). Caprock Canyons State Park & Trailway and Matador Wildlife Management Area were managed by Texas Parks & Wildlife; Muleshoe Wildlife Refuge was managed by

U.S. Fish & Wildlife Service; Texas Tech Rangeland was managed by the Department of

37 Texas Tech University, Yanni Chen, May 2014

Natural Resources Management; the Gipson Farm, Tahoka Lake Pasture and Beach

Ranch were privately owned and managed properties. I selected each study site was selected to include general shortgrass prairie species, as described by Wright and Bailey

(1982), including grasses such as: blue grama (Bouteloua gracilis), buffalograss (Buchloe dactyloides), little bluestem (Schizachyrium scoparium), sand dropseed (Sporobolus cryptandrus), sideoats grama (Bouteloua curtipendula), tobosa (Hilaria mutica), and vine-mesquite (Panicum obtusum), and forbs and shrubs such as broomweed

(Xanthocephalum dracunculoides), western ragweed (Ambrosia psilostachya), horsetail conyza (Conyza candensis), silver-leaf night shade (Solanum elaeagnifolium), croton

(Croton spp.), summercypress (Kochia scoparia), globemallow (Sphaeralcea spp.), sand sagebrush (Artemisia filifolia), perennial broomweed (Gutierrezia sarothrae), yucca

(Yucca spp.), fourwing salt bush (Atriplex canescens) and cactus (Opuntia spp.).

Experimental Design

At each study site four plots (10*30 m) were established at least 10 m from each other at random locations within a grass-dominated pasture. To quantify species composition and density in the soil-seed bank, soil samples were collected in a stratified random manner from May to June from each plot in each area. For the stratified random method, one 30 meter long sample line was set randomly between 1 to 2 m on a 10 m side, and three other sample lines were 2 m from each other from the first line. Ten samples were collected randomly starting within the first 2 m, and continuously collected other nine samples two meters from each other. Samples were collected by inserting a 5

38 Texas Tech University, Yanni Chen, May 2014 cm diameter soil corer 8 cm into the soil. Forty samples were taken in each replicate plot for a total of 160 samples and a total volume of 25120 cm3 in each area.

Seed bank composition and density for each sampling plot were evaluated by the seedling emergence method (Cox and Allen, 2008, Orr 1999). Twenty soil samples were randomly selected, mixed, and set in the glasshouse in July. Each sample was kept moist, and emerging seedlings were identified and removed. Unidentifiable seedlings were removed, transplanted to a separate pot, and grown until they could be identified. When emergence was zero for 14 days, soil was dried, stirred, and rewetted. Emerging seedlings again were identified and removed. This cycle was repeated three times, after which no seedling emergence was observed.

Data analysis

Seedlings were recorded by species, but before analysis all seedlings were grouped based on their growth forms (grass, forb, and woody species). However, since only two woody species were recorded in the soil seed bank sample, the woody species were excluded from the analysis. All numerical data were square root transformed, and analyzed in SPSS (SPSS 21 version) by Multivariate Analysis in the General Linear

Model. The dependent variables were the recorded densities of forb, grass, total seedlings, and species richness. Site was considered the fixed factor. The full interaction model was selected with a Type III Sum of Squares, and Pillai’s trace was selected as multivariate measurement. Post-hot comparisons were made via Tukey’s HSD to identify differences between sites.

39

Texas Tech University, Yanni Chen, May 2014

Results

I recorded a total of 2978 seedlings from the soil seed bank samples. They belonged to approximately 40 species, though I was only able to confidently identify 25 species; the rest were identified as different, but consistent, species based on seedling morphology (Table 3.2). Among the 25 identified species, there are ten species from the highly predicable smoke response orders I identified in chapter 2 (Asterales and Lamiales,

Table 3.2). Only two seedlings of woody species were observed (from Matador and

Beach Ranch soils respectively) and recorded; grasses accounted for 25% of the species recorded, while forbs accounted for 75%. Across all the study sites, the average density was 2619 m2 (but ranged from 815 to 5299 m2).

Site had an important effect on seed bank species richness, density of grass and forb seedlings, and on total seedling density. The Matador site had higher seed bank species richness than four other sites (Caprock, Gipson, Muleshoe, Tahoka), while the

Beach and TTU sites were not different from either group (p = 0.05, Figure 3.2). In comparison, Matador and Gipson had higher grass density than Caprock, Tahoka, TTU and Muleshoe, while Muleshoe had lower grass density than Beach, Caprock, Gipson

Farm and Matador (p = 0.05, Figure 3.3). The density of forb seedlings were high at

Beach, Matador and TTU, and low at Caprock, Gipson Farm, Muleshoe and Tahoka (p =

0.05, Figure 3.4). The highest seedling density was observed from Matador but which has no significant difference from Beach Ranch and TTU, but it significantly higher than

Caprock,Gipson farm, Muleshoe, and Tahoka (p = 0.05 Figure 3.5).

40 Texas Tech University, Yanni Chen, May 2014

Discussion

This study revealed that in the shortgrass prairies of the southern High Plains, density and composition of the soil seedbank depends on location, and based on these results, smoke treatment might be a viable option for stimulating seedbank germination of forb species. The average seedling density was 2619 seedlings per m2 while the lowest seedling density, in soils from the Muleshoe Wildlife Refuge, was 815 seedlings/ m2, and the highest seedling density was 5299 seedlings/ m2 in soils from the Matador Wildlife

Management area. Seedling densities that I observed were similar to densities reported for the central Texas savanna and other savanna ecosystems (D’Souza and Barnes 2008), though the species richness in this study was lower than most savanna ecosystems, but close to those reported for the Edwards Plateau (D’Souza and Barnes 2008).

I also found that some locations had consistently low or high densities of seeds, across several groups (Figure 3.6). For example, soils from the Matador site had the highest density of forb, grass, and total seedlings, while the Muleshoe site had the lowest.

This may indicate that some type of site- specific factor influences the soil seed bank development (Fenner and Thompson 2005). Based on my study, this factor or factors should have the following characteristics: first, the factor should influence the seed bank evenly and not differentially based on species or growth form; second, considering the natural process of change in soil seed bank composition, the factor should be consistent though time. Two potential factors meet these qualifications: 1) natural variation, such as altitudinal gradients (Cummins and Miller 2002), microcosms (Akinola et al. 1998) and rodents (Cabin et al. 2000), can regulate seed bank development trend, and 2) artificial

41 Texas Tech University, Yanni Chen, May 2014 management, , such as grazing (Gonzalez et al. 2010) and fire management (Romo and

Gross 2011).

Though the common above-ground species across all my study sites were blue grama and honey mesquite, I found no blue grama seedlings in any soil seed bank samples, and only two woody species germinated from the soil seed banks across study sites. This may be explained by a basic ecological theory: trade-offs (Crawley 1997). In this view, annual and biennual species prefer to produce large number of seeds to avoid extinction, while perennial species prefer to allocate energy to have longer life span

(Fenner and Thomas 2005). Of the twenty-five species I identified in the soil seed bank samples, only three were classified as perennial; fourteen were annual species and the remaining were annual/ biennial or annual/ biennial/ perennial. Likewise, soil seed bank studies in Central Texas Savanna found few woody species and perennial herbs in seed banks (D’Souza and Barnes 2008). Alternatively, the lack of blue grama and other species could be due to these species simply not responding well to the greenhouse germination methods; however, this method has been successful in the past (Iverson and

Wali 1982, Coffin and Lauenroth 1989).

From a shortgrass prairie restoration aspect, the major concern is often the control of mesquite and a desire to increase ground cover and species richness. Soil seed banks in my study contained almost no honey mesquite seeds. In other words, it seems possible to use soil seed banks as future restoration seed sources for the shortgrass prairie without the added complication of how to prevent mesquite germination. Conversely, the soil seed banks appear to contain mostly forbs with some grass species, which can enhance species 42 Texas Tech University, Yanni Chen, May 2014 richness and the density of seedlings at restoration locations. Even more interestingly, the soil seed banks in this study contained some species that belong to highly predicable smoke responsive orders (chapter 2, this thesis), which suggests that smoke application might enhance seed bank germination, species richness and ground cover in restoration practice. There are some concerns as using soil seed banks in restoration as well, such as invasive species (Cox and Allen 2008) and early successional species (D’Souza and

Barnes 2008). Therefore, before restoration, the planner needs 1) to clarify the restoration target, such as, to limit honey mesquite, to enhance the ground cover, to enrich the species richness on the site, or to restore certain species; 2) to test local soil seed bank, and 3) to compare the soil seed bank composition with restoration target to determine whether the soil seed bank can fulfill restoration purpose.

43 Texas Tech University, Yanni Chen, May 2014

Literature Cited

Akinola, M. O., Thompson, K., & Hillier, S. H. (1998). Development of soil seed banks beneath synthesized meadow communities after seven years of climate manipulations. Seed Science Research, 8(4), 493-500.

Albrecht, H., Eder, E., Langbehn, T., & Tschiersch, C. (2011). The soil seed bank and its relationship to the established vegetation in urban wastelands. Landscape and Urban Planning.

Bakker, J. P., & Berendse, F. (1999). Constraints in the restoration of ecological diversity in grassland and heathland communities. Trends in Ecology & Evolution, 14(2), 63-68.

Baskin, C. C., & Baskin, J. M. (1998). Seeds: ecology, biogeography, and evolution of dormancy and germination: Academic press, San Diego.

Bekker, R., Bakker, J., Grandin, U., Kalamees, R., Milberg, P., Poschlod, P., et al. (1998). Seed size, shape and vertical distribution in the soil: indicators of seed longevity. Functional Ecology, 12(5), 834-842.

Bekker, R. M., Verweij, G. L., Smith, R. E. N., Reine, R., Bakker, J. P., & Schneider, S. (1997). Soil seed banks in European grasslands: does land use affect regeneration perspectives? Journal of Applied Ecology, 34(5), 1293-1310.

Bossuyt, B., Cosyns, E., & Hoffmann, M. (2007). The role of soil seed banks in the restoration of dry acidic dune grassland after burning of Ulex europaeus scrub. Applied Vegetation Science, 10(1), 131-138.

Bossuyt, B., & Hermy, M. (2001). Influence of land use history on seed banks in European temperate forest ecosystems: a review. Ecography, 24(2), 225-238.

Bossuyt, B., & Honnay, O. (2008). Can the seed bank be used for ecological restoration? An overview of seed bank characteristics in European communities. Journal of Vegetation Science, 19(6), 875-884.

Brenchley, W. E. (1918). Buried weed seeds. The Journal of Agricultural Science, 9(01), 1-31.

Cabin, R. J., Marshall, D. L., & Mitchell, R. J. (2000). The demographic role of soil seed banks. II. Investigations of the fate of experimental seeds of the desert mustard Lesquerella fendleri. Journal of Ecology, 88(2), 293-302.

44 Texas Tech University, Yanni Chen, May 2014

Chaideftou, E., Thanos, C. A., Bergmeier, E., Kallimanis, A. S., & Dimopoulos, P. (2011). The herb layer restoration potential of the soil seed bank in an overgrazed oak forest. Journal of Biological Research-Thessaloniki, 15, 47-57.

Chang, E., Jefferies, R., & Carleton, T. (2001). Relationship between vegetation and soil seed banks in an arctic coastal marsh. Journal of Ecology, 89(3), 367-384.

Coffin, D. P., & Lauenroth, W. K. (1989). Spatial and temporal variation in the seed bank of a semiarid grassland. American Journal of Botany, 76(1), 53-58.

Cohen, D. (1966). Optimizing reproduction in a randomly varying environment. Journal of Theoretical Biology, 12(1), 119-129.

Connell, J. H. (1978). Diversity in tropical rain forests and coral reefs. Science, 199(4335), 1302-1310.

Cox, R. D., & Allen, E. B. (2008). Composition of soil seed banks in southern California coastal sage scrub and adjacent exotic grassland. Plant Ecology, 198(1), 37-46.

Cummins, R. P., & Miller, G. R. (2002). Altitudinal gradients in seed dynamics of Calluna vulgaris in eastern Scotland. Journal of Vegetation Science, 13(6), 859- 866.

D'Souza, L. E., & Barnes, P. W. (2008). Woody plant effects on soil seed banks effects on soil seed banks in a central Texas savanna. Southwestern Naturalist, 53(4).

Dutoit, T., & Alard, D. (1995). Permanent seed banks in chalk grassland under various management regimes--their role in the restoration of species-rich plant- communities. Biodiversity and Conservation, 4(9), 939-950.

Fenner, M., & Thompson, K. (2005). The ecology of seeds: Cambridge Univisity Press, Cambridge.

Ford, P. L., & McPherson, G. R. (1996). Ecology of fire in shortgrass prairie of the southern Great Plains. United States Department of Agriculture Forest Service General Technical Report RM, 20-39.

Gonzalez, V. T., Brathen, K. A., Ravolainen, V. T., Iversen, M., & Hagen, S. B. (2010). Large-scale grazing history effects on Arctic-alpine germinable seed banks. Plant Ecology, 207(2),321-331.

Goslee, S., Sanderson, M., & Gonet, J. (2009). No Persistent Changes in Pasture Vegetation or Seed Bank Composition after Fallowing. Agronomy Journal, 101(5).

45 Texas Tech University, Yanni Chen, May 2014

Iverson, L. R., & Wali, M. K. (1982). Buried, viable seeds and their relation to revegetation after surface mining. Journal of Range Management, 648-652.

Jacquemyn, H., Mechelen, C. V., Brys, R., & Honnay, O. (2011). Management effects on the vegetation and soil seed bank of calcareous grasslands: An 11-year experiment. Biological Conservation, 144(1), 416-422.

Major, J., & Pyott, W. T. (1966). Buried, viable seeds in two California bunchgrass sites and their bearing on the definition of a flora. Vegetatio Acta Geobotanica, 13(5), 253-282.

Matus, G., Papp, M., & Tothmeresz, B. (2005). Impact of management on vegetation dynamics and seed bank formation of inland dune grassland in Hungary. Flora, 200(3), 296-306.

Miao, S., & Zou, C. B. (2009). Seasonal variation in seed bank composition and its interaction with nutrient enrichment in the Everglades wetlands. Aquatic Botany, 90(2), 157-164.

Mitlacher, K., Poschlod, P., Rosén, E., & Bakker, J. (2002). Restoration of wooded meadows‐a comparative analysis along a chronosequence on Öland (Sweden). Applied Vegetation Science, 5(1), 63-73.

Muller, S., Dutoit, T., Alard, D., & Grevilliot, F. (1998). Restoration and rehabilitation of species-rich grassland ecosystems in : a review. Restoration Ecology, 6(1), 94-101.

Orr, D. M. (1999). Effects of residual dormancy on the germinable soil seed banks of tropical pastures. Tropical Grasslands, 33(1), 18-21.

Romo, J. T., & Gross, D. V. (2011). Preburn history and seasonal burning effects on the soil seed bank in the fescue prairie. American Midland Naturalist, 165(1), 74-90.

Simpson, R., Leck, M. A., & Parker, V. (1989). Seed banks: general concepts and methodological issues. Ecology of soil seed banks, 3-8.

Thompson, K., & Fenner, M. (1992). The functional ecology of seed banks. Seeds: the ecology of regeneration in plant communities, 2, 215-235..

Wester, D. B. (2007). The Southern High Plains: A history of vegetation, 1540 to present. In: Sosebee, R.E., Wester, D.B., Britton, C.M., McArthur, E.D., Kitchen, S.G., comp. Proceedings: Shrubland dynamics—fire and water; 2004 August 10-12; Lubbock, TX. Proceedings RMRS-P-47.

Wright, H. A. (1982). Fire ecology: United States and southern . John Wiley & Sons, New York. 46 Texas Tech University, Yanni Chen, May 2014

Xiao, C., & Liu, G. (2013). The relationship of seed banks to historical dynamics and reestablishment of standing vegetation in an aquaculture lake. Aquatic Botany, 108, 48-54.

47 Texas Tech University, Yanni Chen, May 2014

Table 3.1 Latitude, longitude and soil type information for seven study sties

Site Latitude Longitude Soil Type Caprock 34.43971 -101.094 Quinlan and Burson soil, hilly Matadoor 34.10390 -100.348 Devol loamy fine san, hummocky Gipson 33.99278 -101.898 Mansker loam, 3 to 5 percent slopes Farm Muleshoe 33.96656 -102.762 Kimbrough soil TTU 33.59995 -101.898 Amarillo-Urban land complex, 0-2 percent slops Tahoka 33.25907 -101.752 Berda loam, 5 to 8 percent slops; Potter soils, 3 to 20 percent slops Beach 33.20882 -101.155 Miles-Springer Loamy fine sands, 3 to 5 percent Ranch slopes

48 Texas Tech University, Yanni Chen, May 2014

Table 3.2 Identical germination species from soil seed bank samples in seven study sites. The bold orders (Asterales, Limiales and Ericales) are high predicable orders for smoke response.

Growth Order Family Scientific Name Form Life Span Apiales Ammoselinum popei forb annual Asterales Asteraceae Ambrosia psilostachya forb annual/perennial Asterales Asteraceae ramosissimus forb annual Asterales Asteraceae Aphanostephus skirrhobasis forb annual Asterales Asteraceae Evax verna forb annual Asterales Asteraceae Ratibida columnifera forb perennial Asterales Asteraceae Ratibida tagetes forb perennial Asterales Asteraceae Xanthisma texana forb annual/perennial Brassicales Brassicaceae Descurainia pinnata forb annual/biennial/perennial Brassicales Brassicaceae Lepidium virginicum forb annual/biennial/perennial Brassicales Brassicaceae Lesquerella gordonii forb annual/biennial/perennial Caryophyllales Amaranthus powellii forb annual Caryophyllales Chenopodiaceae Salsola kali forb annual Ericales Polemoniaceae Ipomopsis laxiflora forb annual/biennial Fabales Prosopis glandulosa shrub/ perennial Limiales Plantago patagonica forb annual 49 Texas Tech University, Yanni Chen, May 2014

Limiales Plantaginaceae Plantago rhodosperma forb annual Limiales Verbenaceae Glandularia pumila forb annual Myrtales Onagraceae Oenothera grandis forb annual Poales Bouteloua curtipendula grass perennial Poales Poaceae catharticus grass annual/perennial Poales Poaceae Hordeum murinum grass annual Poales Poaceae Setaria vulpiseta grass perennial Poales Poaceae Vulpia octoflora grass annual

50 Texas Tech University, Yanni Chen, May 2014

Figure 3.1 Seven study sites of soil seed banks composition test with precipitation zones.

51 Texas Tech University, Yanni Chen, May 2014

Figure 3.2 The number of species (species richness) recorded in soil seed bank samples from each seed bank study site on the Southern High Plains, Texas. Error bars represent standard error and different letters indicate significant differences between each location (p = 0.05).

Figure 3.3 The number of grass seedlings recorded in soil seed bank samples from each seed bank study site on the Southern High Plains, Texas. Error bars represent standard error and different letters indicate significant differences between each location (p = 0.05). 52 Texas Tech University, Yanni Chen, May 2014

Figure 3.4 The number of forb seedlings recorded in soil seed bank samples from each seed bank study site on the Southern High Plains, Texas. Error bars represent standard error and different letters indicate significant differences between each location (p = 0.05).

Figure 3.5 The number of total seedlings recorded in soil seed bank samples from each seed bank study site on the Southern High Plains, Texas. Error bars represent standard error and different letters indicate significant differences between each location (p = 0.05).

53 Texas Tech University, Yanni Chen, May 2014

200

180

160

140

120 Species Richiness

100 Grass density Forb density 80 Seedling density 60

40

20

0 Beach Caprock Gipson Matador Muleshoe Tahoka TTU

Figure 3.6 General patterns of species richness, the density of grass, forb and total seedlings recorded in soil seed bank samples from each study site on the Southern High Plains, Texas.

54 Texas Tech University, Yanni Chen, May 2014

Chapter IV

Test of In-Situ Smoke Application as a Restoration Treatment in the Southern High Plains, Texas

Introduction

The germination response of seeds to smoke exposure is widespread. Plant species of different growth forms and from diverse ecosystems have been shown to respond to smoke exposure by increasing germination. Examples include species such as grasses and forbs in fynbos of Africa (see Brown et al. 2003 as a review), shrubs and trees in subtropical pine-oak forests in Mexico (Zuloaga-Aguilar et al. 2011), and subalpine herbaceous perennials in America (Shebitz et al. 2009). Likewise, cultivated species of vegetables and other crops, as well as medically utilized species have been tested and found to respond. Lettuce and celery seeds germinated better when exposed to smoke (Drewes et al. 1995, Thomas and van Staden 1995), and commercial maize (Sparg et al. 2006) and red rice (Doherty and Cohn 2000) have also shown positive responses to smoke.

When applying smoke to seeds, several methods are productive. Smoke products can be applied either ex-situ or in-situ. Ex-situ application involves applying a smoke product directly to seeds or samples of the soil seed bank in a greenhouse or laboratory setting, while in-situ application involves applying a smoke product directly to intact or disturbed soils in the field. Ex-situ applications are perhaps more common. For example,

Dixon et al. (1995) demonstrated positive smoke effects in 45 of 94 native Australian

55 Texas Tech University, Yanni Chen, May 2014 species when tested ex-situ. Keeley and Fotheringham (1998) also identified 25 species from California chaparral that responded positively to ex-situ smoke application; three of four species from seasonal dry tropical forests responded to ex-situ smoke application as measured via a germination vigour index (Singh and Raizada 2010), and two species,

Gutierrezia sarothrae and Astragalus crassicarpus, showed promotion of seed germination ability in the shortgrass prairie region of Texas (Chou et al. 2012).

Ex-situ smoke effects on soil seed banks have been especially well studied in

Australia. Enright et al. (1997) tested smoke effects on seed germination from soil seed banks in Eucalyptus woodland in western Victoria. Smoke–treated soil samples had higher species richness and density of seedlings, though only the density of seedlings was significantly different from a control. Roche et al. (1997) tested cool smoke application in a Calyptus marginata (jarrah) forest on forest soil and rehabilitated bauxite mine soils.

Forest sites showed a 48-fold increase in total germinants while the newly returned bauxite mine soils showed a near thre3-fold increase. Likewise, Read et al. (2000) and

Enright and Kintrup (2001) showed similar promotion effects in soil seed banks studies.

Tests of smoke application under in-situ conditions are much less-well tested. In

Banksia woodland of Australia, pre-mined sites showed a 42-fold increase in total germinants and a 3-fold increase in germinanting species richness; post-mined sites had a

3.6 fold increase in total germinants and a 1.4 fold increase in germinating species richness (Rokich et al 2002). Similarly, smoke treatments displayed enhancing effects on both undisturbed and disturbed jarrah () forest soil (Roche 1997) and Eucalyptus baxteri heath-woodland soils (Enright and Kintrup 2001).

56 Texas Tech University, Yanni Chen, May 2014

When sowing seeds as restoration treatments, exposing seeds to smoke as an ex- situ pretreatment is likely more effective for maximum establishment, since soil seed banks might contain undesirable species that could also respond to smoke treatments. For example, smoke and heat were applied to a forest plant community topsoil in New South

Wales Australia, species richness and density were increased, but germination of invasive species was also stimulated (Read et al. 2000). It is known that agricultural weeds can be promoted by smoke related products, including the active chemical karrikinolide (Daws et al. 2007, Stevens et al. 2007).

Although smoke responses are widespread, they are not universal. Page (2009) found no significant differences between control and smoke treatments in either seedling emergence or species richness in four different Australian ecosystems: open mixed eucalypt forest, open eucalypt woodland, shrubby open woodland, and tall open mulgo shrubland. Similar results were also reported from a highly disturbed former mine site in southeastern Victoria, Australia (Coates 2003).

Ex-situ and in-situ effects can also differ: the soil seed bank from a fire-frequent ponderosa pine forest in northern Arizona responded differently to smoke application depending on whether the smoke was applied ex-situ or in- (Abella 2009). In this case, smoke application increased density and species richness in soil seed bank samples in a greenhouse experiment, but didn’t cause detectable differences in plant species cover, richness, or composition relative to control when applied in-situ (Abella 2009).

In comparison to the large number of fruitful studies on smoke effects in both ex- situ and in-situ conditions in Australia, there are few studies testing the effect of smoke 57 Texas Tech University, Yanni Chen, May 2014 on seed germination in the United States. Some ex-situ smoke effects studies have been done in fire-prone areas such as California chaparral (Keeley and Fotheringham 1998), tallgrass prairie (Jefferson et al. 2008), shortgrass prairie (Chou et al. 2012, Schwilk and

Zavala 2012), upland Florida ecosystems (Lindon and Menges, 2008), and ponderosa pine ecosystems (Abella 2009). Each of these studies identified some species response to smoke. However, the few studies that have compared ex-situ and in-situ studies concluded that smoke effects on seed germination may be influenced by many other factors when applied in-situ (Abella 2009). Results such as these suggest the need for further study on smoke-stimulation in field conditions.

Shortgrass prairie is a fire-prone ecosystem and previous ex-situ studies have shown that it contains several smoke-responsive species. (Chou et al. 2012, Schwilk and

Zavala 2012). In this study, I selected 4 common native species which have previously been shown to respond to smoke, and examined their in-situ response to smoke water applications. A better understanding of species responses to fire-related cues in the shortgrass prairie will greatly benefit rangeland management.

Methods

The study was established at five sites in two different precipitation zones

(PRISM Climate Group, 2012; Figure 4.1 and Table 4.1) and on shortgrass prairie remnants in the Southern High Plains. From the north to the south, the study sites are

Caprock Canyons State Park & Trailway, Matador Wildlife Management Area, Gipson

Farm, Muleshoe Wildlife Refuge, and Tahoka Lake Pasture. The average temperature 58 Texas Tech University, Yanni Chen, May 2014 ranges from 4 °C in January to 26 °C in July. Most precipitation falls as rain during May,

June, August and September (Wester 2007). Caprock Canyons State Park & Trailway and

Matador Wildlife Management Area were managed by Texas Parks & Wildlife;

Muleshoe Wildlife Refuge was managed by U.S. Fish & Wildlife Service; and the

Gipson Farm and Tahoka Lake Pasture were privately owned and managed. The physical soil properties include sandy, clay, and sand clay. The common species are blue grama

(Bouteloua gracilis), buffalograss (Buchloe dactyloides), sand dropseed (Sporobolus cryptandrus), sideoats grama (Bouteloua curtipendula), tobosa (Hilaria mutica), vine- mesquite (Panicum obtusum), broomweed (Xanthocephalum dracunculoides), silver-leaf night shade (Solanum elaeagnifolium), globemallow (Sphaeralcea spp.), perennial broomweed (Gutierrezia sarothrae), yucca (Yucca spp.), honey mesquite (Prosopis glandulosa) and cactus (Opunita spp.). Some other common species appear at one site or the other, such as western ragweed (Ambrosia psilostachya) and sand sagebrush

(Artemisia filifolia) (Wright and Bailey 1982).

Study Design

The experiment employed applications of smoke water and seeds treatment to in- situ seed banks in order to evaluate the feasibility of this method as a restoration treatment in shortgrass prairie. This experiment was conducted during the summer of

2012 on 13 subplots (1x1 m) within each of three plots in each study site, at least 1m away from each other. The experimental design (Table 4.2) was a randomized block design with three seed treatments (no seed, seeds pretreated with smoke water before sowing, and seeds treated with smoke water after sowing) and three smoke water 59 Texas Tech University, Yanni Chen, May 2014 concentrations plus double controls of water but no smoke water and no smoke water nor water (1:10, 1:100, 1:1000, 0:1, 0:0 ). In each case except the double control, the same total volume of liquid (1 liter m-2) was applied, regardless of smoke water concentration.

Smoke water dilutions were produced by mixing “Regen 2000” (Grayson Australia) commercial product and distilled water by volume. Pretreated seeds were soaked 12 hours in the water/smoke water mixture and then air dried for 24 h before use. Seeds sown were selected based on their previously studied response to smoke and were mixed prior to sowing.

The number of the seedlings of each species was recorded. Two methods were used to record the seedlings, depending on the availability of time and resources. Method

1, the 100 cm * 100 cm plots were divided into 10 strips (10 cm * 100 cm) and seedlings from a randomly selected 5 strips were recorded. Method 2, the 100 cm * 100 cm plot was divided into 100 sub-squares (10 cm * 10 cm), and seedlings from 20 randomly- selected sub-squares were recorded. In method 1,seedling counts represented a density of

5000 cm2, which was used in all study sites except Caprock. In method 2, seedling counts were the density within 2000 cm2, and was used at Caprock. The density information was transformed to numbers per square meter in order to facilitate comparison.

Data analysis

Before analysis, species were grouped into forb, grass and woody species. All numerical data were square root transformed, and analyzed in SPSS (SPSS version 21) by using Multivariate Analysis in General Linear Model. The dependent variables were: species richness; the density of forb, grass, woody species, and total seedlings (number 60 Texas Tech University, Yanni Chen, May 2014 per square meter). The independent variables were site, seed treatment, and smoke application. The full interaction model was selected with a Type III Sum of Squares, and

Pillai’s trace was selected as a multivariate measurement. Post-hoc comparisons were accomplished via Tukey’s HSD to identify differences between sites, seed treatments and smoke applications.

Results

A total of 4773 seedlings were recorded. The seedlings were from at least 32 species (Table 4.3). There are 11 species from the order Asterales, which is highly predictable for smoke response (chapter 2, this thesis). Because the seedlings were so young, many species were not confidently identified to species, but were grouped into categories of forb, grass or woody species. Overall, 80% of the seedlings were forb species.

Site as an independent variable played an important role in species richness, the density of forbs, grasses, and woody species, and total seedlings (p < 0.05, Table 4.4).

The independent variables of seed treatment and smoke application had no significant impacts on the dependent variables based on multivariate analysis (p > 0.05, Table 4.4).

Smoke application, seed treatments, site* smoke treatments, site*seed treatments, smoke treatment * seed treatment and site*smoke treatment*seed treatment also did not significantly influence dependent variables (p > 0.05, Table 4.4).

61 Texas Tech University, Yanni Chen, May 2014

However, site did have a significant influence on all dependent variables (species richness, the density of forb, grass, woody species, and total seedlings, p < 0.05). The highest species richness appeared at Gipson Farm, and the lowest species richness were

Matador and Muleshoe. Caprock and Tahoka had medium level of species richness (p =

0.05, Figure 4.2). Caprock had the highest fob density, followed by Gipson Farm, and the

Matador, Muleshoe and Tahoka had the lowest forb seedling density (p = 0.05, Figure

4.3). Tahoka ranked on top on grass seedling density, Muleshoe ranked lowest, and there were no significant different for grass seedling density among Caprock, Gipson and

Matador (p = 0.05, Figure 4.4). The woody species seedling were similar across sites except Tahoka had higher woody seedling density then other sites (p = 0.05, Figure 4.5).

In comparison of total seedling density, Caprock was far higher than all other sites, followed by Gipson Farm, and then Tahoka, the lowest total seedling density appeared in

Matador and Muleshoe (p = 0.05, Figure 4.6). Smoke treatment significantly influenced the density of total number of seedlings per square meter, but not the density of forb , in comparison to control (p < 0.05) (Figure 4.7 and Figure 4.8). The interaction of site and smoke treatment also influenced the density of forbs and seedlings (p < 0.05).

Discussion

I found that despite the fact that the dominant species were similar at all the study sites (i.e. blue grama and honey mesquite) the density and composition of the germinating seedlings were very different. Helm and Box (1970) found a similar effect and decided that the germinating seedlings were varied and associated with variations in 62 Texas Tech University, Yanni Chen, May 2014 soil type (Helm and Box 1970). In terms of the species richness, I found that the Gipson farm site was significantly higher than any other study site, and that the Matador and

Muleshoe sites had lower species richness than the other three other sites. However, species density by category was different: Caprock had the highest forb and overall seedling density and Tahoka had the highest grass and woody species density.

I also found that seed treatment did not influence the species richness and the density of the resulting seedlings (data not shown). However, this effect may be due to the severe weather conditions around Lubbock. According to the climate summary for

2012, precipitation improved over 2011, but was still not sufficient to bring an end to the ongoing drought conditions; the Lubbock area only received 1.86 inches of precipitation rainfall during June through July (NWS Lubbock, TX, Climate Summary 2012 Year End).

My study also shows that regardless of site variation, smoke application affected the density of overall seedlings in the shortgrass prairie. In comparison to the no-smoke control and the low/medium smoke water treatments, the high concentration of smoke water worked to promote the density of overall seedlings. By contrast, smoke water tests in Ponderosa pine forest were unable to detect smoke effects on plant species cover, richness, or composition 15 after treatment, even though smoke water has been shown to affect Ponderosa pine and Ponderosa pine soil seed banks in the greenhouse

(Ablla 2009).

Studies in jarrah forest (Roche 1997) and Eucalyptus baxteri heathy-woodland

(Enright and Kintrup 2001) showed that smoke application improved the total number of

63 Texas Tech University, Yanni Chen, May 2014 germinants. Smoke application has been fruitful in Australia and smoke as a broadcast seed treatment has become routine in restoration practice for bauxite mined areas (Roche et al. 1997). Rokich et al. (2002) tested aerial smoke in the Banksia woodland community at pre-mined and post-mined sites respectively; both of them experienced increased total germinants and the number of germination species. Smoke was also ranked on the top of all pre-broadcasting seed treatments by Rockie and Dixon (see Rockie and Dixon 2007 as a review). Though the improvement of overall germinant of post-mined restoration with smoke application was proved and support post-mined restoration in Australia, the improvement of overall germinant with smoke may not be useful in other restoration projects.

Many times the goal of restoration is specific target species (native or endangered) other than weeds, which may also be promoted by smoke (Daws et al. 2007, Stevens et al.

2007). In the shortgrass prairie, this is the first study to show that smoke has the potential to work as an in-situ restoration treatment. Previously, Chou et al. (2012) reported two species from shortgrass prairie (Gutierrezia sarothrae and Astragalus crassiarpus) to be promoted by 1:5 and 1:00-level concentrate smoke water respectively. They also reported that Coreopsis tinctoria and Digitaria ciliaris were inhibited by 1:5 concentrations of smoke water (Chou et al. 2011). In the same year, Schwilk and Zavala (2012) reported that Coreopsis basalis, Coreopsis lanceolata, Echinacea purpurea and Monarda citriodora were inhibited by smoke when combined with wet cold stratification, and smoke enhanced the germination of Bouteloua gracilis, Penstemon cobea, Salvia coccinea and Salvia farinacea when combined with dry cold stratification. They also

64 Texas Tech University, Yanni Chen, May 2014 found that smoke enhanced the germination of Bouteloua gracilis, Salvia coccinea and

Salvia farinacea without any stratification. In my study only one Gutierrezia sarothrae was detected in a 1:1000-level smoke water concentration plot at Tahoka, two Digitaria ciliaris were recorded at 1:10-level smoke concentration plot at Matador, and Bouteloua gracilis, as a common species for all the study sites, had seedlings appear in control (no smoke water), low (1:1000-level smoke water), medium (1:00-level smoke water) and high (1:10-level smoke water) sites. However, with such a limited number of seedlings, it’s hard to draw concrete conclusions.

Overall, under low precipitation and varied plant communities in the shortgrass prairie, the smoke water in-situ effects on seed germination were still detectable. It improved species richness, the density of forb, grass, woody species, and overall seedlings. This study is the first in-situ study of smoke water applied in the shortgrass prairie. It offers one more potential tool for restoration practice in the shortgrass prairie.

However, before actual smoke water is applied as a restoration practice more studies are needed, especially a larger scale study that will quantify which species have been promoted in the field.

65 Texas Tech University, Yanni Chen, May 2014

Literature Cited

Abella, S. R. (2009). Smoke-cued emergence in plant species of Ponderosa Pine forests: Contrasting greenhouse and field results. Fire Ecology, 5(1), 22-37.

Brown, N. A. C., van Staden, J., Daws, M. I., & Johnson, T. (2003). Patterns in the seed germination response to smoke in plants from the Cape Floristic Region, South Africa. South African Journal of Botany, 69(4), 514-525.

Chou, Y.-F., Cox, R. D., & Wester, D. B. (2012). Smoke water and heat shock influence germination of Shortgrass Prairie species. Rangeland Ecology & Management, 65(3), 260-267.

Coates, T. D. (2003). The effect of concentrated smoke products on the restoration of highly disturbed mineral sands in southeast Victoria. Ecological Management & Restoration, 4(2), 133-139.

Daws, M. I., Davies, J., Pritchard, H. W., Brown, N. A. C., & Van Staden, J. (2007). Butenolide from plant-derived smoke enhances germination and seedling growth of arable weed species. Plant Growth Regulation, 51(1).

Dixon, K. W., Roche, S., & Pate, J. S. (1995). The promotion effect of smoke effect of smoke derived from burnt native vegetation on seed-germination of western- Australian plants. Oecologia, 101(2), 185-192.

Doherty, L. C., & Cohn, M. A. (2000). Seed dormancy in red rice (Oryza sativa). XI. Commercial liquid smoke elicits germination. Seed Science Research, 10(4), 415- 421.

Drewes, F. E., Smith, M. T., & Vanstaden, J. (1995). The effect of a plant-derived smoke extract on the r germination of light-sensitive lettuce seed. Plant Growth Regulation, 16(2), 205-209.

Enright, N. J., Goldblum, G., Ata, P., & Ashton, D. H. (1997). The independent effects of heat, smoke and ash on emergence of seedlings from the soil seed bank of a healthy Eucalyptus woodland in Grampians (Gariwerd) National Park, western Victoria. Australian Journal of Ecology, 22(1), 81-88.

Enright, N. J., & Kintrup, A. (2001). Effects of smoke, heat and charred wood on the germination of dormant soil-stored seeds from a Eucalyptus baxteri heathy- woodland in Victoria, SE Australia. [Article]. Austral Ecology, 26(2), 132-141.

Helm, V., & Box, T. W. Vegetation and soils of two southern High Plains range sites. Journal of Range Management Archives, 23(6), 447-450.

66 Texas Tech University, Yanni Chen, May 2014

Jefferson, L. V., Pennacchio, M., Havens, K., Forsberg, B., Sollenberger, D., & Ault, J. (2008). Ex situ germination responses of Midwestern USA prairie species to plant-derived smoke. American Midland Naturalist, 159(1), 251-256.

Keeley, J. E., & Fotheringham, C. J. (1997). Trace gas emissions and smoke-induced seed germination. Science, 276(5316), 1248.

Keeley, J. E., & Fotheringham, C. J. (1998). Smoke-induced seed germination in California chaparral. Ecology, 79(7), 2320-2336,.

Lindon, H. L., & Menges, E. (2008). Scientific Note: Effects of Smoke on Seed Germination of Twenty Species of Fire-Prone Habitats in Florida. Castanea, 73(2), 106-110.

Page, M. J. (2009). Using heat and smoke treatments to simulate the effects of fire on soil seed banks in four Australian vegetation communities. Proceedings of the Royal Society of , 115, 1-9.

Read, T. R., Bellairs, S. M., Mulligan, D. R., & Lamb, D. (2000). Smoke and heat effects on soil seed bank germination for the re-establishment of a native forest community in New South Wales. Austral Ecology, 25(1), 48-57.

Roche, S., Koch, J. M., & Dixon, K. W. (1997). Smoke enhanced seed germination for mine rehabilitation in the southwest of Western Australia. Restoration Ecology, 5(3), 191-203.

Rokich, D. P., Dixon, K. W., Sivasithamparam, K., & Meney, K. A. (2002). Smoke, mulch, and seed broadcasting effects on woodland restoration in Western Australia. Restoration Ecology, 10(2), 185-194.

Rokich, D. P., & Dixon, K. W. (2007). Recent advances in restoration ecology, with a focus on the Banksia woodland and the smoke germination tool. Australian Journal of Botany, 55(3), 375-389.

Schwilk, D. W., & Zavala, N. (2012). Germination response of grassland species to plant- derived smoke. Journal of Arid Environments, 79, 111-115.

Shebitz, D. J., Ewing, K., & Gutierrez, J. (2009). Preliminary observations of using smoke-water to increase low-elevation Beargrass Xerophyllum tenax germination. Native Plants Journal, 10(1), 13-20.

Singh, A., & Raizada, P. (2010). Seed germination of selected dry decidous trees in response to fire and smoke. Journal of Tropical Forest Science, 22(4), 465-468.

67 Texas Tech University, Yanni Chen, May 2014

Sparg, S. G., Kulkarni, M. G., & van Staden, J. (2006). Aerosol smoke and smoke-water stimulation of seedling vigor of a commercial maize cultivar. Crop Science, 46(3), 1336-1340.

Stevens, J. C., Merritt, D. J., Flematti, G. R., Ghisalberti, E. L., & Dixon, K. W. (2007). Seed germination of agricultural weeds is promoted by the butenolide 3-methyl-2 H-furo[2,3- c]pyran-2-one under laboratory and field conditions. Plant & Soil, 298(1/2), 113-124.

Thomas, T. H., & Vanstaden, J. (1995). Dormancy break of celery (Apium graveolens L.) seeds by plant-derived smoke extract. Plant Growth Regulation, 17(3), 195-198.

Wester, D. B. (2007). The Southern High Plains: A history of vegetation, 1540 to present. In: Sosebee, R.E., Wester, D.B., Britton, C.M., McArthur, E.D., Kitchen, S.G., comp. Proceedings: Shrubland dynamics—fire and water; 2004 August 10-12; Lubbock, TX. Proceedings RMRS-P-47.

Zuloaga-Aguilar, S., Briones, O., & Orozco-Segovia, A. (2011). Seed germination of montane forest species in response to ash, smoke and heat shock in Mexico. Acta Oecologica, 37(3), 256-262.

68 Texas Tech University, Yanni Chen, May 2014

Table 4.1 Latitude, longitude and soil type information for five study sties

Site Latitude Longitude Soil Type Caprock 34.43971 -101.094 Quinlan and Burson soil, hilly Matadoor 34.10390 -100.348 Devol loamy fine san, hummocky Gipson Farm 33.99278 -101.898 Mansker loam, 3 to 5 percent slopes Muleshoe 33.96656 -102.762 Kimbrough soil Tahoka 33.25907 -101.752 Berda loam, 5 to 8 percent slops; Potter soils

Table 4.2 Experimental design for in-situ seed and smoke application for restoration

Seed Type Smoke Water Water No seed No smoke water No Water No seed No smoke water Water No seed Low concentration No water No seed Medium concentration No water No seed High concentration No water Pretreated seeds (water) No smoke water Water Pretreated seeds (low concentration) No smoke water Water Pretreated seeds (medium concentration) No smoke water Water Pretreated seeds (High concentration) No smoke water Water Untreated Seeds Low concentration No Water Untreated Seeds Medium concentration No Water Untreated Seeds High concentration No Water Untreated Seeds No smoke water Water

69 Texas Tech University, Yanni Chen, May 2014

Table 4.3 Identified species from five sites, include both counting species and species record for species richness. The bold order Asterales is a high predicable order for smoke response.

Order Family Scientific Name Growth Form Life Span Agavaceae Yucca shrub perennial Asterales Asteraceae Ambrosia psilostachya forb annual/perennial Asterales Asteraceae Amphiachyris dracunculoides forb annual Asterales Asteraceae Artemisia campestris forb Biennial/Perennial Asterales Asteraceae Artemisia filifolia subshrub perennial Asterales Asteraceae Astemisia campestris forb biennial/perennial Asterales Asteraceae Grindelia papposa forb annual Asterales Asteraceae Gutierrezia sarothrae subshrub perennial Asterales Asteraceae Machaeranthera tanacetifolia forb annual/biennual Asterales Asteraceae Ratibida columnifera forb perennial Asterales Asteraceae Thymophylla acerosa forb/subshrub perennial Asterales Asteraceae Zinnia grandiflora forb/subshrub perennial Brassicales Brassicaceae Lepidium virginianum forb annual/biennual Caryophyllales Amaranthaceae Amaranthus powellii forb annual Caryophyllales Chenopodiaceae Chenopodium album forb annual Caryophyllales Chenopodiaceae Echinops exaltatus forb annual Euphorbiaceae Chamaesyce maculata forb annual

70 Texas Tech University, Yanni Chen, May 2014

Table 4.3 Continued

Fabales Fabaceae Dalea formosa subshrub perennial Fabales Fabaceae Prosopis glandulosa shrub/tree perennial Liliales Liliaceae forb perennial Malvales Sphaeralcea coccinea forb perennial Poales Poaceae Aristida oligantha grass annual Poales Poaceae Aristida purpurea grass annual/perennial Poales Poaceae Bouteloua dactyloides grass perennial Poales Poaceae Bouteloua gracilis grass perennial Poales Poaceae Bouteloua hirsuta grass perennial Poales Poaceae Bouteloua curtipendula grass perennial Poales Poaceae Cenchrus spinifex grass annual/perennial Poales Poaceae Chloris cucullata grass perennial Poales Poaceae Digitaria ciliaris grass annual Poales Poaceae Sporobolus cryptandrus grass perennial Solanales Solanum elaeagnifolium forb/subshrub perennial

71 Texas Tech University, Yanni Chen, May 2014

Table 4.4 Multivariable tests for site, smoke treatment, seed treatment. Confidence interval is 95%. The variable in bold means it significantly contributes to the dependent variables compared with other independent variables (p < 0.05).

Multivariate Multivariable measurement Value F P-value Site Pillai's Trace 1.945 18.172 0 Smoke treatment Pillai's Trace 0.197 1.333 0.181 Seed treatment Pillai's Trace 0.187 0.756 0.798 Site * smoke treatment Pillai's Trace 0.602 1.107 0.28 Site * seed treatment Pillai's Trace 0.524 0.568 1 Smoke treatment * seed treatment Pillai's Trace 0.119 0.786 0.693 Site * smoke treatment * seed treatment Pillai's Trace 0.476 0.85 0.78

72 Texas Tech University, Yanni Chen, May 2014

Figure 4.1 Five study site with smoke application with two precipitation zones. 73 Texas Tech University, Yanni Chen, May 2014

Figure 4.2 The number of species (species richness) per square meter at each study location during smoke application tests in the Southern High Plains, Texas. Error bars represent standard errors, and different letters indicate significant difference between each location (p = 0.05).

Figure 4.3 The number of forb seedlings per square meter at each study location during smoke application tests in the Southern High Plains, Texas. Error bars represent standard errors, and different letters indicate significant difference between each location (p = 0.05).

74 Texas Tech University, Yanni Chen, May 2014

Figure 4.4 The number of grass seedlings per square meter at each study location during smoke application tests in the Southern High Plains, Texas. Error bars represent standard errors, and different letters indicate significant difference between each location (p = 0.05).

Figure 4.5 The number of woody seedlings per square meter at each study location during smoke application tests in the Southern High Plains, Texas. Error bars represent standard errors, and different letters indicate significant difference between each location (p = 0.05).

75 Texas Tech University, Yanni Chen, May 2014

Figure 4.6 The number of total seedlings per square meter at each study location during smoke application tests in the Southern High Plains, Texas. Error bars represent standard errors, and different letters indicate significant difference between each location (p = 0.05).

Figure 4.7 The number of forb seedlings per square meter at each smoke application concentration level cross study sites in the Southern High Plains, Texas. Error bars represent standard errors, and different letters indicate significant difference between each location (p = 0.05).

76 Texas Tech University, Yanni Chen, May 2014

Figure 4.8 The number of total seedlings per square meter at each smoke application concentration level cross study sites in the Southern High Plains, Texas. Error bars represent standard errors, and different letters indicate significant difference between each location (p = 0.05).

77 Texas Tech University, Yanni Chen, May 2014

Chapter V

The Potential of Plant-derived Smoke Application on Soil Seed Banks in Shortgrass Prairie Restoration

Introduction

During the past twenty years of research into the promotion of germination by plant- derived smoke, progress has been made in the areas of smoke dynamics and mechanisms.

The findings most applicable to restoration in the shortgrass prairie are the widespread nature of the effect and the successful application of smoke as a restoration treatment in post-mined instances. In Australia, smoke treatment has previously been shown to promote restoration in

Banksia woodland (see Rockie and Dixon 2007 as a review), Eucalyptus forest (Roch 1997) and Eucalyptus heath-woodland soils (Enright and Kintrup 2001), and has become a standard routine for seed pre-treatment in post-mining restoration (Rockie and Dixon 2007). In ponderosa pine (Pinus ponderosa) forest, Abella (2009) conducted a comprehensive study on smoke. He tested native ponderosa species and soil seed bank samples with smoke water in the green house, and he conducted in-situ smoke water test in the ponderosa forest as well.

He successfully detected smoke effects during two ex-situ (seeds and soil seed bank) studies, but was unable to find effects in the field. In comparison, we have only limited understanding of smoke effects in the shortgrass prairie. Inspired by these Australian and Ponderosa studies,

I designed a three-part study to examine the potential for using smoke water as a restoration treatment on the soil seed banks in the shortgrass prairie.

78 Texas Tech University, Yanni Chen, May 2014

Overall, smoke application appears likely to work in-situ in the shortgrass prairie to increase the density of total seedlings (Figure 4.9), and it appears that it may also be possible to exclude woody species. With the relatively small numbers of grass species in the soil seed banks, if the intention of restoration is to increase the biomass of the plant community, the restoration should add grass species.

With the model for predicting smoke response among species, there is some potential for estimating the effect of smoke before treatments. Species from nine orders have higher probability of responding to smoke, and four specific orders can be predicted to frequently respond to smoke application (Figure 2.5 and Figure 2.6).

This knowledge of species response to smoke can be further extended into shortgrass prairie soil seed banks, as in-situ treatment tended to increase the above ground species richness and ground cover. Meanwhile, because soil seed banks in this study had few seeds of woody species, such seed bank treatment has some potential to restore less woody species in the shortgrass prairie. This could be a convenient restoration method that would not greatly increase densities of honey mesquite.

After applying high concentration of smoke water on the soil seed bank in the field, we may expect an increase in the density of forb and total seed germination. There may be some concerns about the detectability of in-situ application (Ablla 2009); however, based on my global-scale germination meta-analysis (Figure 2.1) and shortgrass prairie regional test

(Figure 4.8 and Figure 4.9), in-situ test should not be a major factor affecting smoke effects in the shortgrass prairie.

79 Texas Tech University, Yanni Chen, May 2014

Literature Cited

Abella, S. R. (2009). Smoke-cued emergence in plant species of Ponderosa Pine forests: Contrasting greenhouse and field results. Fire Ecology, 5(1), 22-37.

Enright, N. J., & Kintrup, A. (2001). Effects of smoke, heat and charred wood on the germination of dormant soil-stored seeds from a Eucalyptus baxteri heathy-woodland in Victoria, SE Australia. Austral Ecology, 26(2), 132-141.

Roche, S., Koch, J. M., & Dixon, K. W. (1997). Smoke enhanced seed germination for mine rehabilitation in the southwest of Western Australia. Restoration Ecology, 5(3), 191- 203.

Rokich, D. P., & Dixon, K. W. (2007). Recent advances in restoration ecology, with a focus on the Banksia woodland and the smoke germination tool. Australian Journal of Botany, 55(3), 375-389.

80 Texas Tech University, Yanni Chen, May 2014

Appendix A Qualified Publications Used in Meta-analysis

Authors Published Paper Effect of method of seed treatment with plant derived smoke solutions on germination and Abdollahi et al. 2011 seedling growth of milk thistle (Silybum marianum L.) Effect of plant-derived smoke on germination, seedling vigour and growth of rapeseed (Brassica Abdollahi et al. 2012 napus) under laboratory and greenhouse Abella 2006 Effects of Smoke and Fire-related Cues on Penstemon barbatus Seeds Smoke-cued emergence in plant species of Ponderosa pine forest: contrasting greenhouse and Abella 2009 field results Seed banks of an Arizona Pinus ponderosa landscape: responses to environmental gradients and Abella et al. 2007 fire cues Adkins and Peters 2001 Smoke derived from burnt vegetation stimulations germination of arable weeds Germination in Helichrysum aureonitens (Asteraceae): Effects of temperature, light, gibberellic Afolayan et al. 1997 acid, scarification and smoke extract Overcoming physiological dormancy in Prostanthera eurybioides (Lamiaceae), a nationally Ainsley et al. 2008 endangered Australian shrub species Improved germination of the Australian natives: Hibbertia commutata, Hibbertia amplexicaulis Allan et al. 2004 (Dilleniaceae), Chameascilla corymbosa (Liliaceae) and Leucopogon nutans (Epacridaceae) Fire and invasive species: modifications in the germination potential of melanoxylon, Aran et al. 2013 Conyza canadensis and Eucalypts globulus Studies on Seed germination, seedling growth, and In Vitro shoot Induction of Aloe ferox Mill., a Bairu et al. 2009 commerically important species Baker et al. 2005 Seed dormancy and germination responses of nine Australian fire ephemerals Baxter and van Staden 1994 Plant-derived smoke: an effective seed pre-treatment Plant-derived Smoke and Smoke Extracts Stimulate Seed-germination of the Fire-Climax Grass Baxter et al. 1994 Themeda Triadra Plant-derived smoke and seed germination: is all smoke good smoke? That is the burning Baxter et al. 1995 question 81 Texas Tech University, Yanni Chen, May 2014

Seed biology implications for the maintenance and establishment of Tetratheca juncea Bellairs et al. 2006 (Tremandraceae), a vulnerable Astralian species Bhatia et al. 2005 Successful Seed Germination of the Nickel Hyperaccumulator Stachhousia tyonii Blank and Young 1998 Heated substrate and smoke: Influence on seed emergence and plant growth Determination of the relative activity of aqueous plant-derived smoke solutions used in seed Boucher and Meets 2004 germination Seed-coat dormancy in Grevillea linearifolia: little change in permeability to an apoplastic tracerr Briggs and Morris 2008 after treatment with smoke and heat Brown 1993 Promotion of Germination of Fynbos Seeds by Plan-drived Smoke Fire seeders, during early post-fire succession and their quantitative importanct in south-eastern Buhk and Hensen 2006 Spain Germination response of five eastern Mediterranean woody species to smoke solutions derived Catav et al. 2012 from various plants Provenance effects on pre-germination treatments for Eucalyptus regnans and E-delegatensis Close and Wilson 2002 seed The effect of concentrated smoke products on the restoration of highly disturbed mineral sands in Coates 2003 southeast Victoria Seed germination of Solanum spp. (Solanaceae) for use in rehabillitation and commercial Commander et al. 2008 industries Commander et al. 2009 Seed biology of Australian arid zone species: Germination of 18 species used for rehabilitation Butenolide from plant-derived smoke enhances germination and seedling groweth of arable weed Daws et al. 2007 species Butenolide from plant-derived smoke functions as a strigolactone analogue: Evidence from Daws et al. 2008 parasitic weed seed germination Seed germination of herbaceous and woody species of the Sudanian savana-woodland in Dayamba et al. 2008 response to heat shock and smoke Effects of aqueous smoke solution and heat on seed germination of herbaceous species of the Dayamba et al. 2010 Sudanian savanna-woodland in Burkina Faso Effect of smoke-derived butenolide priming treatment on pepper and salvia seeds in relationn to Demir et al. 2012 transplant quality and catalasee activity

82 Texas Tech University, Yanni Chen, May 2014

The promotive effect of smoke derived from burnt native vegetation on seed germination of West Dixon et al. 1995 Australian plants The promotive effect of smoke derived from burnt native vegetation on seed germination of West Dixon et al. 1995 Australian plants The fire ephemeral Tersonia cyathiflora (Gyrostemonaceae) germinates in response to smoke but Downes et al. 2010 not the butenolide 3-methyl-2H-furo 2,3-c pyran-2-one Comparation of germination responses of flavidus (), Gyrostemon racemiger and Gyrostemon ramulosus (Gyrostemonaceae) to smoke-waterr and the smoke- Downes et al. 2013 derived compounds karrikiolide (KAR1) and glycerontrile Optimizing the application of smoke water to maximize germination of the flannel , Emery and Lacey 2010 helianthi The independent effects of heat, smoke and ash on emergence of seedlings from the soil seed Enright et al. 1997 bank of a heathy Eucalyptus woodland in Grampians (Gariwerd) National Park, western Victoria Effects of smoke, heat and charred wood on the germination of dormant soil-stored seeds from a Enright et al. 2001 Eucalyptus baxteri heathy-woodland in Victoria, SE Australia Ferraz et al. 2013 Smoke-water effect on the germination of Amazonian tree species The effect of heat and smoke on the emergence of exotic and native seedlings in a Mediterranean Figueroa and Cavieres 2012 fire-free matorral of central Chile Do heat and smoke increase emergence of exotic and native plants in the matorral of central Figueroa et al. 2009 Chile? Franzese and Ghermandi Seed longvity and fire: germination response of an exotic perennial herb in NW Patagonian 2011 grasslands () Franzese and Ghermandi Effect of fire on recruitment of two dominant perennial grasses with different palatability from 2012 semi-arid grasslands of NW Patagonia (Argentina) Garzon-Machado et al. 2012 Fire as a threatening factor for endemic plants of the Canary Island Smoke-water and a smoke-isolated Butenolide improve germinatiion and seedling vigour of Ghebrehiwot et al. 2008 Eragrostis tef (Zucc.) Trotter under High Temperature and Low Osmotic Potential Smoke and heat: influence on seedling emergence from the germinable soil seed bank of mesic Ghebrehiwot et al. 2012 grassland in South Africa Identifying germination cues for seven Baslt Plains grassland species prior to their use in a field Gibson-Roy et al. 2010 sowing 83 Texas Tech University, Yanni Chen, May 2014

Heat shock, smoke and darkness, partner cues in promoting seed germination in Epacris Gilmour et al. 2000 tasmanica (Epacridaceae) Does plant-drive smoke affect seed germination in dominant woody species of the Mediterranean Gomez-Gonzalez et al. 2008 Matorral of central Chile Gonzalez and Ghermandi 2012 Fire cue effects on seed germination of six species of northwestern Patagonian grasslands Parental environment changes the dormancy state and karrikinolide response of Brassica Gorecki et al. 2012 tourefortii seeds Propagating the pale-flowered kumarahou (Pomaderris hamiltonii) and kumarahou (Pomaderris Haines et al. 2007 kumeraho) from seeds Jefferson et al. 2008 Ex situ germination response of Midwestern USA Prairie species to plant-derived smoke Effect of cold storage, heat, smoke and charcoal on breaking seed dormancy of Arctostaphylos Jurado et al. 2011 pungens HBK () Habitat specificity, seed germination and experimental translocation of the endangered herb Jusaitis et al. 2004 Brachycome muelleri (Asteraceae) Effect of nutrients and smoke solutions on seed germination and seedling growth of Tropical Kandari et al. 2011 Soda Apple (Solan viarum) Keeley and Forheringham 1998a Smoke induced seed germination in california chaparral Keeley and Fotheringham 1998b Mechanism of smoke-induced seed germination in a post firee chaparral annual Keeley et al. 2005 Seed germination of Sierra postfire chaparral species Combined effects of heat shock, smoke and darkness on germinatioon of Epacris stuartii Stapf., Keith 1997 an endangered fire-prone Australian shrub Kepczynski et al. 2006 Regulation of fatua seed germination by smoke solutions, gibberellin A(3) and ethylene Kepczynski et al. 2010 Releasing primary dormancy in Avena fatua L. caryopses by smoke-derived butenolide Dark conditioning, cold stratification and a smoke-derived compound enhance the germination of Kulkarni et al. 2006 Eucomis autumnalis subsp. Autumnalis seeds Germination and post-germination response of Acacia seeds to smoke-water and butenolide, a Kulkarni et al. 2007a smoke-derived compound

84 Texas Tech University, Yanni Chen, May 2014

Lloyd et al. 2000 Comparative effects of different smoke treatments on germinationn of Australian native plants Seeds of Brassicaceae weeds have an inherent or inducible response to the geermination Long et al. 2011a stimulatnt karrikinolide Long et al. 2011b Detecting Karrikinolide responses in seeds of the Poaceae Malabadi and Kumar 2006 Smoke induced germiantion of some important medical plants Malabadi and Kumar 2008 Effect of smoke on seed vigour response of selected medical plants Prescribed burning of northern heathlands Calluna vulgaris germination cues and seed-bank Maren et al. 2010 dynamics Merritt et al. 2006 Effects of a butenolide present in smoke on light-mediated germiantion of Australian Asteraceae Germination response of four South African medicinal plants to a range of temperature and Mofokeng et al. 2012 treatments Moreira et al. 2010 Disentangling the role of heat and smoke as germination cues in flora Germination response of seven east Australian Grevillea species (Proteaceae) to smoke, heat Morris 2000 exposure and scarification Optimizing seed germination and seedling vigour of Alepidea amatymbica and Alepidea Mulaudzi et al. 2009 natalensis A butenolide, isolated from smoke, can overcome the detrimental effects of extreme temperatures Neeru Jain et al. 2006 during tomato seed germination Reproductive biology, post-fire succession dynamics and population viability analysisi of the Nield et al. 2009 critically endangered Western Australian shrub Calytrix breviseta subsp. Breviseta (Myrtaceae) Norman et al. 2006 Optimising smoke treatments for jarrah (Eucalyptus marginata) forest rehabilitation Perez-Fernadez and Effect of smoke, charred wood, and nitrogenous compounds on seed germiination of ten species Rodriguez 2003 from woodland in central-western Spain Smoke induced germination of succulent (Mesembryanthemaceae) from fire-prone and fire free Pierce et al. 1995 habitats in South Africa Light, nigtrogenous componds, smoke and GA3 break dormancy and enhance germination in the Plummer et al. 2001 Australian everlasting daisy Read and Bellairs 1999 Smoke affects the germination of native grasses of New South Wales Smoke and heat effects on soill seed bank germination for the re-establishment of a native forest Read et al. 2000 community in New South Wales 85 Texas Tech University, Yanni Chen, May 2014

Reyes and Trabaud 2009 Germination behavior of 14 Mediterranean species in relation to fire factors: smoke and heat Roche et al. 1997 Smoke enhanced seed germination for mine rehabilitation in the Southwest of West Australia Rokich et al. 2002 Smoke, mulch, and seed broadcasting effects on woodland restoration in Western Australia Schwilk and Zavala 2012 Germination response of grassland species to plant-derived smoke Preliminary observations of using smoke-water to increase low-elevation Beargrass Xerophyllum Shebitz et al. 2009 tenax germination Singh and Paizada 2010 Seed germination of selected dry deciduous trees in response to fire and smoke Comparative seed germination ecology of compressa and Ehrharta calycina Smith et al. 1999 (Poaceae) in a Western Australian Banksia woodland Sparg et al. 2006 Aerosol smoke and smoke-water stimulation of seedling vigor of commercial maize cultivar Seed germination of argricultural weeds is promoted by the butenolide 3-methyl-2H-furo[2,3- Stevens et al. 2007 c]pyran-2-one under laboratory and field conditions Role of ethylene and short-chain saturated fatty acids in the smoke-stimulated germination of Sutcliffe and Whitehead 1995 Cyclopia seed Heat and smoke effects on the germination of seeds from soil seed banks across forest edge between subtropical rainforest and eucalypt forest at Lamington National Park, south-eastern Tang et al. 2003 Queenslandl, Australia Fire-related cues (heat shock and smoke) and seed germination in a Cistus creticus population in Tavsanoglu 2011 southwestern Turkey The effect of fire-related germiantion cues on the germination of a declining forest understorey Tierney 2006 species Tieu et al. 1999 Germination of four species of native western Australian plants using plant-derived smoke Interaction of soil burial and smoke on germination patterns in seeds of selected Australian native Tieu et al. 2001a plants Spatial and developmental variation in seed dormancy characteristics in the fire-responsive Tieu et al. 2001b species Anigozanthos maglesii (Haemodoraceae) from Western Australia Germination of Juniperus procera seeds in response to stratification and smoke treatments, and Tigabue et al. 2007 detection of insect-damaged seeds with VIS plus NIR spectroscopy Todorovic et al. 2007 Basic seed germination characteristics of the endemic species Nepeta rtanjensis (Lamiaceae)

86 Texas Tech University, Yanni Chen, May 2014

Ecophysiology of seed dormancy in the Australian endemic species preissii Turner et al. 2006 (Dasypogonaceae) Germination behaviour of xerophyllum (Ericaceae), a species with woody indehiscent Turner et al. 2009 endocarps Wada and Reed 2011 Optimzed scarification protacols improve germination of diverse Rubus germplasm Wada and Reed 2011 Standardizing germination protacols for diverse raspberry and blackberry species Germination responses of Croton macrostachyus (Euphorbiaceae) to various physico-chemical Wakjira and Negash 2013 pretreatment conditions Ward et al. 1997 Ecological aspects of soil seed banks in relation to bauxie mine I. unmined jarrah forest Ward et al. 1997 Ecological aspects of soil seed banks in relation to bauxie mine I. unmined jarrah forest Fire related cues break seed dormancy of six legumes of tropical eucalypt savannas in north- Williams et al. 2003 eastern Australia Comparative seed ecology of the endangered shrub, Pimelea spicata and a threatening weed, Willis et al. 2003 Bridal Creeper Smoke, heat and other fire related germination cues Effects of heat and smoke on germination of soil-stored seed in a south-eastern Australian sand Wills and Read 2002 heathland Relative importance of reproductive biology and establishment ecology for persistence of a rare Yates and Ladd 2005 shrub in a fragmented landscape Zhou et al. 2009 Dormancy and germination in Rosa multibracteata Hemsl. & E. H. Wilson Zuloaga et al. 2011 Seed germination of montane forest species in response to ash, smoke and heat shock in Mexico

87 Texas Tech University, Yanni Chen, May 2014

Appendix B Species Information for Binary Logistic Analysis Species information for binary logistic analysis of the relationship between germination test condition (seed source, Ex/In-situ, and smoke application) and smoke response to smoke applications. R (Smoke responses): 1 = positive response, negative response and idiosyncratic; 0 = neutral. Non dormant species (germination percentage >75% under control) were not included in the analysis. SS (seed source): 1 = individual seeds, 0 = soil seed bank. Ex/In (Ex-situ or In-situ): 1 = Ex-situ, 0 = In-situ. SA (smoke application): 2 = smoke active compound, 1 = aqueous smoke solution, 0 = aerial smoke.

Order Family Species SS Ex/In SA R Apiales Apiaceae Actinotus helianthi 1 1 1 1 Apiales Apiaceae Actinotus leucocephalus 1 1 1 1 Apiales Apiaceae Actinotus leucocephalus 1 1 1 1 Apiales Apiaceae Actinotus leucocephalus 1 1 1 1 Apiales Apiaceae Actinotus leucocephalus 1 1 1 1 Apiales Apiaceae Alepidea amatymbica 1 1 1 1 Apiales Apiaceae Alepidea amatymbica 1 1 1 1 Apiales Apiaceae Alepidea natalensis 1 1 1 1 Apiales Apiaceae Alepidea natalensis 1 1 2 1 Apiales Apiaceae Angelica sylvestris 1 1 1 0 Apiales Apiaceae Anthriscus caucalis 0 1 0 1 Apiales Apiaceae Anthriscus caucalis 0 1 0 1 Apiales Apiaceae Antriscus caucalis 0 1 0 0 Apiales Apiaceae Antriscus caucalis 0 1 0 0 Apiales Apiaceae Bowlesia incana 0 1 0 0 Apiales Apiaceae Bowlesia incana 0 1 0 0 Apiales Apiaceae Bowlesia incana 0 1 0 0 Apiales Apiaceae Centella asiatica 0 1 1 0 Apiales Apiaceae Centella asiatica 0 1 1 0

88 Texas Tech University, Yanni Chen, May 2014

Apiales Apiaceae Daucus glochidiatus 0 1 0 0 Apiales Apiaceae Daucus glochidiatus 1 0 0 0 Apiales Apiaceae Heracleum sphondylium 1 1 1 0 Apiales Apiaceae Hydrocotyle callicarpa 0 0 0 1 Apiales Apiaceae Hydrocotyle callicarpa 0 0 1 0 Apiales Apiaceae Hydrocotyle pedicellosa 0 1 0 0 Apiales Apiaceae Mulinum spinosum 1 1 0 0 Apiales Apiaceae Mulinum spinosum 1 1 0 0 Apiales Apiaceae Platysace compressa 0 1 0 0 Apiales Apiaceae Platysace compressa 1 0 0 0 Apiales Apiaceae Platysace compressa 0 0 0 1 Apiales Apiaceae Platysace compressa 0 0 0 1 Apiales Apiaceae Platysace compressa 0 0 1 0 Apiales Apiaceae Platysace ericoides 0 1 1 0 Apiales Apiaceae Platysace tenuissima 0 1 0 0 Apiales Apiaceae Platysace tenuissima 1 0 0 0 Apiales Apiaceae Platysace tenuissima 0 0 1 0 Apiales Apiaceae Trachymene pilosa 1 0 0 0 Apiales Apiaceae Trachymene pilosa 0 0 1 1 Apiales Apiaceae Xanthosia candida 0 1 0 0 Apiales Apiaceae Xanthosia candida 0 0 0 1 Apiales Apiaceae Xanthosia candida 0 0 1 0 Apiales Apiaceae Xanthosia huegelii 0 1 0 0 Apiales Apiaceae Xanthosia huegelii 0 0 0 1 Apiales Apiaceae Xanthosia huegelii 0 0 1 1 Apiales Apiaceae Xanthosia huegelii 1 1 0 0 Apiales Araliaceae Panax notoginseng 1 1 1 0 Apiales Araliaceae Panax notoginseng 1 1 2 0 Apiales Pittosporaceae Billardiera bicolor 1 1 0 1 89 Texas Tech University, Yanni Chen, May 2014

Apiales Pittosporaceae Billardiera coeruleo-punctata 1 0 0 1 Apiales Pittosporaceae Billardiera coeruleo-punctata 1 0 0 0 Apiales Pittosporaceae Billardiera coeruleo-punctata 1 0 1 1 Apiales Pittosporaceae Billardiera coeruleo-punctata 0 0 1 0 Apiales Pittosporaceae Billardiera variifolia 1 0 0 0 Apiales Pittosporaceae Billardiera variifolia 1 1 0 0 Apiales Pittosporaceae Billardiera variifolia 1 0 1 0 Apiales Pittosporaceae Billardiera variifolia 1 1 1 0 Apiales Pittosporaceae Billardiera variifolia 1 0 0 1 Apiales Pittosporaceae Billardiera variifolia 0 0 1 0 Apiales Pittosporaceae Marianthus bicolour 1 0 0 0 Apiales Pittosporaceae Marianthus bicolour 1 1 0 0 Apiales Pittosporaceae Marianthus bicolour 1 0 1 1 Apiales Pittosporaceae Marianthus bicolour 1 1 1 1 Apiales Pittosporaceae Marianthus floribunda 1 0 0 0 Apiales Pittosporaceae Marianthus floribunda 1 1 0 0 Apiales Pittosporaceae Marianthus floribunda 1 0 1 0 Apiales Pittosporaceae Marianthus floribunda 1 1 1 0 Apiales Pittosporaceae Pronaya fraseri 1 0 0 0 Apiales Pittosporaceae Pronaya fraseri 1 1 0 0 Apiales Pittosporaceae Pronaya fraseri 1 0 1 0 Apiales Pittosporaceae Pronaya fraseri 1 1 1 0 Apiales Pittosporaceae Sollya heterophylla 1 0 0 0 Apiales Pittosporaceae Sollya heterophylla 1 1 0 0 Apiales Pittosporaceae Sollya heterophylla 1 0 1 0 Apiales Pittosporaceae Sollya heterophylla 1 1 1 0 Apiales Pittosporaceae Sollya heterophylla 1 0 0 0 Apiales Pittosporaceae Sollya heterophylla 0 0 1 0 Asparagales Anthericaceae Agrostocrinum scabrum 1 0 0 0 90 Texas Tech University, Yanni Chen, May 2014

Asparagales Anthericaceae Agrostocrinum scabrum 1 1 0 0 Asparagales Anthericaceae Agrostocrinum scabrum 1 0 1 0 Asparagales Anthericaceae Agrostocrinum scabrum 1 1 1 0 Asparagales Anthericaceae Agrostocrinum scabrum 0 0 1 1 Asparagales Anthericaceae Agrostocrinum scabrum 1 1 0 0 Asparagales Anthericaceae Caesia parviflora 1 0 0 0 Asparagales Anthericaceae Caesia parviflora 0 0 1 0 Asparagales Anthericaceae Caesia parviflora 0 0 1 0 Asparagales Anthericaceae Chamaescilla corymbosa 1 0 0 0 Asparagales Anthericaceae Chamaescilla corymbosa 1 1 0 0 Asparagales Anthericaceae Chamaescilla corymbosa 1 0 1 0 Asparagales Anthericaceae Chamaescilla corymbosa 1 1 1 0 Asparagales Anthericaceae Chamaescilla corymbosa 1 0 0 1 Asparagales Anthericaceae Chamaescilla corymbosa 1 0 0 0 Asparagales Anthericaceae Chamaescilla corymbosa 0 0 0 1 Asparagales Anthericaceae Chamaescilla corymbosa 1 0 1 1 Asparagales Anthericaceae Chamaescilla corymbosa 0 0 1 0 Asparagales Anthericaceae Chamaescilla corymbosa 1 1 0 1 Asparagales Anthericaceae Johnsonia lupulina 1 1 0 0 Asparagales Anthericaceae Sowerbaea multicaulis 1 1 0 0 Asparagales Anthericaceae Tricoryne humilis 1 0 0 0 Asparagales Anthericaceae Tricoryne humilis 1 0 1 0 Asparagales Anthericaceae Tricoryne humilis 1 1 1 0 Asparagales Armarylidaceae Allium cerrnuum 1 1 1 0 Asparagales Armarylidaceae Allium geyeri 1 1 1 0 Asparagales Acanthocarpus preissii 1 1 1 0 Asparagales Asparagaceae Asparagus asparagoides 1 1 0 1 Asparagales Asparagaceae Asparagus asparagoides 1 1 0 0 Asparagales Asparagaceae Chamaescilla corymbosa 1 1 1 1 91 Texas Tech University, Yanni Chen, May 2014

Asparagales Asparagaceae Laxmannia omnifertilis 0 0 1 0 Asparagales Asparagaceae Laxmannia orientalis 0 1 1 1 Asparagales Asparagaceae Laxmannia orientalis 0 1 0 0 Asparagales Asparagaceae Lomandra longifolia 0 1 1 0 Asparagales Asparagaceae Lomandra preissii 1 0 0 0 Asparagales Asparagaceae Lomandra preissii 1 1 0 0 Asparagales Asparagaceae Lomandra preissii 1 0 1 0 Asparagales Asparagaceae Lomandra preissii 1 1 1 0 Asparagales Asparagaceae Lomandra preissii 1 1 0 0 Asparagales Asparagaceae Lomandra sericea 0 0 1 0 Asparagales Asparagaceae Lomandra sonderi 1 0 0 0 Asparagales Asparagaceae Lomandra sonderi 1 1 0 0 Asparagales Asparagaceae Lomandra sonderi 1 0 1 0 Asparagales Asparagaceae Lomandra sonderi 1 1 1 0 Asparagales Asparagaceae Lomandra sonderi 0 0 1 0 Asparagales Asparagaceae Pseuderanthemum variabile 0 1 0 0 Asparagales Asparagaceae Pseudocymopterus montanus 1 1 1 0 Asparagales Asparagaceae Thysanotus arenarius 0 0 0 0 Asparagales Asparagaceae Thysanotus arenarius 0 0 1 0 Asparagales Asparagaceae Thysanotus dichotomus 0 0 0 0 Asparagales Asparagaceae Thysanotus dichotomus 0 0 1 0 Asparagales Asparagaceae Thysanotus fastigiatus 1 0 0 0 Asparagales Asparagaceae Thysanotus fastigiatus 1 1 0 0 Asparagales Asparagaceae Thysanotus fastigiatus 1 0 1 0 Asparagales Asparagaceae Thysanotus fastigiatus 1 1 1 0 Asparagales Asparagaceae Thysanotus fastigiatus 1 0 0 0 Asparagales Asparagaceae Thysanotus fastigiatus 0 0 0 1 Asparagales Asparagaceae Thysanotus fastigiatus 0 0 1 0 Asparagales Asparagaceae Thysanotus manglesianus 0 0 0 1 92 Texas Tech University, Yanni Chen, May 2014

Asparagales Asparagaceae Thysanotus manglesianus 0 0 1 1 Asparagales Asparagaceae Thysanotus multiflorus 0 1 0 0 Asparagales Asparagaceae Thysanotus multiflorus 1 0 0 0 Asparagales Asparagaceae Thysanotus multiflorus 1 1 0 0 Asparagales Asparagaceae Thysanotus multiflorus 1 0 1 0 Asparagales Asparagaceae Thysanotus multiflorus 1 1 1 0 Asparagales Asparagaceae Thysanotus multiflorus 1 0 0 1 Asparagales Asparagaceae Thysanotus multiflorus 1 0 0 1 Asparagales Asparagaceae Thysanotus multiflorus 0 0 0 1 Asparagales Asparagaceae Thysanotus multiflorus 1 0 1 1 Asparagales Asparagaceae Thysanotus multiflorus 0 0 1 1 Asparagales Asparagaceae Thysanotus multiflorus 1 1 0 1 Asparagales Asparagaceae Thysanotus thyrsoides 0 0 1 0 Asparagales Hemerocallidaceae Arnocrinum preissii 0 0 0 1 Asparagales Hemerocallidaceae Arnocrinum preissii 0 0 1 0 Asparagales Hyacinthaceae Eucomis autumnalis 1 1 1 1 Asparagales Hyacinthaceae Eucomis autumnalis 1 1 2 1 Asparagales Iridaceae Iris missouriensis 1 1 1 0 Asparagales Iridaceae Orthrosanthus laxus 1 0 0 0 Asparagales Iridaceae Orthrosanthus laxus 1 1 0 0 Asparagales Iridaceae Orthrosanthus laxus 1 0 1 0 Asparagales Iridaceae Orthrosanthus laxus 1 1 1 0 Asparagales Iridaceae Orthrosanthus laxus 1 0 0 0 Asparagales Iridaceae Patersonia babianoides 1 0 0 0 Asparagales Iridaceae Patersonia juncea 1 0 0 0 Asparagales Iridaceae Patersonia occidentalis 1 0 0 0 Asparagales Iridaceae Patersonia occidentalis 1 1 0 0 Asparagales Iridaceae Patersonia occidentalis 1 0 1 0 Asparagales Iridaceae Patersonia occidentalis 1 1 1 0 93 Texas Tech University, Yanni Chen, May 2014

Asparagales Iridaceae Patersonia occidentalis 1 0 0 0 Asparagales Iridaceae Patersonia occidentalis 0 0 1 0 Asparagales Iridaceae Patersonia occidentalis 0 0 0 0 Asparagales Iridaceae Patersonia occidentalis 0 0 1 0 Asparagales Iridaceae Patersonia occidentalis 1 1 0 1 Asparagales Iridaceae Patersonia pygmaea 0 0 1 0 Asparagales Iridaceae Patersonia rudis 1 0 0 0 Asparagales Iridaceae Patersonia umbrosa 1 0 0 0 Asparagales Iridaceae Sisyrinchium demissum 1 1 1 0 Asparagales Iridaceae Sisyrinchium species 0 1 0 0 Asparagales Orchidaceae Pyrorchis nigricans 0 1 1 0 Asparagales Xanthorrhoeaceae Aloe ferox 1 1 1 1 Asparagales Xanthorrhoeaceae Bulbine bulbosa 1 1 1 1 Asparagales Xanthorrhoeaceae Dianella revoluta 1 0 0 0 Asparagales Xanthorrhoeaceae Dianella revoluta 1 1 0 0 Asparagales Xanthorrhoeaceae Dianella revoluta 1 0 1 0 Asparagales Xanthorrhoeaceae Dianella revoluta 1 1 1 0 Asparagales Xanthorrhoeaceae Dianella revoluta 1 0 0 0 Asparagales Xanthorrhoeaceae Dianella revoluta 0 0 1 0 Asparagales Xanthorrhoeaceae Xanthorrhoea australis 0 1 1 0 Asparagales Xanthorrhoeaceae Xanthorrhoea minor 0 1 1 0 Asparagales Xanthorrhoeaceae Xanthorrhoea preissii 1 1 0 1 Asterales Asteraceae Achillea mellifolium 0 1 0 0 Asterales Asteraceae Achillea mellifolium 0 1 0 0 Asterales Asteraceae Ageratina adenophora 0 1 0 0 Asterales Asteraceae glauca 1 1 1 0 Asterales Asteraceae Anaphalis margaritacea 1 1 1 0 Asterales Asteraceae tomentosus 1 1 1 1 Asterales Asteraceae Angianthus tomentosus 1 1 2 1 94 Texas Tech University, Yanni Chen, May 2014

Asterales Asteraceae rosulata 1 1 1 0 Asterales Asteraceae 1 1 1 1 Asterales Asteraceae Arctotheca calendula 1 1 2 1 Asterales Asteraceae Arnica chamissonis 1 1 1 0 Asterales Asteraceae Arnoglossum atriplicfolium 1 1 0 0 Asterales Asteraceae Artemisia ludoviciana 1 1 1 1 Asterales Asteraceae Baccharis vernalis 1 1 0 1 Asterales Asteraceae Bahia dissecta 1 1 1 0 Asterales Asteraceae Bidens formosa 0 1 1 0 Asterales Asteraceae Bidens formosa 0 1 1 0 Asterales Asteraceae Bidens pilosa 0 1 1 1 Asterales Asteraceae Bidens pilosa 0 1 1 0 Asterales Asteraceae Boltonia decurrens 1 1 0 0 Asterales Asteraceae Brachycome muelleri 1 1 0 0 Asterales Asteraceae Centaurea melitensis 0 1 0 0 Asterales Asteraceae Centaurea melitensis 0 1 0 0 Asterales Asteraceae Chaenactis artemisiifolia 1 1 1 1 Asterales Asteraceae Cheirolophus arboreus 1 1 0 1 Asterales Asteraceae Cheirolophus arboreus 1 1 1 1 Asterales Asteraceae Chrysanthemum segetum 1 1 1 1 Asterales Asteraceae Chrysanthemum segetum 1 1 2 1 Asterales Asteraceae Chrysocephalum apiculatum 1 1 1 1 Asterales Asteraceae Cirsium vulgare 0 1 0 0 Asterales Asteraceae Conyza albida 0 1 0 0 Asterales Asteraceae Conyza canadensis 1 1 0 1 Asterales Asteraceae Conyza canadensis 0 1 0 0 Asterales Asteraceae Conyza floribunda 0 1 1 0 Asterales Asteraceae Conyza floribunda 0 1 1 0 Asterales Asteraceae Coreopsis basakus 1 1 0 1 95 Texas Tech University, Yanni Chen, May 2014

Asterales Asteraceae Coreopsis lanceolata 1 1 0 1 Asterales Asteraceae Coreopsis lanceolata 1 1 0 1 Asterales Asteraceae Coreopsis tinctoria 1 1 0 0 Asterales Asteraceae Crassocephalum crepidioides 0 1 0 0 Asterales Asteraceae Cyanthiliu cinereum 0 1 0 0 Asterales Asteraceae Dittrichia viscosa 1 1 0 1 Asterales Asteraceae Echinacea angustifolia 1 1 0 1 Asterales Asteraceae Echinacea angustifolia 1 1 0 0 Asterales Asteraceae Echinacea atrorubens 1 1 0 0 Asterales Asteraceae Echinacea pallida 1 1 0 1 Asterales Asteraceae Echinacea paradoxa 1 1 0 1 Asterales Asteraceae Echinacea purpurea 1 1 0 1 Asterales Asteraceae Echinacea purpurea 1 1 0 1 Asterales Asteraceae Echinacea tennesseensis 1 1 0 1 Asterales Asteraceae Emiliia sonchifolia 0 1 0 0 Asterales Asteraceae Erigeron formosissimus 1 1 1 0 Asterales Asteraceae Erigeron speciosus 1 1 1 1 Asterales Asteraceae Erymophyllum glossanthus 1 1 1 0 Asterales Asteraceae Erymophyllum glossanthus 1 1 2 0 Asterales Asteraceae Euchiton involucratus 0 1 0 0 Asterales Asteraceae Gamochaeta coarctata 0 1 0 0 Asterales Asteraceae Gamochaeta coarctata 0 1 0 0 Asterales Asteraceae Gamochaeta coarctata 0 1 0 0 Asterales Asteraceae Gamochaeta coarctata 0 1 0 0 Asterales Asteraceae Gamochaeta subfalcata 0 1 0 0 Asterales Asteraceae Gazania krebsiana 0 1 1 0 Asterales Asteraceae Gazania krebsiana 0 1 1 0 Asterales Asteraceae Gnephosis acicularis 1 1 1 0 Asterales Asteraceae Gnephosis acicularis 1 1 2 0 96 Texas Tech University, Yanni Chen, May 2014

Asterales Asteraceae Gnephosis tenuissima 1 1 1 0 Asterales Asteraceae Gnephosis tenuissima 1 1 2 0 Asterales Asteraceae Haplocarpha scaposa 0 1 1 1 Asterales Asteraceae Haplocarpha scaposa 0 1 1 0 Asterales Asteraceae Haplopappus schumannii 1 1 0 1 Asterales Asteraceae Helianthella quinquenervis 1 1 1 0 Asterales Asteraceae grosseserratus 1 1 0 0 Asterales Asteraceae Helichrysum aureonitens 1 1 1 1 Asterales Asteraceae Helichrysum miconiifolium 0 1 1 0 Asterales Asteraceae Helichrysum miconiifolium 0 1 1 0 Asterales Asteraceae Heliomeris multiflora 1 1 1 0 Asterales Asteraceae Heterotheca villosa 1 1 1 0 Asterales Asteraceae Hyalosperma cotula 1 0 0 0 Asterales Asteraceae Hyalosperma cotula 1 1 0 0 Asterales Asteraceae Hyalosperma cotula 1 0 1 1 Asterales Asteraceae Hyalosperma cotula 1 1 1 0 Asterales Asteraceae Hyalosperma cotula 1 0 0 0 Asterales Asteraceae Hymenoxys bigelovii 1 1 1 0 Asterales Asteraceae Hymenoxys richardsonii 1 1 1 0 Asterales Asteraceae Hypochaeris glabra 0 1 0 0 Asterales Asteraceae Hypochaeris glabra 0 1 0 0 Asterales Asteraceae Hypochoeris radicata 0 1 0 0 Asterales Asteraceae Hypochoeris radicata 0 0 1 0 Asterales Asteraceae Hypochoeris radicata 0 0 1 0 Asterales Asteraceae Ixodia achillaeoides 0 1 1 1 Asterales Asteraceae Ixodia achillaeoides 0 1 0 0 Asterales Asteraceae Lactuca sativa 1 1 1 1 Asterales Asteraceae Lagenifera huegelii 1 0 0 0 Asterales Asteraceae Leontodon saxatilis 0 1 0 0 97 Texas Tech University, Yanni Chen, May 2014

Asterales Asteraceae Leontodon saxatilis 0 1 0 0 Asterales Asteraceae Leontodon saxatilis 0 1 0 0 Asterales Asteraceae Leontodon saxatilis 0 1 0 0 Asterales Asteraceae Leptorhynchos squamatus 1 1 1 0 Asterales Asteraceae Leucochrysum albicans 1 1 1 1 Asterales Asteraceae Liatris asspera 1 1 0 0 Asterales Asteraceae Liatris mucronata 1 1 0 0 Asterales Asteraceae Liatris pycnostachya 1 1 0 0 Asterales Asteraceae Liatris scariosa 1 1 0 1 Asterales Asteraceae Logfia gallica 0 1 0 0 Asterales Asteraceae Logfia gallica 0 1 0 0 Asterales Asteraceae Machaeranthera canescens 1 1 1 0 Asterales Asteraceae Machaeranthera tanacetifolia 1 1 1 0 Asterales Asteraceae Madia sativa 0 1 0 0 Asterales Asteraceae Madia sativa 0 1 0 0 Asterales Asteraceae Matricaria matricoides 1 1 1 0 Asterales Asteraceae Matricaria matricoides 1 1 2 0 Asterales Asteraceae Millotia tenuifolia 0 1 0 0 Asterales Asteraceae Myriocephalus guerinae 1 1 1 1 Asterales Asteraceae Myriocephalus guerinae 1 1 2 1 Asterales Asteraceae Othonna quinquedentata 1 1 1 1 Asterales Asteraceae Othonna quinquedentata 1 1 1 1 Asterales Asteraceae Parthenium integrifolium 1 1 0 1 Asterales Asteraceae Pembertonia latisquamea 1 1 1 1 Asterales Asteraceae Pembertonia latisquamea 1 1 2 1 Asterales Asteraceae Podolepis canescens 1 1 1 1 Asterales Asteraceae Podolepis canescens 1 1 2 1 Asterales Asteraceae Podolepis gracilis 1 0 0 0 Asterales Asteraceae Podolepis gracilis 1 1 0 0 98

Texas Tech University, Yanni Chen, May 2014

Asterales Asteraceae Podolepis gracilis 1 0 1 0 Asterales Asteraceae Podolepis gracilis 1 1 1 0 Asterales Asteraceae Podolepis lessonii 1 0 0 0 Asterales Asteraceae Podolepis lessonii 1 1 0 0 Asterales Asteraceae Podolepis lessonii 1 0 1 0 Asterales Asteraceae Podolepis lessonii 1 1 1 0 Asterales Asteraceae Podolepis monticola 0 1 0 0 Asterales Asteraceae Pterochaeta paniculata 1 0 0 0 Asterales Asteraceae Rhodanthe citrina 1 1 1 1 Asterales Asteraceae Rhodanthe citrina 1 1 2 1 Asterales Asteraceae Rudbeckia hirta 1 1 0 0 Asterales Asteraceae Senecia bracteolatus 1 1 0 1 Asterales Asteraceae Senecia bracteolatus 1 1 0 0 Asterales Asteraceae Senecio coronatus 0 1 1 0 Asterales Asteraceae Senecio coronatus 0 1 1 0 Asterales Asteraceae Senecio diaschides 0 1 0 0 Asterales Asteraceae Senecio grandiflorus 1 1 1 1 Asterales Asteraceae Senecio hispidulus 0 1 0 0 Asterales Asteraceae Senecio jacobaea 1 1 0 1 Asterales Asteraceae Senecio jacobinae 1 1 1 0 Asterales Asteraceae Senecio jacobinae 1 1 2 1 Asterales Asteraceae Senecio spartioides 1 1 1 0 Asterales Asteraceae Shoenia filifolia 1 1 1 1 Asterales Asteraceae Sigesbechia orientalis 0 1 0 0 Asterales Asteraceae Silphium laciniatum 1 1 0 0 Asterales Asteraceae Silybum marianum 1 1 1 1 Asterales Asteraceae Solidago rigida 1 1 0 1 Asterales Asteraceae Soliva sessile 0 1 0 0 Asterales Asteraceae Soliva sessile 0 1 0 0 99

Texas Tech University, Yanni Chen, May 2014

Asterales Asteraceae Soliva sessile 0 1 0 0 Asterales Asteraceae Soliva sessile 0 1 0 0 Asterales Asteraceae Sonchus oleraceus 0 0 1 0 Asterales Asteraceae Sonchus oleraceus 0 0 1 0 Asterales Asteraceae Stuartina muelleri 0 1 1 0 Asterales Asteraceae Symphyotrichum falcatum 1 1 1 1 Asterales Asteraceae Symphyotrichum laeve 1 1 0 0 Asterales Asteraceae Syncarpha eximia 1 1 1 1 Asterales Asteraceae Syncarpha vestita 1 1 1 1 Asterales Asteraceae Tagetes minuta 0 1 1 0 Asterales Asteraceae Tagetes minuta 0 1 1 0 Asterales Asteraceae Townsendia exscapa 1 1 1 0 Asterales Asteraceae Trichocline spathulata 1 0 0 0 Asterales Asteraceae Trichocline spathulata 1 1 0 0 Asterales Asteraceae Trichocline spathulata 1 0 1 0 Asterales Asteraceae Trichocline spathulata 1 1 1 0 Asterales Asteraceae Trichocline spathulata 1 0 0 0 Asterales Asteraceae Vellereophyton dealbatum 0 0 1 0 Asterales Asteraceae Vellereophyton dealbatum 0 0 1 0 Asterales Asteraceae Vernonia natalensis 0 1 1 1 Asterales Asteraceae Vernonia natalensis 0 1 1 0 Asterales Calyceraceae Boopis gracilis 1 1 0 0 Asterales Calyceraceae Boopis gracilis 1 1 0 0 Asterales Campanulaceae Isotoma hypocrateriformis 1 0 0 0 Asterales Campanulaceae Isotoma hypocrateriformis 1 1 0 0 Asterales Campanulaceae Isotoma hypocrateriformis 1 0 1 0 Asterales Campanulaceae Isotoma hypocrateriformis 1 1 1 0 Asterales Campanulaceae Isotoma hypocrateriformis 1 0 0 0 Asterales Campanulaceae Isotoma hypocrateriformis 0 0 1 0 100 Texas Tech University, Yanni Chen, May 2014

Asterales Campanulaceae Lobelia andrewsii 0 1 0 0 Asterales Campanulaceae Lobelia rhombifolia 1 0 0 0 Asterales Campanulaceae Pratia purpurascens 0 1 0 0 Asterales Campanulaceae Wahlenbergia gracilenta 0 1 1 1 Asterales Campanulaceae Wahlenbergia gracilis 0 1 0 1 Asterales Campanulaceae Wahlenbergia preissii 1 0 0 0 Asterales Campanulaceae Wahlenbergia stricta 1 1 1 0 Asterales Goodeniaceae Dampiera linearis 0 0 1 0 Asterales Goodeniaceae Dampiera linearis 0 0 0 0 Asterales Goodeniaceae Dampiera linearis 0 0 1 0 Asterales Goodeniaceae Dampiera soicta 0 1 1 0 Asterales Goodeniaceae Gooden caerulea 1 1 0 0 Asterales Goodeniaceae Goodenia geniculata 0 1 1 1 Asterales Goodeniaceae Lechenaultia biloba 1 0 0 0 Asterales Goodeniaceae Lechenaultia biloba 1 1 0 0 Asterales Goodeniaceae Lechenaultia biloba 1 0 1 0 Asterales Goodeniaceae Lechenaultia biloba 1 1 1 0 Asterales Goodeniaceae Lechenaultia biloba 1 0 0 1 Asterales Goodeniaceae Lechenaultia biloba 0 0 1 0 Asterales Goodeniaceae Lechenaultia biloba 1 1 0 1 Asterales Goodeniaceae Lechenaultia floribunda 0 0 0 1 Asterales Goodeniaceae Lechenaultia floribunda 0 0 1 0 Asterales Goodeniaceae Lechenaultia floribunda 1 1 0 1 Asterales Goodeniaceae Lechenaultia formosa 1 1 0 1 Asterales Goodeniaceae Lechenaultia macrantha 1 1 0 1 Asterales Goodeniaceae Scaevola calliptera 0 0 1 1 Asterales Goodeniaceae Scaevola calliptera 1 1 0 1 Asterales Goodeniaceae Scaevola paludosa 0 0 1 0 Asterales Goodeniaceae Scaevola paludosa 0 0 1 1 101

Texas Tech University, Yanni Chen, May 2014

Asterales Goodeniaceae Velleia rosea 1 1 0 0 Asterales Goodeniaceae Velleia trinervis 1 0 0 1 Asterales Goodeniaceae Velleia trinervis 1 1 0 0 Asterales Goodeniaceae Velleia trinervis 1 0 1 1 Asterales Goodeniaceae Velleia trinervis 1 1 1 0 Asterales Stylidiaceae Levenhookia pusilla 0 1 0 0 Asterales Stylidiaceae Levenhookia pusilla 1 0 0 0 Asterales Stylidiaceae Levenhookia pusilla 0 0 0 1 Asterales Stylidiaceae Levenhookia pusilla 0 0 1 0 Asterales Stylidiaceae Stylidium affine 1 1 0 1 Asterales Stylidiaceae Stylidium affine 1 1 1 1 Asterales Stylidiaceae Stylidium affine 1 1 2 1 Asterales Stylidiaceae Stylidium affine 1 1 1 1 Asterales Stylidiaceae Stylidium affine 1 1 1 0 Asterales Stylidiaceae Stylidium affine 1 1 2 0 Asterales Stylidiaceae Stylidium amoenum 1 0 0 0 Asterales Stylidiaceae Stylidium amoenum 1 1 0 0 Asterales Stylidiaceae Stylidium amoenum 1 0 1 0 Asterales Stylidiaceae Stylidium amoenum 1 1 1 1 Asterales Stylidiaceae Stylidium amoenum 1 0 0 0 Asterales Stylidiaceae Stylidium brunonianum 0 0 1 0 Asterales Stylidiaceae Stylidium brunonianum 1 1 1 1 Asterales Stylidiaceae Stylidium bulbiferum 1 0 0 0 Asterales Stylidiaceae Stylidium bulbiferum 1 1 0 0 Asterales Stylidiaceae Stylidium bulbiferum 1 0 1 0 Asterales Stylidiaceae Stylidium bulbiferum 1 1 1 0 Asterales Stylidiaceae Stylidium bulbiferum 1 0 0 0 Asterales Stylidiaceae Stylidium calcaratum 0 1 0 0 Asterales Stylidiaceae Stylidium calcaratum 1 0 0 0 102 Texas Tech University, Yanni Chen, May 2014

Asterales Stylidiaceae Stylidium calcaratum 1 1 0 1 Asterales Stylidiaceae Stylidium calcaratum 1 0 1 0 Asterales Stylidiaceae Stylidium calcaratum 1 1 1 0 Asterales Stylidiaceae Stylidium calcaratum 1 0 0 0 Asterales Stylidiaceae Stylidium calcaratum 0 0 0 1 Asterales Stylidiaceae Stylidium calcaratum 0 0 1 0 Asterales Stylidiaceae Stylidium crossocephalum 1 1 0 1 Asterales Stylidiaceae Stylidium graminifolia 0 1 0 0 Asterales Stylidiaceae Stylidium hispidium 0 0 1 0 Asterales Stylidiaceae Stylidium hispidium 0 0 1 0 Asterales Stylidiaceae Stylidium junceum 0 1 0 0 Asterales Stylidiaceae Stylidium junceum 1 0 0 0 Asterales Stylidiaceae Stylidium junceum 1 1 0 0 Asterales Stylidiaceae Stylidium junceum 1 0 1 1 Asterales Stylidiaceae Stylidium junceum 1 1 1 1 Asterales Stylidiaceae Stylidium junceum 1 0 0 1 Asterales Stylidiaceae Stylidium junceum 1 0 1 1 Asterales Stylidiaceae Stylidium junceum 0 0 1 0 Asterales Stylidiaceae Stylidium repens 0 0 1 0 Asterales Stylidiaceae Stylidium schoenoides 1 0 0 0 Asterales Stylidiaceae Stylidium schoenoides 1 1 0 1 Asterales Stylidiaceae Stylidium schoenoides 1 0 1 1 Asterales Stylidiaceae Stylidium schoenoides 1 1 1 1 Asterales Stylidiaceae Stylidium schoenoides 0 0 0 1 Asterales Stylidiaceae Stylidium soboliferum 0 1 1 1 Asterales Stylidiaceae Stylidium soboliferum 0 1 0 1 Boraginales hispida 0 1 0 0 Boraginales Boraginaceae Amsinckia hispida 0 1 0 0 Boraginales Boraginaceae Amsinckia hispida 0 1 0 0 103 Texas Tech University, Yanni Chen, May 2014

Boraginales Boraginaceae Amsinckia hispida 0 1 0 0 Boraginales Boraginaceae Cryptantha clevelandi 1 1 1 1 Boraginales Boraginaceae Cryptantha micrantha 1 1 1 1 Boraginales Boraginaceae Echium plantagineum 1 1 1 1 Boraginales Boraginaceae Echium plantagineum 1 1 2 1 Boraginales Boraginaceae Echium webbii 1 1 0 0 Boraginales Boraginaceae Echium webbii 1 1 1 0 Boraginales Boraginaceae Eriodictyon crassifolium 1 1 1 1 Boraginales Boraginaceae Pectocarya linearis 0 1 0 0 Boraginales Boraginaceae Pectocarya linearis 0 1 0 0 Boraginales Hydrophyllaceae Emmenanthe penduliflora 1 1 0 1 Boraginales Hydrophyllaceae Emmenanthe penduliflora 1 1 1 1 Boraginales Hydrophyllaceae Eucrypta chrysanthemifolia 1 1 1 1 Boraginales Hydrophyllaceae Phacelia brachyloba 1 1 1 0 Boraginales Hydrophyllaceae Phacelia grandiflora 1 1 0 1 Boraginales Hydrophyllaceae Phacelia grandiflora 1 1 1 1 Boraginales Hydrophyllaceae Phacelia minor 1 1 1 1 Brassicales Brassicaceae Arabis fendleri 1 1 1 0 Brassicales Brassicaceae Brassica napus 1 1 1 1 Brassicales Brassicaceae Brassica tournefortii 1 1 2 1 Brassicales Brassicaceae Brassica tournefortii 1 1 1 1 Brassicales Brassicaceae Brassica tournefortii 1 1 2 1 Brassicales Brassicaceae Brassica tournefortii 1 1 2 1 Brassicales Brassicaceae Capsela bursa-pastoris 1 1 1 1 Brassicales Brassicaceae Capsela bursa-pastoris 1 1 2 0 Brassicales Brassicaceae Capsela bursa-pastoris 0 1 0 0 Brassicales Brassicaceae Capsela bursa-pastoris 0 1 0 0 Brassicales Brassicaceae Cardamine hirsuta 0 1 0 0 Brassicales Brassicaceae Cardamine hirsuta 0 1 0 0 104 Texas Tech University, Yanni Chen, May 2014

Brassicales Brassicaceae Carrichtera annua 1 1 2 1 Brassicales Brassicaceae Caulanthus heterophyllus 1 1 1 1 Brassicales Brassicaceae Crambe microcarpa 1 1 0 1 Brassicales Brassicaceae Crambe microcarpa 1 1 1 0 Brassicales Brassicaceae Erysimum capitatum 1 1 1 0 Brassicales Brassicaceae Heliophila pusilla 1 1 2 0 Brassicales Brassicaceae Lepidium africanum 1 1 2 1 Brassicales Brassicaceae Raphanus raphanistrum 1 1 1 1 Brassicales Brassicaceae Raphanus raphanistrum 1 1 2 1 Brassicales Brassicaceae Raphanus raphanistrum 1 1 2 1 Brassicales Brassicaceae Rapistrum rugosum 1 1 2 1 Brassicales Brassicaceae Sinapis alba 1 1 1 0 Brassicales Brassicaceae Sinapis alba 1 1 2 1 Brassicales Brassicaceae Sinapis arvensis 1 1 1 1 Brassicales Brassicaceae Sisymbrium erysimoides 1 1 2 1 Brassicales Brassicaceae Sisymbrium orientale 1 1 1 1 Brassicales Brassicaceae Sisymbrium orientale 1 1 2 1 Brassicales Brassicaceae Sisymbrium orientale 1 1 2 1 Brassicales Brassicaceae Thlaspi montanum 1 1 1 0 Brassicales Cleomaceae Cleome gynandra 1 1 0 0 Brassicales Cleomaceae Cleome gynandra 1 1 1 0 Brassicales Gyrostemonaceae Codonocarpus cotinifolius 1 1 1 1 Brassicales Gyrostemonaceae Codonocarpus cotinifolius 1 1 1 1 Brassicales Gyrostemonaceae Codonocarpus cotinifolius 1 1 0 1 Brassicales Gyrostemonaceae Gyrostemon racemiger 1 1 1 0 Brassicales Gyrostemonaceae Gyrostemon racemiger 1 1 1 0 Brassicales Gyrostemonaceae Gyrostemon racemiger 1 1 1 1 Brassicales Gyrostemonaceae Gyrostemon racemiger 1 1 2 0 Brassicales Gyrostemonaceae Gyrostemon ramulosus 1 1 1 1 105

Texas Tech University, Yanni Chen, May 2014

Brassicales Gyrostemonaceae Gyrostemon ramulosus 1 1 2 0 Brassicales Gyrostemonaceae Gyrostemon ramulosus 1 1 0 1 Brassicales Gyrostemonaceae Tersonia cyathiflora 1 1 1 1 Brassicales Gyrostemonaceae Tersonia cyathifora 1 1 1 1 Brassicales Gyrostemonaceae Tersonia cyathifora 1 1 1 1 Caryophyllales Aizoaceae Carpanthea pomeridiana 1 1 2 0 Caryophyllales Aizoaceae Caryotophora skiatophytoides 1 1 2 0 Caryophyllales Aizoaceae Cleretum papulosum 1 1 2 0 Caryophyllales Aizoaceae Conicosia pugioniformis 1 1 2 0 Caryophyllales Aizoaceae Drosanthemum speciosum 1 1 2 1 Caryophyllales Aizoaceae Drosanthemum stokoei 1 1 2 0 Caryophyllales Aizoaceae Erepsia anceps 1 1 2 1 Caryophyllales Aizoaceae Erepsia aspera 1 1 2 0 Caryophyllales Aizoaceae Erepsia lacera 1 1 2 0 Caryophyllales Aizoaceae Lampranthus aureus 1 1 2 1 Caryophyllales Aizoaceae Lampranthus austricolus 1 1 2 0 Caryophyllales Aizoaceae Lampranthus bicolor 1 1 2 0 Caryophyllales Aizoaceae Lampranthus haworthi 1 1 2 1 Caryophyllales Aizoaceae Lampranthus multiradiatus 1 1 2 0 Caryophyllales Aizoaceae Lampranthus promontorii 1 1 2 0 Caryophyllales Aizoaceae Oscularia deltoides 1 1 2 0 Caryophyllales Aizoaceae Ruschia caroli 1 1 2 1 Caryophyllales Aizoaceae Ruschia macowanii 1 1 2 0 Caryophyllales Aizoaceae Ruschia multiflora 1 1 2 1 Caryophyllales Aizoaceae Ruschia promontorii 1 1 2 1 Caryophyllales Aizoaceae Ruschia sarmentosa 1 1 2 0 Caryophyllales Aizoaceae Skiatophytum tripolium 1 1 1 0 Caryophyllales Amaranthaceae Chenopodium album 1 1 1 1 Caryophyllales Amaranthaceae Chenopodium album 1 1 2 0 106

Texas Tech University, Yanni Chen, May 2014

Caryophyllales Amaranthaceae Ptilotus exaltatus 1 1 1 1 Caryophyllales Amaranthaceae Ptilotus exaltatus 1 1 2 1 Caryophyllales Amaranthaceae Ptilotus manglesii 1 0 0 0 Caryophyllales Amaranthaceae Ptilotus manglesii 1 1 0 0 Caryophyllales Amaranthaceae Ptilotus manglesii 1 0 1 0 Caryophyllales Amaranthaceae Ptilotus manglesii 1 1 1 0 Caryophyllales Basellaceae Basella alba 1 1 0 0 Caryophyllales Basellaceae Basella alba 1 1 1 1 Caryophyllales Caryophyllaceae Silene multinervia 1 1 1 1 Caryophyllales Caryophyllaceae Silene regia 1 1 0 1 Caryophyllales Caryophyllaceae Stellaria media 1 1 1 1 Caryophyllales Caryophyllaceae Stellaria media 1 1 2 1 Caryophyllales Caryophyllaceae Stellaria media 0 1 0 0 Caryophyllales Caryophyllaceae Stellaria media 0 1 0 0 Caryophyllales Droseraceae Drosera erythrorhiza 1 1 0 0 Caryophyllales Droseraceae Drosera glanduligera 0 1 1 1 Caryophyllales Droseraceae Drosera macrantha 1 1 0 0 Caryophyllales Droseraceae Drosera peltata 0 1 1 0 Caryophyllales Droseraceae Drosera whittakeri 0 1 0 0 Caryophyllales Limeaceae Macarthuria australis 0 0 0 0 Caryophyllales Limeaceae Macarthuria australis 0 0 1 0 Caryophyllales Phytolaccaceae Phytolacca octandra 0 1 0 0 Caryophyllales Polygonaceae Eriogonum jamesii 1 1 1 0 Caryophyllales Polygonaceae Eriogonum racemosum 1 1 1 0 Celastrales Celastraceae Maytenus boaria 1 1 0 1 Celastrales Celastraceae Stachhousia tyonii 1 1 1 1 Celastrales Celastraceae Stackhousia huegelii 1 1 0 0 Celastrales Celastraceae Stackhousia monogyna 1 0 0 0 Celastrales Celastraceae Stackhousia monogyna 1 1 0 0 107 Texas Tech University, Yanni Chen, May 2014

Celastrales Celastraceae Stackhousia monogyna 1 0 1 0 Celastrales Celastraceae Stackhousia monogyna 1 1 1 0 Celastrales Celastraceae Stackhousia pubescens 1 0 0 0 Celastrales Celastraceae Stackhousia pubescens 1 1 0 1 Celastrales Celastraceae Tripterococcus brunonis 1 0 0 0 Celastrales Celastraceae Tripterococcus brunonis 1 1 0 0 Celastrales Celastraceae Tripterococcus brunonis 1 0 1 0 Celastrales Celastraceae Tripterococcus brunonis 1 1 1 0 Celastrales Celastraceae Tripterococcus brunonis 1 0 0 0 Celastrales Celastraceae Tripterococcus brunonis 0 0 0 1 Celastrales Celastraceae Tripterococcus brunonis 0 0 1 1 Celastrales Celastraceae Tripterococcus brunonis 1 1 0 0 Commelinaceae Aneilema acuminatum 0 1 0 0 Commelinales Commelinaceae Commelina dianthifolia 1 1 1 0 Commelinales Commelinaceae Pollia crispate 0 1 0 0 Commelinales Commelinaceae Tradescantia ohiensis 1 1 0 0 Commelinales Haemodoraceae Anigozanthos bicolor 1 1 0 1 Commelinales Haemodoraceae 1 1 1 1 Commelinales Haemodoraceae Anigozanthos flavidus 1 1 2 0 Commelinales Haemodoraceae Anigozanthos humilis 1 1 0 1 Commelinales Haemodoraceae 1 1 0 1 Commelinales Haemodoraceae Anigozanthos manglesii 1 1 0 1 Commelinales Haemodoraceae Anigozanthos manglesii 1 1 0 1 Commelinales Haemodoraceae Anigozanthos manglesii 1 0 0 0 Commelinales Haemodoraceae Anigozanthos manglesii 1 1 0 0 Commelinales Haemodoraceae Anigozanthos manglesii 1 0 1 0 Commelinales Haemodoraceae Anigozanthos manglesii 1 1 1 0 Commelinales Haemodoraceae Anigozanthos manglesii 0 0 0 1 Commelinales Haemodoraceae Anigozanthos manglesii 0 0 1 1 108 Texas Tech University, Yanni Chen, May 2014

Commelinales Haemodoraceae Anigozanthos manglesii 1 1 0 1 Commelinales Haemodoraceae Conostylis aculeata 1 0 0 1 Commelinales Haemodoraceae Conostylis aculeata 1 1 0 1 Commelinales Haemodoraceae Conostylis aculeata 1 0 1 0 Commelinales Haemodoraceae Conostylis aculeata 1 1 1 0 Commelinales Haemodoraceae Conostylis aculeata 1 0 0 0 Commelinales Haemodoraceae Conostylis aculeata 0 0 0 1 Commelinales Haemodoraceae Conostylis aculeata 0 0 1 0 Commelinales Haemodoraceae Conostylis candicans 1 1 0 1 Commelinales Haemodoraceae Conostylis candicans 0 0 1 1 Commelinales Haemodoraceae Conostylis candicans 1 1 1 1 Commelinales Haemodoraceae Conostylis candicans 0 0 0 0 Commelinales Haemodoraceae Conostylis candicans 0 0 1 1 Commelinales Haemodoraceae Conostylis neocymosa 1 1 0 1 Commelinales Haemodoraceae Conostylis neocymosa 1 1 0 1 Commelinales Haemodoraceae Conostylis serrulata 1 1 1 1 Commelinales Haemodoraceae Conostylis serrulata 1 0 0 1 Commelinales Haemodoraceae Conostylis setigera 0 0 1 1 Commelinales Haemodoraceae Conostylis setosa 1 0 0 0 Commelinales Haemodoraceae Conostylis setosa 0 0 0 1 Commelinales Haemodoraceae Conostylis setosa 1 1 0 1 Commelinales Haemodoraceae Haemodorum laxum 1 0 0 0 Commelinales Haemodoraceae Macropidia fuliginosa 1 1 0 0 Cornales Loasaceae Mentzelia dispersa 1 1 1 1 Cornales Loasaceae Mentzelia micrantha 1 1 1 1 Dennstaedtiales Dennstaedtiaceae Pteridium esculentum 0 1 1 0 Dilleniales Dilleniaceae Hibbertia acicularis 0 1 1 0 Dilleniales Dilleniaceae Hibbertia amplexicaulis 1 1 1 1 Dilleniales Dilleniaceae Hibbertia amplexicaulis 1 0 0 1 109

Texas Tech University, Yanni Chen, May 2014

Dilleniales Dilleniaceae Hibbertia amplexicaulis 0 0 1 1 Dilleniales Dilleniaceae Hibbertia amplexicaulis 1 1 0 1 Dilleniales Dilleniaceae Hibbertia commutata 1 1 0 1 Dilleniales Dilleniaceae Hibbertia commutata 1 1 1 1 Dilleniales Dilleniaceae Hibbertia commutata 1 0 0 0 Dilleniales Dilleniaceae Hibbertia commutata 1 1 0 0 Dilleniales Dilleniaceae Hibbertia commutata 1 0 1 0 Dilleniales Dilleniaceae Hibbertia commutata 1 1 1 0 Dilleniales Dilleniaceae Hibbertia commutata 0 0 1 0 Dilleniales Dilleniaceae Hibbertia fasciculata 0 1 1 1 Dilleniales Dilleniaceae Hibbertia huegelii 0 0 0 0 Dilleniales Dilleniaceae Hibbertia huegelii 0 0 1 1 Dilleniales Dilleniaceae Hibbertia hypericoides 0 0 0 0 Dilleniales Dilleniaceae Hibbertia hypericoides 0 0 1 1 Dilleniales Dilleniaceae Hibbertia lasiopus 1 1 0 1 Dilleniales Dilleniaceae Hibbertia mylnei 1 1 0 0 Dilleniales Dilleniaceae Hibbertia quadricolor 0 0 1 0 Dilleniales Dilleniaceae Hibbertia quadricolor 1 1 0 1 Dilleniales Dilleniaceae Hibbertia racemosa 0 0 1 0 Dilleniales Dilleniaceae Hibbertia racemosa 0 0 0 1 Dilleniales Dilleniaceae Hibbertia racemosa 0 0 1 1 Dilleniales Dilleniaceae Hibbertia subvaginata 0 0 0 1 Dilleniales Dilleniaceae Hibbertia subvaginata 0 0 1 1 Dilleniales Dilleniaceae Hibbertia virgata 0 1 1 0 Dioscoreales Dioscoreaceae Dioscorea hastifolia 1 1 1 1 Dioscoreales Dioscoreaceae Dioscorea hastifolia 1 1 2 0 Dipsacales Caprifoliaceae Cephalaria pungens 0 1 1 0 Dipsacales Caprifoliaceae Cephalaria pungens 0 1 1 0 Ericales Ericaceae Andersonia involucrata Sonder 1 1 0 0 110

Texas Tech University, Yanni Chen, May 2014

Ericales Ericaceae Andersonia latiflora 1 0 0 0 Ericales Ericaceae Andersonia latiflora 1 1 0 0 Ericales Ericaceae Andersonia latiflora 1 0 1 0 Ericales Ericaceae Andersonia latiflora 1 1 1 0 Ericales Ericaceae Andersonia lehmanniana 1 0 0 0 Ericales Ericaceae Andersonia lehmanniana 1 1 0 1 Ericales Ericaceae Arctostaphylos pungens 1 1 0 1 Ericales Ericaceae Arctostaphylos pungens 1 1 0 1 Ericales Ericaceae Arctostaphylos viscida 1 1 1 0 Ericales Ericaceae Astroloma ciliatum 1 0 0 0 Ericales Ericaceae Astroloma conostephioides 0 1 0 0 Ericales Ericaceae Astroloma humifusun 0 1 0 0 Ericales Ericaceae Astroloma macrocalyx 0 0 0 1 Ericales Ericaceae Astroloma macrocalyx 0 0 1 0 Ericales Ericaceae 1 1 0 0 Ericales Ericaceae 0 1 1 0 Ericales Ericaceae Astroloma xerophyllum 1 1 1 0 Ericales Ericaceae Brachyloma daphnoides 0 1 1 0 Ericales Ericaceae Brachyloma preissii 1 1 0 0 Ericales Ericaceae Calluna vulgaris 1 1 1 1 Ericales Ericaceae Conostephium pendulum 1 1 0 0 Ericales Ericaceae Croninia kingiana 1 1 0 0 Ericales Ericaceae Epacris apsleyensis 1 1 1 1 Ericales Ericaceae 0 1 1 1 Ericales Ericaceae Epacris impressa 0 1 1 1 Ericales Ericaceae Epacris impressa 0 1 0 0 Ericales Ericaceae Epacris lanuginosa 1 1 1 1 Ericales Ericaceae Epacris obtusifolia 1 1 1 1 Ericales Ericaceae Epacris purpurascens 1 1 1 1 111 Texas Tech University, Yanni Chen, May 2014

Ericales Ericaceae Epacris startii 1 1 1 1 Ericales Ericaceae Epacris startii 1 1 1 0 Ericales Ericaceae Epacris tasmanica 1 1 1 1 Ericales Ericaceae Epacris tasmanica 1 1 1 0 Ericales Ericaceae Erica arborea 1 1 0 0 Ericales Ericaceae Erica glomiflora 1 1 1 1 Ericales Ericaceae Erica hebecalyx 1 1 1 1 Ericales Ericaceae Erica terminalis 1 1 1 1 Ericales Ericaceae Erica umbellata 1 1 1 1 Ericales Ericaceae Leucopogon capitellatus 1 1 0 0 Ericales Ericaceae Leucopogon conostephioides 1 1 0 1 Ericales Ericaceae Leucopogon crassiflorus 1 1 0 0 Ericales Ericaceae Leucopogon ericoides 0 1 1 0 Ericales Ericaceae Leucopogon glacialis 0 1 1 1 Ericales Ericaceae Leucopogon glacialis 0 1 0 0 Ericales Ericaceae Leucopogon hirsutus 1 1 0 0 Ericales Ericaceae Leucopogon nutans 1 1 1 0 Ericales Ericaceae Leucopogon nutans 1 0 0 1 Ericales Ericaceae Leucopogon nutans 0 0 1 1 Ericales Ericaceae Leucopogon obtectus 1 1 0 0 Ericales Ericaceae Leucopogon parviflorus 1 1 0 0 Ericales Ericaceae Leucopogon proginquus 1 0 0 0 Ericales Ericaceae Leucopogon proginquus 1 1 0 0 Ericales Ericaceae Leucopogon proginquus 1 0 1 0 Ericales Ericaceae Leucopogon proginquus 1 1 1 0 Ericales Ericaceae Leucopogon proginquus 1 1 0 0 Ericales Ericaceae Leucopogon verticillatus 1 0 0 0 Ericales Ericaceae Leucopogon verticillatus 1 1 0 0 Ericales Ericaceae Leucopogon verticillatus 1 0 1 0 112 Texas Tech University, Yanni Chen, May 2014

Ericales Ericaceae Leucopogon verticillatus 1 1 1 0 Ericales Ericaceae Leucopogon verticillatus 1 0 0 0 Ericales Ericaceae Leucopogon verticillatus 0 0 1 0 Ericales Ericaceae Leucopogon verticillatus 1 1 0 0 Ericales Ericaceae Leucopogon virgatus 0 1 1 0 Ericales Ericaceae Lysinema ciliatum 1 1 0 1 Ericales Ericaceae Monotoca scoparia 0 1 1 0 Ericales Ericaceae Sphenotoma capitatum 1 1 0 1 Ericales Ericaceae aff pulchella 1 1 0 0 Ericales Ericaceae Styphelia tenuiflora 1 0 0 0 Ericales Ericaceae Styphelia tenuiflora 1 1 0 0 Ericales Ericaceae Styphelia tenuiflora 1 0 1 0 Ericales Ericaceae Styphelia tenuiflora 1 1 1 0 Ericales Ericaceae Styphelia tenuiflora 1 0 0 0 Ericales Ericaceae Styphelia tenuiflora 1 1 0 0 Ericales Lecythidaceae Bertholletia excelsa 1 1 1 0 Ericales Polemoniaceae Allophyllum glutinosum 1 1 1 1 Ericales Polemoniaceae Ipomopsis aggregata 1 1 1 0 Ericales Primulaceae Anagallis arvensis 0 1 0 0 Ericales Primulaceae Coris monspeliensis 1 1 1 1 Fabales Fabaceae Acacia angustissima 1 1 1 1 Fabales Fabaceae Acacia angustissima 1 1 1 1 Fabales Fabaceae Acacia angustissima 1 1 1 0 Fabales Fabaceae Acacia catechu 1 1 0 1 Fabales Fabaceae Acacia caven 1 1 0 1 Fabales Fabaceae Acacia drummondii 0 1 0 0 Fabales Fabaceae Acacia hebeclada 1 1 2 1 Fabales Fabaceae Acacia hebeclada 1 1 2 0 Fabales Fabaceae Acacia huegelii 0 0 0 0 113

Texas Tech University, Yanni Chen, May 2014

Fabales Fabaceae Acacia huegelii 0 0 1 0 Fabales Fabaceae Acacia laternicola 0 1 0 0 Fabales Fabaceae Acacia melanoxylon 1 1 0 0 Fabales Fabaceae Acacia oxycedrus 0 1 1 0 Fabales Fabaceae Acacia pennata 1 1 0 0 Fabales Fabaceae Acacia pennata 1 1 1 1 Fabales Fabaceae Acacia pulchella 0 1 0 0 Fabales Fabaceae Acacia pulchella 1 0 0 0 Fabales Fabaceae Acacia pulchella 1 1 0 0 Fabales Fabaceae 1 1 0 0 Fabales Fabaceae canescens 1 1 0 0 Fabales Fabaceae cytisoides 1 1 1 0 Fabales Fabaceae Anthyllis lagascana 1 1 1 0 Fabales Fabaceae Anthyllis vulneraria 1 1 0 0 Fabales Fabaceae ericoides 0 0 1 0 Fabales Fabaceae 0 0 1 0 Fabales Fabaceae Argyrolobium zanonii 1 1 0 0 Fabales Fabaceae Astragalus membranaceus 1 1 1 1 Fabales Fabaceae Astragalus membranaceus 1 1 2 0 Fabales Fabaceae Astragulus canadensis 1 1 0 1 Fabales Fabaceae Baptisia australis 1 1 0 0 Fabales Fabaceae Bauhinia variegata 1 1 0 1 Fabales Fabaceae Bituminaria bituminosa 1 1 0 1 Fabales Fabaceae Bossiaea aquifolium 0 1 0 0 Fabales Fabaceae Bossiaea aquifolium 0 0 1 1 Fabales Fabaceae Bossiaea cinerea 0 1 1 0 Fabales Fabaceae Bossiaea eriocarpa 0 0 1 0 Fabales Fabaceae Bossiaea eriocarpa 1 0 0 0 Fabales Fabaceae Bossiaea eriocarpa 0 0 0 0 114

Texas Tech University, Yanni Chen, May 2014

Fabales Fabaceae Bossiaea eriocarpa 1 1 0 0 Fabales Fabaceae Bossiaea eriocarpa 0 0 1 0 Fabales Fabaceae Bossiaea heterophylla 0 1 1 0 Fabales Fabaceae Bossiaea ornata 0 1 0 0 Fabales Fabaceae Bossiaea ornata 1 0 0 1 Fabales Fabaceae Bossiaea ornata 1 0 1 1 Fabales Fabaceae Bossiaea ornata 0 0 1 0 Fabales Fabaceae Burbea africana 1 1 0 0 Fabales Fabaceae Calicotome intermedia 1 1 1 0 Fabales Fabaceae Calicotome villosa 1 1 1 0 Fabales Fabaceae Calliandra longipedicellata 1 1 1 0 Fabales Fabaceae Calliandra longipedicellata 1 1 1 0 Fabales Fabaceae Calliandra longipedicellata 1 1 1 0 Fabales Fabaceae Cassia mimosoides 1 1 1 0 Fabales Fabaceae Chamaecrista absus 1 1 0 0 Fabales Fabaceae Chamaecrista absus 1 1 0 0 Fabales Fabaceae Chamaecrista mimosoides 1 1 0 0 Fabales Fabaceae Chamaecrista mimosoides 1 1 0 0 Fabales Fabaceae Compholobium huegelii 0 1 1 0 Fabales Fabaceae Coronilla glauca L. 1 1 0 0 Fabales Fabaceae Coronilla minima 1 1 1 0 Fabales Fabaceae Crotalaria calycina 1 1 0 0 Fabales Fabaceae Crotalaria calycina 1 1 0 0 Fabales Fabaceae Crotalaria lanceolata 1 1 0 0 Fabales Fabaceae Crotalaria lanceolata 1 1 0 0 Fabales Fabaceae Crotalaria longirostrata 1 1 1 1 Fabales Fabaceae Crotalaria longirostrata 1 1 1 1 Fabales Fabaceae Crotalaria longirostrata 1 1 1 0 Fabales Fabaceae Crotalaria 1 1 0 0 115 Texas Tech University, Yanni Chen, May 2014

Fabales Fabaceae Crotalaria montana 1 1 0 0 Fabales Fabaceae Crotalaria pallida 1 1 0 0 Fabales Fabaceae Crotalaria pallida 1 1 0 0 Fabales Fabaceae Cyclopia intermedia 1 1 1 1 Fabales Fabaceae Cyclopia subternata 1 1 1 1 Fabales Fabaceae Dalbergia latifolia 1 1 0 1 Fabales Fabaceae 1 1 0 0 Fabales Fabaceae Daviesia ulicifolia 0 1 0 0 Fabales Fabaceae Dillwynia glaberrima 0 1 1 0 Fabales Fabaceae Dillwynia glaberrima 0 1 0 0 Fabales Fabaceae Dillwynia hispida 0 1 1 0 Fabales Fabaceae Dillwynia sericea 0 0 1 1 Fabales Fabaceae Dillwynia sericea 0 0 1 0 Fabales Fabaceae Dillwynia sericea 0 1 0 0 Fabales Fabaceae Dorycnium pentaphyllum 1 1 1 0 Fabales Fabaceae Emerus major 1 1 0 1 Fabales Fabaceae Enterolobium schomburgkii 1 1 1 0 Fabales Fabaceae Galactia tenuiflora 1 1 0 0 Fabales Fabaceae Galactia tenuiflora 1 1 0 0 Fabales Fabaceae Genista scorpius 1 1 1 0 Fabales Fabaceae Genista scorpius 1 1 0 0 Fabales Fabaceae Genista triacanthos 1 1 1 0 Fabales Fabaceae Genista umbellata 1 1 1 0 Fabales Fabaceae Glycine tomentella 1 1 0 0 Fabales Fabaceae Glycine tomentella 1 1 0 0 Fabales Fabaceae Gompholobium marginatum 1 0 0 1 Fabales Fabaceae Gompholobium marginatum 0 0 0 1 Fabales Fabaceae Gompholobium marginatum 1 0 1 1 Fabales Fabaceae Gompholobium tomentosum 0 0 1 0 116 Texas Tech University, Yanni Chen, May 2014

Fabales Fabaceae Gompholobium tomentosum 1 0 0 0 Fabales Fabaceae Gompholobium tomentosum 0 0 0 1 Fabales Fabaceae Gompholobium tomentosum 1 1 0 0 Fabales Fabaceae Gompholobium tomentosum 0 0 1 1 Fabales Fabaceae Hippocrepis ciliata 1 1 1 0 Fabales Fabaceae Hovea chorizemifolia 0 0 0 1 Fabales Fabaceae Hovea chorizemifolia 0 0 0 1 Fabales Fabaceae Hovea pungens 1 0 0 0 Fabales Fabaceae Hovea pungens 0 0 0 1 Fabales Fabaceae Hovea pungens 1 1 0 0 Fabales Fabaceae Hovea pungens 0 0 1 0 Fabales Fabaceae Hovea trisperma 0 1 0 0 Fabales Fabaceae Hovea trisperma 0 0 0 0 Fabales Fabaceae Hovea trisperma 1 1 0 1 Fabales Fabaceae Hovea trisperma 0 0 1 0 Fabales Fabaceae Indigofera hirsuta 1 1 0 0 Fabales Fabaceae Indigofera hirsuta 1 1 0 0 Fabales Fabaceae Jacksonia densiflora 0 0 0 1 Fabales Fabaceae Jacksonia densiflora 0 0 1 0 Fabales Fabaceae Jacksonia desiflora 1 0 0 0 Fabales Fabaceae Jacksonia desiflora 1 1 0 0 Fabales Fabaceae Kennedia coccinea 0 1 0 0 Fabales Fabaceae Kennedia coccinea 0 0 0 1 Fabales Fabaceae Lespedeza capatata 1 1 0 1 Fabales Fabaceae Lupinus argenteus 1 1 1 0 Fabales Fabaceae Lupinus argenteus 1 1 1 0 Fabales Fabaceae Lupinus argenteus 1 1 1 0 Fabales Fabaceae Lupinus exaltatus 1 1 1 1 Fabales Fabaceae Lupinus exaltatus 1 1 1 1 117 Texas Tech University, Yanni Chen, May 2014

Fabales Fabaceae Lupinus exaltatus 1 1 1 0 Fabales Fabaceae Medicago polymorpha 0 1 0 0 Fabales Fabaceae Medicago polymorpha 0 1 0 0 Fabales Fabaceae Mimosa galeottii 1 1 1 1 Fabales Fabaceae Mimosa galeottii 1 1 1 0 Fabales Fabaceae Mimosa galeottii 1 1 1 0 Fabales Fabaceae Nemcia capitata 1 0 0 0 Fabales Fabaceae Nemcia capitata 0 0 0 0 Fabales Fabaceae Nemcia capitata 1 1 0 0 Fabales Fabaceae Nemcia capitata 0 0 1 1 Fabales Fabaceae Ononis minutissima 1 1 1 0 Fabales Fabaceae Ononis ornithopodioides 1 1 1 0 Fabales Fabaceae Oxytropis lambertii 1 1 1 0 Fabales Fabaceae Prosopis africana 1 1 0 0 Fabales Fabaceae Pultenaea retusa 0 1 0 0 Fabales Fabaceae Retama sphaerocarpa 1 1 0 1 Fabales Fabaceae Spartium junceum 1 1 0 1 Fabales Fabaceae Tephrosia juncea 1 1 0 0 Fabales Fabaceae Tephrosia juncea 1 1 0 0 Fabales Fabaceae Tephrosia pedicellata 1 1 1 0 Fabales Fabaceae Trifolium angustifolium 1 1 0 1 Fabales Fabaceae Trifolium glomeratum 0 1 0 0 Fabales Fabaceae Trifolium glomeratum 0 1 0 0 Fabales Fabaceae Trifolium glomeratum 0 1 0 0 Fabales Fabaceae Trifolium glomeratum 0 1 0 0 Fabales Fabaceae Ulex borgiae 1 1 1 1 Fabales Fabaceae Ulex parviflorus 1 1 1 0 Fabales Fabaceae Vicia americana 1 1 1 0 Fabales Papilionaceae Gompholobium knightianum 0 0 1 0 118

Texas Tech University, Yanni Chen, May 2014

Fabales Papilionaceae Gompholobium marginatum 0 0 1 0 Fabales Papilionaceae Gompholobium preissii 0 0 1 0 Fabales Papilionaceae Hovea chorizemifolia 0 0 1 1 Fabales Papilionaceae Kennedia carinata 0 0 1 0 Fabales Papilionaceae Kennedia coccinea 0 0 1 1 Fabales Papilionaceae Kennedia prostrata 0 0 1 0 Fabales Papilionaceae Mirbelia dilatata 0 0 1 0 Fabales Papilionaceae Sphaerolobium meedium 0 0 1 0 Fabales Polygalaceae Comesperma calymega 1 0 0 0 Fabales Polygalaceae Comesperma calymega 0 0 0 0 Fabales Polygalaceae Comesperma calymega 0 0 1 0 Fabales Polygalaceae Comesperma virgatum 1 0 0 0 Fabales Polygalaceae Polygonum arviculare 1 1 1 1 Fabales Polygalaceae Polygonum pennsylvanicum 1 1 1 1 Fabales Polygalaceae Polygonum persicaria 1 1 1 1 Fabales Polygonaceae Fallopia convolvulus 1 1 1 1 Fabales Polygonaceae Polygonum arviculare 1 1 1 0 Fabales Polygonaceae Polygonum arviculare 1 1 2 0 Fabales Polygonaceae Rumex acetosella 1 1 0 0 Fabales Polygonaceae Rumex obtusifolius 1 1 1 0 Fabales Polygonaceae Rumex obtusifolius 1 1 2 0 Fabales Surianaceae Stylobasium spathulatum 1 1 1 0 Fabales Surianaceae Stylobasium spathulatum 1 1 2 0 Betulaceae Alnus glutinosa 1 1 0 1 Fagales fraseriana 1 0 0 1 Fagales Casuarinaceae 0 0 1 0 Fagales Casuarinaceae Allocasuarina fraseriana 1 0 0 0 Fagales Casuarinaceae Allocasuarina fraseriana 1 1 0 0 Fagales Casuarinaceae 1 0 0 0 119

Texas Tech University, Yanni Chen, May 2014

Fagales Casuarinaceae Allocasuarina humilis 1 1 0 0 Fagales Casuarinaceae Allocasuarina misera 0 1 1 0 Fagales Casuarinaceae Allocasuarina paludosa 0 1 1 0 Gentianales Apocynaceae Aclepias tuberosa 1 1 0 0 Gentianales Apocynaceae Asclepias tuberosa 1 1 1 0 Gentianales Apocynaceae Comphocarpus physocarpus 0 1 1 0 Gentianales Apocynaceae Comphocarpus physocarpus 0 1 1 0 Gentianales Apocynaceae Gymnema sylvestre 1 1 0 0 Gentianales Apocynaceae Gymnema sylvestre 1 1 1 0 Gentianales Loganiaceae Mitrasacme paradoxa 0 1 0 0 Gentianales Rubiaceae Borreria radiata 1 1 1 0 Gentianales Rubiaceae Borreria scabra 1 1 1 1 Gentianales Rubiaceae Galium aparine 1 1 1 0 Gentianales Rubiaceae Galium aparine 1 1 2 0 Gentianales Rubiaceae Galium aparine 0 1 0 0 Gentianales Rubiaceae Galium aparine 0 1 0 0 Gentianales Rubiaceae Galium aparine 0 1 0 0 Gentianales Rubiaceae Galium aparine 0 1 0 0 Gentianales Rubiaceae Galium aparine 1 1 1 1 Gentianales Rubiaceae Galium migrans 0 1 0 1 Gentianales Rubiaceae Oldenlandia galioides 0 1 0 0 Gentianales Rubiaceae Opercularia diphylla 0 1 0 0 Gentianales Rubiaceae Opercularia echinocephala 0 1 0 0 Gentianales Rubiaceae Opercularia echinocephala 1 0 0 1 Gentianales Rubiaceae Opercularia echinocephala 0 0 0 1 Gentianales Rubiaceae Opercularia echinocephala 0 0 1 1 Gentianales Rubiaceae Opercularia hispidulla 1 0 0 0 Gentianales Rubiaceae Opercularia vaginata 0 0 0 1 Gentianales Rubiaceae Opercularia vaginata 0 0 1 0 120 Texas Tech University, Yanni Chen, May 2014

Gentianales Rubiaceae Opercularia varia 0 0 1 0 Gentianales Rubiaceae Opercularia varia 0 0 1 0 Geraniales Geraniaceae Erodium bothrys 0 1 0 0 Geraniales Geraniaceae Erodium bothrys 0 1 0 0 Geraniales Geraniaceae Erodium bothrys 0 1 0 0 Geraniales Geraniaceae Erodium bothrys 0 1 0 0 Geraniales Geraniaceae Erodium cicutarium 0 1 0 0 Geraniales Geraniaceae Erodium cicutarium 0 1 0 0 Geraniales Geraniaceae Erodium cicutarium 0 1 0 0 Geraniales Geraniaceae Erodium cicutarium 0 1 0 0 Geraniales Geraniaceae Erodium moschatum 0 1 0 0 Geraniales Geraniaceae Erodium moschatum 0 1 0 0 Geraniales Geraniaceae Erodium moschatum 0 1 0 0 Geraniales Geraniaceae Erodium moschatum 0 1 0 0 Geraniales Geraniaceae Geranium caespitosum 1 1 1 0 Geraniales Geraniaceae Geranium caespitosum 1 1 1 0 Geraniales Geraniaceae Geranium caespitosum 1 1 1 0 Lamiales Boraginaceae Cordia goeldiana 1 1 1 1 Lamiales Bignoniaceae Eccremocarpus scaber 1 1 0 1 Lamiales Bignoniaceae Jacaranda copaia 1 1 1 1 Lamiales Lamiaceae Hemiandra pungens 1 0 0 0 Lamiales Lamiaceae Hemiandra pungens 1 1 0 0 Lamiales Lamiaceae Hemigenia ramosissima 0 1 0 0 Lamiales Lamiaceae Hemigenia ramosissima 0 0 0 1 Lamiales Lamiaceae Hemigenia rigida 1 0 0 0 Lamiales Lamiaceae Hemigenia rigida 1 1 0 0 Lamiales Lamiaceae Hemigenia rigida 1 0 1 0 Lamiales Lamiaceae Hemigenia rigida 1 1 1 0 Lamiales Lamiaceae Hemigenia sericea 1 0 0 0 121 Texas Tech University, Yanni Chen, May 2014

Lamiales Lamiaceae Hemigenia sericea 1 1 0 0 Lamiales Lamiaceae Hemigenia sericea 1 0 1 0 Lamiales Lamiaceae Hemigenia sericea 1 1 1 0 Lamiales Lamiaceae Lachnostachys eriobotrya 1 1 0 0 Lamiales Lamiaceae Lamium purpureum 1 1 1 1 Lamiales Lamiaceae Lavandula latifolia 1 1 1 1 Lamiales Lamiaceae Lavandula stoechas 1 1 1 1 Lamiales Lamiaceae Lavandula stoechas 1 1 1 0 Lamiales Lamiaceae Lavandula stoechas 1 1 0 0 Lamiales Lamiaceae Monarda citriodora 1 1 0 1 Lamiales Lamiaceae Monarda fistulosa 1 1 0 1 Lamiales Lamiaceae Monardella odoratissima 1 1 1 0 Lamiales Lamiaceae Nepeta rtanjensis 1 1 1 1 Lamiales Lamiaceae Plectranthus parviflorus Wild. 0 1 0 1 Lamiales Lamiaceae Prostanthera askania 1 1 1 1 Lamiales Lamiaceae Prostanthera askania 1 1 1 0 Lamiales Lamiaceae Prostanthera eurybioides 1 1 0 1 Lamiales Lamiaceae Prostanthera eurybioides 1 1 0 1 Lamiales Lamiaceae Pycnanthemum pilosum 1 1 0 0 Lamiales Lamiaceae Rosmarinus officinalis 1 1 1 1 Lamiales Lamiaceae Rosmarinus officinalis 1 1 0 0 Lamiales Lamiaceae Salvia apiana 1 1 1 1 Lamiales Lamiaceae Salvia coccinea 1 1 0 1 Lamiales Lamiaceae Salvia columbariae 1 1 1 1 Lamiales Lamiaceae Salvia farinacea 1 1 0 1 Lamiales Lamiaceae Salvia iodantha 1 1 1 1 Lamiales Lamiaceae Salvia iodantha 1 1 1 1 Lamiales Lamiaceae Salvia iodantha 1 1 1 1 Lamiales Lamiaceae Salvia lavanduloides 1 1 1 1 122 Texas Tech University, Yanni Chen, May 2014

Lamiales Lamiaceae Salvia lavanduloides 1 1 1 0 Lamiales Lamiaceae Salvia lavanduloides 1 1 1 0 Lamiales Lamiaceae Salvia leucophylla 1 1 1 1 Lamiales Lamiaceae Salvia mellifera 1 1 1 1 Lamiales Lamiaceae Salvia penstemonoides 1 1 0 0 Lamiales Lamiaceae Salvia thyrsiflora 1 1 1 1 Lamiales Lamiaceae Salvia thyrsiflora 1 1 1 1 Lamiales Lamiaceae Salvia thyrsiflora 1 1 1 0 Lamiales Lamiaceae Satureja thymbra 1 1 1 1 Lamiales Lamiaceae Teucrium capitatum 1 1 1 0 Lamiales Lamiaceae Teucrium ronnigeri 1 1 1 1 Lamiales Lamiaceae Trichostema lanatum 1 1 1 0 Lamiales Oleaceae Fraxinus ornus 1 1 0 1 Lamiales Orobanchaceae Castilleja integra 1 1 1 0 Lamiales Orobanchaceae Cistanche phelypaea 1 1 2 1 Lamiales Orobanchaceae Conopholis alpina 1 1 2 1 Lamiales Orobanchaceae Lathraea squamaria 1 1 2 1 Lamiales Orobanchaceae Orobanche aegytiaca 1 1 2 1 Lamiales Orobanchaceae Orobanche caryophyllacea 1 1 2 1 Lamiales Orobanchaceae Orobanche cernua 1 1 2 1 Lamiales Orobanchaceae Orobanche corymbosa 1 1 2 1 Lamiales Orobanchaceae Orobanche minor 1 1 2 1 Lamiales Orobanchaceae Orobanche purpurea 1 1 2 1 Lamiales Orobanchaceae Orobanche ramosa 1 1 2 1 Lamiales Orobanchaceae Orobanche rapum-genistae 1 1 2 1 Lamiales Orobanchaceae Orobanche uniflora 1 1 2 1 Lamiales Orobanchaceae Striga hermonthica 1 1 2 1 Lamiales Philesiaceae Eustrephus latifolius 0 1 0 0 Lamiales Plantaginaceae Plantago lanceolata 0 1 1 1 123

Texas Tech University, Yanni Chen, May 2014

Lamiales Plantaginaceae Plantago lanceolata 0 1 1 0 Lamiales Scrophulariaceae coulterianum 1 1 1 1 Lamiales Scrophulariaceae Antirrhinum kelloggii 1 1 1 1 Lamiales Scrophulariaceae Antirrhinum nuttallianum 1 1 1 1 Lamiales Scrophulariaceae Eremophila oldfieldii 1 1 1 0 Lamiales Scrophulariaceae Eremophila oldfieldii 1 1 2 0 Lamiales Scrophulariaceae Mimulus bolanderi 1 1 1 1 Lamiales Scrophulariaceae Mimulus clevelandii 1 1 1 1 Lamiales Scrophulariaceae Mimulus gracilipes 1 1 1 1 Lamiales Scrophulariaceae Penstemon barbatus 1 1 0 0 Lamiales Scrophulariaceae Penstemon barbatus 1 1 1 1 Lamiales Scrophulariaceae Penstemon barbatus 1 1 1 1 Lamiales Scrophulariaceae Penstemon barbatus 1 1 1 0 Lamiales Scrophulariaceae Penstemon barbatus 1 1 1 1 Lamiales Scrophulariaceae Penstemon barbatus 1 1 1 0 Lamiales Scrophulariaceae Penstemon barbatus 1 1 1 1 Lamiales Scrophulariaceae Penstemon centranthifolius 1 1 1 1 Lamiales Scrophulariaceae Penstemon clutei 1 1 1 0 Lamiales Scrophulariaceae Penstemon cobaea 1 1 0 1 Lamiales Scrophulariaceae Penstemon pachyphyllus 1 1 1 1 Lamiales Scrophulariaceae Penstemon palmeri 1 1 1 1 Lamiales Scrophulariaceae Penstemon rostriflorus 1 1 1 1 Lamiales Scrophulariaceae Penstemon rydbergii 1 1 1 0 Lamiales Scrophulariaceae Penstemon virgatus 1 1 1 1 Lamiales Scrophulariaceae Penstemon whippleanus 1 1 1 0 Lamiales Scrophulariaceae Veronica hederifolia 1 1 1 0 Lamiales Scrophulariaceae Veronica notabilis 0 1 0 0 Lamiales Verbenaceae Lantana camara 0 1 0 0 Lamiales Verbenaceae Tectoma grandis 1 1 0 1 124 Texas Tech University, Yanni Chen, May 2014

Laurales Lauraceae Cassytha glahella 0 1 1 0 Laurales Lauraceae Cassytha pubescens 0 1 1 0 Liliales Colchicaceae Burchardia umbellata 1 0 0 0 Liliales Colchicaceae Burchardia umbellata 1 1 0 0 Liliales Colchicaceae Burchardia umbellata 1 0 1 0 Liliales Colchicaceae Burchardia umbellata 1 1 1 0 Liliales Colchicaceae Burchardia umbellata 1 0 0 1 Liliales Colchicaceae Burchardia umbellata 1 0 0 1 Liliales Colchicaceae Burchardia umbellata 1 0 1 1 Liliales Colchicaceae Burchardia umbellata 0 0 1 0 Liliales Colchicaceae Burchardia umbellata 1 1 0 1 Liliales Liliaceae ramosus 1 1 0 1 Liliales Liliaceae Xerophyllum tenax 1 1 1 1 Liliales Smilacaceae Smilax australis 0 1 0 0 Magnoliales Magnoliaceae Magnolia officinalis 1 1 1 0 Magnoliales Magnoliaceae Magnolia officinalis 1 1 2 0 Clusiaceae Hypericum gramineum 0 1 0 1 Malpighiales Clusiaceae Hypericum gramineum 0 1 0 0 Malpighiales Euphorbiaceae quadripartita 1 1 0 0 Malpighiales Euphorbiaceae Adriana tomentosa 1 1 0 0 Malpighiales Euphorbiaceae xiphoclada 0 1 1 0 Malpighiales Euphorbiaceae 0 0 1 0 Malpighiales Euphorbiaceae Amperea xiphoclada 0 0 1 0 Malpighiales Euphorbiaceae Colliguaja odorifera 1 1 0 0 Malpighiales Euphorbiaceae Croton macrostachyuzs 1 1 1 1 Malpighiales Euphorbiaceae Glochiadian ferdinandi 0 1 0 0 Malpighiales Euphorbiaceae Mercurialis annua 1 1 1 0 Malpighiales Euphorbiaceae Phyllanthus calycinus 1 0 0 0 Malpighiales Euphorbiaceae Phyllanthus calycinus 1 1 0 0 125 Texas Tech University, Yanni Chen, May 2014

Malpighiales Euphorbiaceae Phyllanthus calycinus 1 0 1 0 Malpighiales Euphorbiaceae Phyllanthus calycinus 1 1 1 0 Malpighiales Euphorbiaceae Phyllanthus calycinus 1 0 0 1 Malpighiales Euphorbiaceae Phyllanthus calycinus 0 0 0 1 Malpighiales Euphorbiaceae Phyllanthus calycinus 0 0 1 1 Malpighiales Euphorbiaceae Phyllanthus tenellus 0 1 0 0 Malpighiales Euphorbiaceae Poranthera huegelii 1 0 0 0 Malpighiales Euphorbiaceae Poranthera microphylla 0 0 0 1 Malpighiales Linaceae Linum lewisii 1 1 1 0 Malpighiales Linaceae Linum marginale 1 1 1 1 Malpighiales Violaceae Hybanthus calycinus 1 0 0 0 Malpighiales Violaceae Hybanthus enneaspermus 0 1 0 0 Malpighiales Violaceae Hybanthus floribundus 1 0 0 0 Malpighiales Violaceae Hybanthus floribundus 1 1 0 0 Malpighiales Violaceae Hybanthus floribundus 1 0 1 0 Malpighiales Violaceae Hybanthus floribundus 1 1 1 0 Malpighiales Violaceae Hybanthus floribundus 1 1 0 1 Malpighiales Violaceae Viola betonicifolia 0 1 0 0 Malpighiales Violaceae Viola hederacea 0 1 0 0 Malvales Cistaceae Cistus albidus 1 1 1 0 Malvales Cistaceae Cistus albidus 1 1 1 0 Malvales Cistaceae Cistus albidus 1 1 0 1 Malvales Cistaceae Cistus clusii 1 1 1 0 Malvales Cistaceae Cistus creticus 1 1 1 0 Malvales Cistaceae Cistus crispus 1 1 0 1 Malvales Cistaceae Cistus incanus 1 1 0 1 Malvales Cistaceae Cistus ladanifer 1 1 0 1 Malvales Cistaceae Cistus monspeliensis 1 1 1 0 Malvales Cistaceae Cistus monspeliensis 1 1 0 1 126

Texas Tech University, Yanni Chen, May 2014

Malvales Cistaceae Cistus monspeliensis 1 1 0 0 Malvales Cistaceae Cistus salviifolius 1 1 0 1 Malvales Cistaceae Cistus salviifolius 1 1 1 0 Malvales Cistaceae Cistus salviifolius 1 1 1 0 Malvales Cistaceae Fumana ericoides 1 1 1 0 Malvales Cistaceae Fumana ericoides 1 1 1 0 Malvales Cistaceae Fumana ericoides 1 1 0 1 Malvales Cistaceae Fumana laevipes 1 1 1 0 Malvales Cistaceae Fumana thymifolia 1 1 1 0 Malvales Cistaceae Fumana thymifolia 1 1 1 0 Malvales Cistaceae Halimium atriplicifolium 1 1 1 0 Malvales Cistaceae Helianthemum cirae 1 1 0 0 Malvales Cistaceae Helianthemum cirae 1 1 1 0 Malvales Cistaceae Helianthemum syriacum 1 1 1 0 Malvales Cistaceae Xolantha tuberaria 1 1 1 0 Malvales Cochlospermaceae Cochlospermum planchonii 1 1 1 0 Malvales Malvaceae hakeifolia 1 1 1 1 Malvales Malvaceae 1 1 1 0 Malvales Malvaceae Alyogyne hakeifolia 1 1 0 0 Malvales Malvaceae 1 1 1 1 Malvales Malvaceae Alyogyne huegelii 1 1 1 0 Malvales Malvaceae Alyogyne huegelii 1 1 0 0 Malvales Malvaceae Corchorus asplenifolius 0 1 1 0 Malvales Malvaceae Corchorus asplenifolius 0 1 1 0 Malvales Malvaceae Fremontodendron californicum 1 1 1 0 Malvales Malvaceae Iliamna remota 1 1 0 0 Malvales Malvaceae Lasiopetalum floribundum 0 1 0 0 Malvales Malvaceae Lasiopetalum floribundum 0 0 1 0 Malvales Malvaceae Malacothamnus fremontii 1 1 1 0 127 Texas Tech University, Yanni Chen, May 2014

Malvales Malvaceae Malva neglecta 1 1 1 0 Malvales Malvaceae Malva neglecta 1 1 2 1 Malvales Malvaceae Malva neglecta 1 1 1 1 Malvales Malvaceae Ochroma pyramidale 1 1 1 1 Malvales Malvaceae Rulingia platycalyx 1 1 0 1 Malvales Malvaceae Sida subspicata 0 1 0 0 Malvales Malvaceae Thomasia angustifolia 1 1 0 0 Malvales Thymelaeaceae Pimelea ciliata 1 0 0 0 Malvales Thymelaeaceae Pimelea ciliata 1 1 0 0 Malvales Thymelaeaceae Pimelea ciliata 1 0 1 0 Malvales Thymelaeaceae Pimelea ciliata 1 1 1 0 Malvales Thymelaeaceae Pimelea ciliata 1 0 0 0 Malvales Thymelaeaceae Pimelea ciliata 0 0 1 0 Malvales Thymelaeaceae Pimelea leucantha 1 1 0 0 Malvales Thymelaeaceae Pimelea spectabilis 1 0 0 0 Malvales Thymelaeaceae Pimelea spectabilis 1 1 0 1 Malvales Thymelaeaceae Pimelea spicata 1 1 0 1 Malvales Thymelaeaceae Pimelea spicata 1 1 0 0 Malvales Thymelaeaceae Pimelea suaveolens 1 0 0 0 Malvales Thymelaeaceae Pimelea suaveolens 1 1 0 0 Malvales Thymelaeaceae Pimelea suaveolens 1 0 1 0 Malvales Thymelaeaceae Pimelea suaveolens 1 1 1 0 Malvales Thymelaeaceae Pimelea suaveolens 1 0 0 1 Malvales Thymelaeaceae Pimelea suaveolens 0 0 1 1 Malvales Thymelaeaceae Pimelea sylvestris 1 0 0 0 Malvales Thymelaeaceae Pimelea sylvestris 1 1 0 1 Myrtales Combretaceae Anogeissus leiocarpus 1 1 0 0 Myrtales Combretaceae Combretum glutinosum 1 1 0 0 Myrtales Combretaceae Combretum nigricans 1 1 0 0 128 Texas Tech University, Yanni Chen, May 2014

Myrtales Combretaceae Pteleopsis suberosa 1 1 0 1 Myrtales Combretaceae Terminalia avicennioides 1 1 0 1 Myrtales Combretaceae Terminalia chebula 1 1 1 1 Myrtales Melastomataceae Bellucia grossularioides 1 1 1 0 Myrtales Myrtaceae Actinodium eunninghamii 1 1 0 0 Myrtales Myrtaceae Beaufortia elegans 1 0 0 0 Myrtales Myrtaceae Beaufortia elegans 0 0 0 0 Myrtales Myrtaceae Beaufortia elegans 1 1 0 0 Myrtales Myrtaceae Beaufortia elegans 0 0 1 0 Myrtales Myrtaceae Callistemon speciosus 1 0 0 0 Myrtales Myrtaceae Callistemon speciosus 1 1 0 0 Myrtales Myrtaceae Callistemon speciosus 1 0 1 0 Myrtales Myrtaceae Callistemon speciosus 1 1 1 0 Myrtales Myrtaceae Calytrix aurea 1 1 0 0 Myrtales Myrtaceae Calytrix breviseta 0 0 1 1 Myrtales Myrtaceae Calytrix tetragona 0 1 1 0 Myrtales Myrtaceae Eremaea pauciflora 0 0 1 0 Myrtales Myrtaceae Eremaea pauciflora 0 0 0 0 Myrtales Myrtaceae Eremaea pauciflora 0 0 1 0 Myrtales Myrtaceae Eucalyptus calophylla 0 0 1 0 Myrtales Myrtaceae Eucalyptus delegatensis 1 1 0 0 Myrtales Myrtaceae 1 1 0 0 Myrtales Myrtaceae Eucalyptus marginata 0 1 0 0 Myrtales Myrtaceae Eucalyptus marginata 1 0 0 0 Myrtales Myrtaceae Eucalyptus marginata 0 0 0 1 Myrtales Myrtaceae Eucalyptus marginata 1 0 1 0 Myrtales Myrtaceae Eucalyptus marginata 0 0 1 1 Myrtales Myrtaceae Eucalyptus regnans 1 1 0 0 Myrtales Myrtaceae Eucalyptus viminalis 0 1 1 0 129 Texas Tech University, Yanni Chen, May 2014

Myrtales Myrtaceae Hypocalymma angustifolium 1 0 0 1 Myrtales Myrtaceae Hypocalymma angustifolium 1 1 0 0 Myrtales Myrtaceae Hypocalymma angustifolium 1 0 1 0 Myrtales Myrtaceae Hypocalymma angustifolium 1 1 1 0 Myrtales Myrtaceae Hypocalymma angustifolium 1 0 0 0 Myrtales Myrtaceae Hypocalymma angustifolium 1 1 0 1 Myrtales Myrtaceae Hypocalymma robustum 1 0 0 0 Myrtales Myrtaceae Hypocalymma robustum 1 0 0 0 Myrtales Myrtaceae Hypocalymma robustum 1 0 1 1 Myrtales Myrtaceae Hypocalymma robustum 1 0 1 0 Myrtales Myrtaceae Hypocalymma robustum 1 0 0 0 Myrtales Myrtaceae Hypocalymma robustum 0 0 1 0 Myrtales Myrtaceae Leptosperman myrsinoidess 0 1 0 0 Myrtales Myrtaceae Leptospermum cominentale 0 1 1 0 Myrtales Myrtaceae Leptospermum myrsinoides 0 1 1 1 Myrtales Myrtaceae Leptospermum myrsinoides 0 1 1 1 Myrtales Myrtaceae Lophostemon confertus 0 1 0 0 Myrtales Myrtaceae Melaleuca heugelii 0 0 0 0 Myrtales Myrtaceae Melaleuca heugelii 0 0 1 0 Myrtales Myrtaceae Scholtzia involucrata 0 0 1 1 Myrtales Myrtaceae Scholtzia involucrata 0 0 0 1 Myrtales Myrtaceae Scholtzia involucrata 0 0 1 1 Myrtales Myrtaceae Scholtzia laxiflora 1 1 0 0 Myrtales Myrtaceae Thryptomene baeckeacea 1 1 1 0 Myrtales Myrtaceae Thryptomene baeckeacea 1 1 2 0 Myrtales Myrtaceae Verticordia densifiora 1 1 0 1 Myrtales Myrtaceae Verticordia fimbrilepis 1 1 1 1 Myrtales Myrtaceae Verticordia nitens 0 0 0 1 Myrtales Myrtaceae Verticordia nitens 0 0 1 1 130 Texas Tech University, Yanni Chen, May 2014

Myrtales Onagraceae Calylophus hartwegii 1 1 1 0 Myrtales Onagraceae Camissonia californica 1 1 1 1 Myrtales Onagraceae Chamerion angustifolium 1 1 1 0 Myrtales Onagraceae Epilobium glandulosum 1 1 0 1 Myrtales Onagraceae Fuchsia encliandra 1 1 1 1 Myrtales Onagraceae Fuchsia encliandra 1 1 1 1 Myrtales Onagraceae Fuchsia encliandra 1 1 1 1 Myrtales Onagraceae Oenothera elata 1 1 1 0 Oxalidales Cunoniaceae Cakkucina serrratifolia 0 1 0 0 Oxalidales Elaeocarpeae Tetratheca hirsuta 1 0 0 0 Oxalidales Elaeocarpeae Tetratheca hirsuta 1 1 0 0 Oxalidales Elaeocarpeae Tetratheca hirsuta 1 0 1 0 Oxalidales Elaeocarpeae Tetratheca hirsuta 1 1 1 0 Oxalidales Elaeocarpeae Tetratheca hirsuta 1 0 0 1 Oxalidales Elaeocarpeae Tetratheca hirsuta 0 0 1 1 Oxalidales Elaeocarpeae Tetratheca hirsuta 1 1 0 1 Oxalidales Elaeocarpeae Tetratheca juncea 1 1 1 1 Oxalidales Elaeocarpeae Tetratheca pilosa 0 1 1 0 Oxalidales Oxalidaceae Oxalis corniculata 0 1 0 0 Oxalidales Oxalidaceae Oxalis micrantha 0 1 0 0 Oxalidales Oxalidaceae Oxalis micrantha 0 1 0 0 Oxalidales Oxalidaceae Oxalis micrantha 0 1 0 1 Oxalidales Oxalidaceae Oxalis micrantha 0 1 0 1 Oxalidales Oxalidaceae Oxalis oleoides 0 1 1 0 Oxalidales Oxalidaceae Oxalis oleoides 0 1 1 0 Pinales Cupressaceae Actinostrobus acuminatus 1 1 0 1 Pinales Cupressaceae Juniperus oxycedrus 1 1 0 0 Pinales Cupressaceae Juniperus procera 1 1 1 0 Pinales Cupressaceae Widdringtonia cupressoides 1 1 1 0 131 Texas Tech University, Yanni Chen, May 2014

Pinales Pinaceae Pinus douglasiana 1 1 1 1 Pinales Pinaceae Pinus douglasiana 1 1 1 1 Pinales Pinaceae Pinus douglasiana 1 1 1 1 Pinales Pinaceae Pinus ponderosa 1 1 1 0 Poales Anarthriaceae Lyginia imberis 0 0 0 0 Poales Anarthriaceae Lyginia imberis 0 0 1 0 Poales Chenopodiaceae Atriplex bunburyana 1 1 1 0 Poales Chenopodiaceae Atriplex bunburyana 1 1 2 0 Poales Chenopodiaceae Chenopodium carnatum 0 1 0 0 Poales Chenopodiaceae Einadia nutans 0 1 0 0 Poales Chenopodiaceae Rhagodia baccata 1 1 1 0 Poales Chenopodiaceae Rhagodia baccata 1 1 2 0 Poales Cyperaceae Abildgaardia ovata 0 1 1 0 Poales Cyperaceae Abildgaardia ovata 0 1 1 0 Poales Cyperaceae Baumea nuda 0 1 0 0 Poales Cyperaceae Caustis pentandra 0 1 1 0 Poales Cyperaceae Cyathochaeta avenacea 1 0 0 0 Poales Cyperaceae Cyathochaeta avenacea 1 1 0 0 Poales Cyperaceae Cyathochaeta avenacea 1 0 1 0 Poales Cyperaceae Cyathochaeta avenacea 1 1 1 0 Poales Cyperaceae Cyathochaeta avenacea 1 0 0 1 Poales Cyperaceae Cyathochaeta avenacea 0 0 1 0 Poales Cyperaceae Cyperus aquatilis 0 1 0 0 Poales Cyperaceae Cyperus enervis 0 1 0 0 Poales Cyperaceae Cyperus gracilis 0 1 0 0 Poales Cyperaceae Cyperus rotundus 0 1 1 0 Poales Cyperaceae Cyperus rotundus 0 1 1 0 Poales Cyperaceae Cyperus tetraphyllus 0 1 0 0 Poales Cyperaceae Gahnia decomposita 1 1 0 0 132 Texas Tech University, Yanni Chen, May 2014

Poales Cyperaceae Gahnia radula 0 1 0 0 Poales Cyperaceae Isolepis marginata 0 1 1 1 Poales Cyperaceae Lepidosperma angustatum 1 1 0 0 Poales Cyperaceae Lepidosperma concavum 0 1 1 0 Poales Cyperaceae Lepidosperma gladiatum 1 1 0 0 Poales Cyperaceae Lepidosperma tenue 0 1 0 0 Poales Cyperaceae Schoenus apogon 0 1 0 0 Poales Cyperaceae Schoenus melanostachys 0 1 0 0 Poales Cyperaceae Scleria tricuspidata 0 1 0 0 Poales Cyperaceae Tetraria capillaris 0 0 1 0 Poales Juncaceae Juncus bufonius 0 1 0 0 Poales Juncaceae Juncus bufonius 0 1 0 0 Poales Juncaceae Juncus planifolius 0 0 1 0 Poales Juncaceae Juncus planifolius 0 0 1 0 Poales Poaceae hymenoides 1 1 0 1 Poales Poaceae Achnatherum hymenoides 1 1 1 0 Poales Poaceae Achnatherum occidentalis 1 1 0 1 Poales Poaceae Achnatherum thurberianum 1 1 0 0 Poales Poaceae Aira elegans 0 1 1 0 Poales Poaceae myosuroides 1 1 1 0 Poales Poaceae Alopecurus myosuroides 1 1 2 0 Poales Poaceae Alopecurus myosuroides 1 1 1 1 Poales Poaceae Amphipogon amphipogonoides 1 0 0 0 Poales Poaceae Amphipogon amphipogonoides 1 1 0 1 Poales Poaceae Amphipogon amphipogonoides 1 0 1 0 Poales Poaceae Amphipogon amphipogonoides 1 1 1 0 Poales Poaceae Amphipogon amphipogonoides 1 0 0 1 Poales Poaceae Amphipogon amphipogonoides 0 0 0 1 Poales Poaceae Amphipogon amphipogonoides 0 0 1 1 133

Texas Tech University, Yanni Chen, May 2014

Poales Poaceae Amphipogon turbinatus 1 1 0 0 Poales Poaceae Andropogon ascinodis 1 1 1 0 Poales Poaceae Andropogon ascinodis 1 1 0 0 Poales Poaceae Andropogon gayanus 1 1 1 0 Poales Poaceae Andropogon gayanus 1 1 0 0 Poales Poaceae Andropogon gerardii 1 1 0 0 Poales Poaceae Aristida junciformis 0 1 1 1 Poales Poaceae Aristida junciformis 0 1 1 0 Poales Poaceae Austrodanthonia caespitose 1 0 0 0 Poales Poaceae Austrodanthonia caespitose 1 1 0 1 Poales Poaceae Austrodanthonia caespitose 1 0 1 0 Poales Poaceae Austrodanthonia caespitose 1 1 1 0 Poales Poaceae Austrodanthonia geniculata 0 1 1 0 Poales Poaceae Austrodanthonia racemosa 1 1 1 1 Poales Poaceae Austrodanthonia setacea 0 0 1 1 Poales Poaceae Austrodanthonia setacea 0 0 1 0 Poales Poaceae 1 1 1 1 Poales Poaceae Austrostipa compressa 1 1 1 0 Poales Poaceae Austrostipa compressa 1 1 1 1 Poales Poaceae Austrostipa elegantissima 1 1 2 0 Poales Poaceae Austrostipa macalpinei 1 1 1 1 Poales Poaceae Austrostipa macalpinei 1 1 1 0 Poales Poaceae Avena barbata 0 1 0 1 Poales Poaceae Avena barbata 0 1 0 0 Poales Poaceae Avena barbata 0 1 0 0 Poales Poaceae Avena barbata 0 1 0 0 Poales Poaceae Avena fatua 1 1 1 1 Poales Poaceae Avena fatua 1 1 2 1 Poales Poaceae Avena fatua 1 1 2 1 134 Texas Tech University, Yanni Chen, May 2014

Poales Poaceae Avena fatua 1 1 1 1 Poales Poaceae Avena fatua 1 1 1 1 Poales Poaceae Avena fatua 1 1 2 1 Poales Poaceae Avena fatua 1 1 1 1 Poales Poaceae Avena fatua 1 1 2 1 Poales Poaceae Avena fatua 1 1 1 1 Poales Poaceae 1 1 0 0 Poales Poaceae Avena sterilis 1 1 1 1 Poales Poaceae Boureloua curtipendula 1 1 0 1 Poales Poaceae Boureloua curtipendula 1 1 0 0 Poales Poaceae Bouteloua eriopoda 1 1 0 0 Poales Poaceae Bouteloua gracilis 1 1 0 1 Poales Poaceae Brachiaria distichophylla 1 1 1 0 Poales Poaceae Brachiaria lata 1 1 1 0 Poales Poaceae Bromus berteroanus 0 1 0 1 Poales Poaceae Bromus berteroanus 0 1 0 0 Poales Poaceae Bromus berteroanus 0 1 0 1 Poales Poaceae Bromus berteroanus 0 1 0 0 Poales Poaceae Bromus diandrus 1 1 2 1 Poales Poaceae Bromus diandrus Roth 1 1 1 1 Poales Poaceae Bromus diandrus Roth 1 1 2 0 Poales Poaceae Bromus sterilis 1 1 1 1 Poales Poaceae Bromus sterilis 1 1 2 0 Poales Poaceae 1 1 1 0 Poales Poaceae Bromus tectorum 1 1 2 0 Poales Poaceae Bromus tectorum 1 1 0 0 Poales Poaceae Chasmanthium latifolium 1 1 0 0 Poales Poaceae Chasmopodium caudatum 1 1 0 0 Poales Poaceae Cymbopogon refractus 1 1 1 0 135 Texas Tech University, Yanni Chen, May 2014

Poales Poaceae Cymbopogon schoenanthus 1 1 1 0 Poales Poaceae Cynodon dactylon 0 1 1 0 Poales Poaceae Cynodon dactylon 0 1 1 0 Poales Poaceae Dactylis glomerata 1 1 0 1 Poales Poaceae Danthonia caespitosa 1 0 0 0 Poales Poaceae Danthonia pallida 1 1 1 0 Poales Poaceae Digitaria brownii 0 1 0 0 Poales Poaceae Digitaria brownii 1 1 1 0 Poales Poaceae Digitaria diffusa 0 1 0 1 Poales Poaceae Digitaria eriantha 0 1 1 0 Poales Poaceae Digitaria eriantha 0 1 1 0 Poales Poaceae Digitaria ramularis 0 1 0 1 Poales Poaceae Diheteropogon amplectens 1 1 0 0 Poales Poaceae Diheteropogon amplectens 0 1 1 0 Poales Poaceae Diheteropogon amplectens 0 1 1 0 Poales Poaceae Ehrharat calycina 1 1 1 0 Poales Poaceae Ehrharat calycina 1 1 2 1 Poales Poaceae Elymus elymoides 1 1 0 0 Poales Poaceae Elymus elymoides 1 1 1 0 Poales Poaceae Elymus hystrix 1 1 0 0 Poales Poaceae Eragrostis capensis 0 1 1 0 Poales Poaceae Eragrostis capensis 0 1 1 0 Poales Poaceae Eragrostis cilianensis 0 1 0 1 Poales Poaceae Eragrostis curvula 1 1 2 1 Poales Poaceae Eragrostis curvula 0 1 1 0 Poales Poaceae Eragrostis curvula 0 1 1 0 Poales Poaceae Eragrostis elongata 1 1 1 0 Poales Poaceae Eragrostis leptostachya 0 1 0 1 Poales Poaceae Eragrostis plana 0 1 1 0 136 Texas Tech University, Yanni Chen, May 2014

Poales Poaceae Eragrostis plana 0 1 1 0 Poales Poaceae Eragrostis soraria 0 1 0 1 Poales Poaceae Eragrostis tef 1 1 1 1 Poales Poaceae Eragrostis tef 1 1 2 0 Poales Poaceae Eriochloa pseudoacrotricha 1 1 1 0 Poales Poaceae Euclasta Condylotricha 1 1 1 1 Poales Poaceae Festuca arizonica 1 1 1 0 Poales Poaceae 1 1 0 1 Poales Poaceae Festuca pallescens 1 1 0 0 Poales Poaceae Festuca pallescens 1 1 0 0 Poales Poaceae Festuca pallescens 1 1 0 0 Poales Poaceae 1 1 0 1 Poales Poaceae Heteropogon contortus 0 1 1 0 Poales Poaceae Heteropogon contortus 0 1 1 0 Poales Poaceae Hordeum glaucum 1 1 2 1 Poales Poaceae Hordeum leporinum 1 1 1 1 Poales Poaceae Hordeum leporinum 1 1 2 1 Poales Poaceae Hyparrhenia hirta 0 1 1 0 Poales Poaceae Hyparrhenia hirta 0 1 1 0 Poales Poaceae Imperata cylindrica 0 1 0 0 Poales Poaceae Leymus cinereus 1 1 0 0 Poales Poaceae Lolium rigidum 1 1 2 1 Poales Poaceae Lolium rigidum 1 1 1 0 Poales Poaceae Lolium rigidum 1 1 2 0 Poales Poaceae Lophochloa cristata 0 1 0 0 Poales Poaceae Lophochloa cristata 0 1 0 0 Poales Poaceae Lophochloa cristata 0 1 0 0 Poales Poaceae Lophochloa cristata 0 1 0 0 Poales Poaceae Loudetia togoensis 1 1 1 0 137 Texas Tech University, Yanni Chen, May 2014

Poales Poaceae Melica ciliata 1 1 0 1 Poales Poaceae Microchloa caffra 0 1 1 1 Poales Poaceae Microchloa caffra 0 1 1 0 Poales Poaceae Muhlenbergia wrightii 1 1 1 0 Poales Poaceae Neurachne alopecuroidea 0 1 0 0 Poales Poaceae Neurachne alopecuroidea 1 0 0 0 Poales Poaceae Neurachne alopecuroidea 1 1 0 0 Poales Poaceae Neurachne alopecuroidea 1 0 1 0 Poales Poaceae Neurachne alopecuroidea 1 1 1 0 Poales Poaceae Neurachne alopecuroidea 1 1 0 1 Poales Poaceae Notodanthonia semiannularis 0 0 1 1 Poales Poaceae Notodanthonia semiannularis 0 0 1 0 Poales Poaceae Oplismenus aemulus 0 1 0 1 Poales Poaceae Panicum decompositum 1 1 1 1 Poales Poaceae Panicum effusum 0 1 0 1 Poales Poaceae Panicum effusum 1 1 1 1 Poales Poaceae Panicum maximum 0 1 1 0 Poales Poaceae Panicum maximum 0 1 1 0 Poales Poaceae Pappostipa speciosa 1 1 0 0 Poales Poaceae Paspalidium distans 1 1 1 1 Poales Poaceae Paspalidium distans 0 1 0 1 Poales Poaceae Paspalum notatum 0 1 1 0 Poales Poaceae Paspalum notatum 0 1 1 0 Poales Poaceae Pennisetum clandestinum 0 1 1 0 Poales Poaceae Pennisetum clandestinum 0 1 1 0 Poales Poaceae Phalaris minor 1 1 2 0 Poales Poaceae Phalaris paradoxa 1 1 1 0 Poales Poaceae Phalaris paradoxa 1 1 2 0 Poales Poaceae Phalaris paradoxa 1 1 1 1 138 Texas Tech University, Yanni Chen, May 2014

Poales Poaceae Poa anua 0 1 0 0 Poales Poaceae Poa anua 0 1 0 0 Poales Poaceae Poa anua 0 1 0 1 Poales Poaceae Poa anua 0 1 0 1 Poales Poaceae Poa labillardieri 1 1 1 1 Poales Poaceae Poa secunda 1 1 0 0 Poales Poaceae Poa sieheriana 0 1 1 0 Poales Poaceae 1 1 0 0 Poales Poaceae Rottboellia exaltata 1 1 1 0 Poales Poaceae Rottboellia exaltata 1 1 0 0 Poales Poaceae Schyzachyrium scoparium 1 1 0 0 Poales Poaceae Sorghastrum nutans 1 1 0 0 Poales Poaceae Sorghum halepense 1 1 1 0 Poales Poaceae Sorghum halepense 1 1 2 1 Poales Poaceae Sorghum halepense 1 1 1 1 Poales Poaceae Sporobolus heterolepis 1 1 0 0 Poales Poaceae scabra 1 1 1 1 Poales Poaceae Stipa scabra 1 1 1 1 Poales Poaceae Stipa speciosa 1 1 0 0 Poales Poaceae Stipa speciosa 1 1 0 0 Poales Poaceae caput-medusae 1 1 0 0 Poales Poaceae Tetrarrhena laevis 1 0 0 0 Poales Poaceae Tetrarrhena laevis 1 1 0 0 Poales Poaceae Tetrarrhena laevis 1 0 1 0 Poales Poaceae Tetrarrhena laevis 1 1 1 0 Poales Poaceae Tetrarrhena laevis 1 0 0 1 Poales Poaceae Tetrarrhena laevis 0 0 1 0 Poales Poaceae Themeda triandra 1 1 0 1 Poales Poaceae Themeda triandra 1 1 0 1 139 Texas Tech University, Yanni Chen, May 2014

Poales Poaceae Themeda triandra 1 1 1 1 Poales Poaceae Themeda triandra 1 1 1 1 Poales Poaceae Themeda triandra 0 1 1 1 Poales Poaceae Themeda triandra 0 1 1 1 Poales Poaceae Tristachya leucothrix 0 1 1 0 Poales Poaceae Tristachya leucothrix 0 1 1 0 Poales Poaceae Vulpia bromoides 0 1 0 0 Poales Poaceae Vulpia bromoides 0 1 0 0 Poales Poaceae Vulpia bromoides 0 1 0 1 Poales Poaceae Vulpia bromoides 0 1 0 0 Poales Poaceae Vulpia bromoides 0 0 1 0 Poales Poaceae Vulpia bromoides 0 0 1 0 Poales Poaceae Zea mays 1 1 0 1 Poales Poaceae Zea mays 1 1 1 1 Poales Restionaceae Calopsis impolita 1 1 1 0 Poales Restionaceae Centrolepis aristata 0 1 1 1 Poales Restionaceae Centrolepis aristata 0 1 0 0 Poales Restionaceae Centrolepis strigosa 0 1 1 1 Poales Restionaceae Centrolepis strigosa 0 0 1 0 Poales Restionaceae Centrolepis strigosa 0 0 1 0 Poales Restionaceae Centrolepis strigosa 0 1 0 0 Poales Restionaceae Desmocladus flexuosus 0 0 0 0 Poales Restionaceae Desmocladus flexuosus 0 0 1 0 Poales Restionaceae Hypolaena fastigiata 0 1 1 0 Poales Restionaceae Restio praeacutus 1 1 1 0 Poales Restionaceae Restio similis 1 1 1 0 Poales Restionaceae Staberoha disticha 1 1 1 1 Poales Restionaceae Thamnochortus pellucidus 1 1 1 1 Poales Restionaceae Thamnochortus punctatus 1 1 1 0 140 Texas Tech University, Yanni Chen, May 2014

Proteales Proteaceae Adenanthos barbigerus 0 0 1 0 Proteales Proteaceae Adenanthos cygnorum 0 0 0 1 Proteales Proteaceae Adenanthos cygnorum 0 0 1 1 Proteales Proteaceae 0 0 1 0 Proteales Proteaceae Banksia attenuata 0 0 0 1 Proteales Proteaceae Banksia attenuata 1 1 0 1 Proteales Proteaceae Banksia attenuata 0 0 1 0 Proteales Proteaceae Banksia grandis 1 0 0 1 Proteales Proteaceae Banksia grandis 0 0 0 1 Proteales Proteaceae Banksia grandis 0 0 1 0 Proteales Proteaceae Banksia marginata 0 1 1 0 Proteales Proteaceae Banksia menziesii 0 0 1 0 Proteales Proteaceae Banksia menziesii 0 0 0 0 Proteales Proteaceae Banksia menziesii 1 1 0 1 Proteales Proteaceae Banksia menziesii 0 0 1 0 Proteales Proteaceae Banksia servata 0 1 1 0 Proteales Proteaceae Conospermum huegelii 1 1 0 0 Proteales Proteaceae Conospermum incurvum 1 1 0 1 Proteales Proteaceae Conospermum stoechadis 0 0 0 0 Proteales Proteaceae Conospermum stoechadis 0 0 1 0 Proteales Proteaceae Conospermum stoechadis 1 1 0 0 Proteales Proteaceae Conospermum triplinervium 1 1 0 1 Proteales Proteaceae Conospermum triplinervium 1 1 0 1 Proteales Proteaceae Dryandra nivea 1 0 0 0 Proteales Proteaceae Dryandra nivea 1 1 0 0 Proteales Proteaceae Dryandra nivea 1 0 1 0 Proteales Proteaceae Dryandra nivea 1 1 1 0 Proteales Proteaceae Dryandra nivea 1 0 0 0 Proteales Proteaceae Dryandra sessilis 1 0 0 0 141 Texas Tech University, Yanni Chen, May 2014

Proteales Proteaceae Dryandra sessilis 1 1 0 0 Proteales Proteaceae Dryandra sessilis 1 0 1 0 Proteales Proteaceae Dryandra sessilis 1 1 1 0 Proteales Proteaceae Dryandra sessilis 1 0 0 0 Proteales Proteaceae Grevillea buxifolia 1 1 0 1 Proteales Proteaceae Grevillea buxifolia 1 1 0 1 Proteales Proteaceae Grevillea diffusa 1 1 0 1 Proteales Proteaceae Grevillea diffusa 1 1 0 1 Proteales Proteaceae Grevillea eriostachya 1 1 1 0 Proteales Proteaceae Grevillea eriostachya 1 1 2 0 Proteales Proteaceae Grevillea juniperina 1 1 0 1 Proteales Proteaceae Grevillea juniperina 1 1 0 1 Proteales Proteaceae Grevillea leucopteris 1 1 1 1 Proteales Proteaceae Grevillea leucopteris 1 1 2 1 Proteales Proteaceae Grevillea linearifolia 1 1 0 1 Proteales Proteaceae Grevillea linearifolia 1 1 0 1 Proteales Proteaceae Grevillea linearifolia 1 1 0 1 Proteales Proteaceae Grevillea linearifolia 1 1 0 1 Proteales Proteaceae Grevillea mucronulata 1 1 0 1 Proteales Proteaceae Grevillea mucronulata 1 1 0 1 Proteales Proteaceae Grevillea pilulifera 1 0 0 1 Proteales Proteaceae Grevillea pilulifera 1 1 0 0 Proteales Proteaceae Grevillea pilulifera 1 0 1 1 Proteales Proteaceae Grevillea pilulifera 1 1 1 0 Proteales Proteaceae Grevillea pilulifera 1 0 0 0 Proteales Proteaceae Grevillea pulchella 1 0 0 0 Proteales Proteaceae Grevillea quercifolia 1 0 0 0 Proteales Proteaceae Grevillea scapigera 1 1 1 1 Proteales Proteaceae Grevillea scapigera 1 1 1 0 142 Texas Tech University, Yanni Chen, May 2014

Proteales Proteaceae Grevillea sericea 1 1 0 1 Proteales Proteaceae Grevillea sericea 1 1 0 1 Proteales Proteaceae Grevillea speciosa 1 1 0 1 Proteales Proteaceae Grevillea speciosa 1 1 0 1 Proteales Proteaceae Grevillea wilsonii 1 0 0 0 Proteales Proteaceae Grevillea wilsonii 1 0 0 0 Proteales Proteaceae Grevillea wilsonii 1 0 1 1 Proteales Proteaceae Grevillea wilsonii 1 0 1 0 Proteales Proteaceae Grevillea wilsonii 1 0 0 1 Proteales Proteaceae Grevillea wilsonii 1 0 0 1 Proteales Proteaceae Grevillea wilsonii 1 0 1 1 Proteales Proteaceae Grevillea wilsonii 1 1 0 1 Proteales Proteaceae Hakea amplexicaulis 1 0 0 0 Proteales Proteaceae Hakea cyclocarpa 1 0 0 0 Proteales Proteaceae Hakea lissocarpha 1 0 0 0 Proteales Proteaceae Hakea ruscifolia 1 0 0 0 Proteales Proteaceae Hakea ruscifolia 0 0 1 0 Proteales Proteaceae Hakea stenocarpa 1 0 0 0 Proteales Proteaceae Hakea undulata 1 0 0 1 Proteales Proteaceae Hakea undulata 1 0 0 1 Proteales Proteaceae Hakea undulata 1 0 1 0 Proteales Proteaceae Hakea undulata 0 0 1 0 Proteales Proteaceae Persoonia longifolia 1 0 0 0 Proteales Proteaceae Persoonia longifolia 0 0 1 0 Proteales Proteaceae Persoonia longifolia 1 1 0 0 Proteales Proteaceae Petrophile drummondii 1 1 0 1 Proteales Proteaceae Stirlingia latifolia 1 1 0 0 Proteales Proteaceae Stirlingia latifolia 0 0 1 0 Proteales Proteaceae Stirlingia latifolia 0 0 0 0 143 Texas Tech University, Yanni Chen, May 2014

Proteales Proteaceae Stirlingia latifolia 0 0 1 0 Proteales Proteaceae Stirlingia latifolia 1 1 0 1 Proteales Proteaceae Synaphea acutiloba 1 1 0 0 Proteales Proteaceae Synaphea petiolaris 1 0 0 0 Proteales Proteaceae Synaphea petiolaris 1 1 0 0 Ranunculales Papaveraceae Dendromecon rigida 1 1 1 0 Ranunculales Papaveraceae Dicentra chrysantha 1 1 1 0 Ranunculales Papaveraceae Papaver rhoeas 1 1 1 0 Ranunculales Papaveraceae Papaver rhoeas 1 1 2 1 Ranunculales Papaveraceae Romneya coulteri 1 1 1 1 Ranunculales Ranunculaceae Clematis flammula 1 1 0 0 Ranunculales Ranunculaceae Clematis glycinoides 0 1 0 1 Ranunculales Ranunculaceae Clematis hirsutissima 1 1 1 0 Ranunculales Ranunculaceae Clematis pubescens 1 0 0 1 Ranunculales Ranunculaceae Clematis pubescens 1 1 0 0 Ranunculales Ranunculaceae Clematis pubescens 1 0 1 0 Ranunculales Ranunculaceae Clematis pubescens 1 1 1 0 Ranunculales Ranunculaceae Clematis pubescens 1 0 0 1 Ranunculales Ranunculaceae Clematis vitalba 1 1 0 1 Ranunculales Ranunculaceae Thalictrum fendleri 1 1 1 0 Ranunculales Ranunculaceae Thalictrum fendleri 1 1 1 0 Ranunculales Ranunculaceae Thalictrum fendleri 1 1 1 0 Rhamnales Rhamnaceae Ceanothus americanus 1 1 0 1 Rosales Moraceae Ficus benjamina 0 1 1 0 Rosales Moraceae Ficus benjamina 0 1 1 0 Rosales Moraceae Ficus coronata 0 1 0 0 Rosales Rhamnaceae Colletia hystrix 1 1 0 0 Rosales Rhamnaceae Cryptandra arbutiflora 1 0 0 0 Rosales Rhamnaceae Cryptandra arbutiflora 1 1 0 0 144 Texas Tech University, Yanni Chen, May 2014

Rosales Rhamnaceae Cryptandra arbutiflora 1 0 1 0 Rosales Rhamnaceae Cryptandra arbutiflora 1 1 1 0 Rosales Rhamnaceae Phylica pubescens 1 1 1 0 Rosales Rhamnaceae Pomaderris hamiltonii 1 1 0 1 Rosales Rhamnaceae Rhamnus alaternus 1 1 0 0 Rosales Rhamnaceae Rhamnus alaternus 1 1 0 0 Rosales Rhamnaceae Siegfriedia darwinioides 1 1 0 1 Rosales Rhamnaceae Spyridium globulosum 1 1 0 1 Rosales Rhamnaceae Trevoa quinquenervia 1 1 0 1 Rosales Rhamnaceae Trevoa trinervia 1 1 0 0 Rosales Rhamnaceae Trymalium ledifolium 0 1 0 1 Rosales Rhamnaceae Trymalium ledifolium 1 0 0 0 Rosales Rhamnaceae Trymalium ledifolium 1 1 0 0 Rosales Rhamnaceae Trymalium ledifolium 1 0 1 0 Rosales Rhamnaceae Trymalium ledifolium 1 1 1 0 Rosales Rhamnaceae Trymalium ledifolium 1 0 0 0 Rosales Rhamnaceae Trymalium ledifolium 0 0 0 1 Rosales Rhamnaceae Trymalium ledifolium 0 0 1 1 Rosales fasciculatum 1 1 1 1 Rosales Rosaceae arvensis 0 1 0 1 Rosales Rosaceae Aphanes arvensis 0 1 0 0 Rosales Rosaceae Aphanes arvensis 0 1 0 0 Rosales Rosaceae Aphanes arvensis 0 1 0 0 Rosales Rosaceae Kageneckia angustifolia 1 1 0 1 Rosales Rosaceae Kageneckia oblonga 1 1 0 1 Rosales Rosaceae Potentilla crinita 1 1 1 0 Rosales Rosaceae Potentilla subviscosa 1 1 1 0 Rosales Rosaceae Purshia tridentata 1 1 0 0 Rosales Rosaceae Quillaja saponaria 1 1 0 1 145 Texas Tech University, Yanni Chen, May 2014

Rosales Rosaceae Rosa multibracteata 1 1 1 0 Rosales Rosaceae Rubus arcticus 1 1 1 0 Rosales Rosaceae Rubus caesius 1 1 1 1 Rosales Rosaceae Rubus chamaemorus 1 1 1 0 Rosales Rosaceae Rubus coreanus 1 1 1 1 Rosales Rosaceae Rubus georgicus 1 1 1 1 Rosales Rosaceae Rubus hoffmeisterianus 1 1 1 1 Rosales Rosaceae Rubus leucodermis 1 1 1 1 Rosales Rosaceae Rubus moorei 0 1 0 0 Rosales Rosaceae Rubus niveus 1 1 1 1 Rosales Rosaceae Rubus occidentalis 1 1 1 1 Rosales Rosaceae Rubus odoratus 1 1 1 0 Rosales Rosaceae Rubus parviflorus 1 1 1 0 Rosales Rosaceae Rubus sanctus Schreber 1 1 1 0 Rosales Rosaceae Rubus ursinus 1 1 1 1 Rosales Rosaceae Rubus urticifolius 1 1 1 0 Rosales Rosaceae Sarcopoterium spinosum 1 1 1 1 Rosales Ulmaceae Trema tomentosa 0 1 0 0 Rosales Urticaceae Dendrocnide excelsa 0 1 0 0 Rosales Urticaceae Urtica incisa Poir 0 1 0 0 Rosales Urticaceae Urtica ureas 0 1 0 0 Rosales Urticaceae Urtica ureas 0 1 0 0 Santalales Santalaceae Anthobolus foveolatus 1 1 0 0 Santalales Santalaceae Choretrum glomeratum 1 1 0 0 Santalales Santalaceae Exocarpos sparteus 1 1 0 0 Santalales Santalaceae Leptomeria cunninghamii 1 0 0 0 Santalales Santalaceae Leptomeria cunninghamii 1 1 0 0 Santalales Santalaceae Leptomeria cunninghamii 1 0 1 0 Santalales Santalaceae Leptomeria cunninghamii 1 1 1 0 146

Texas Tech University, Yanni Chen, May 2014

Sapindales Anacardiaceae Litera caustica 1 1 0 1 Sapindales Anacardiaceae Rhus schmidelioides 1 1 1 1 Sapindales Anacardiaceae Rhus schmidelioides 1 1 1 0 Sapindales Anacardiaceae Rhus schmidelioides 1 1 1 0 Sapindales Anacardiaceae Schinus polygamus 1 1 0 0 Sapindales Meliaceae Swietenia macrophylla 1 1 1 1 Sapindales Rutaceae Boronia fastifiata 0 1 0 0 Sapindales Rutaceae Boronia fastifiata 1 0 0 0 Sapindales Rutaceae Boronia fastifiata 0 0 1 1 Sapindales Rutaceae Boronia fastifiata 1 1 0 0 Sapindales Rutaceae Boronia purdieana 0 0 0 0 Sapindales Rutaceae Boronia purdieana 0 0 1 0 Sapindales Rutaceae Boronia ramosa 0 0 0 1 Sapindales Rutaceae Boronia ramosa 0 0 1 1 Sapindales Rutaceae Correa reflexa 0 1 1 0 Sapindales Rutaceae Diplolaena grandiflora 1 1 1 1 Sapindales Rutaceae Diplolaena grandiflora 1 1 2 1 Sapindales Rutaceae Eriostemon spicatus 1 0 0 0 Sapindales Rutaceae Eriostemon spicatus 1 1 0 1 Sapindales Rutaceae Geleznowia verrucosa 1 1 0 1 Sapindales Rutaceae Phebalium anceps 1 1 0 0 Sapindales Rutaceae Philotheca spicata 0 0 1 0 Sapindales Rutaceae Philotheca spicata 1 0 0 0 Sapindales Rutaceae Philotheca spicata 1 1 0 0 Sapindales Rutaceae Philotheca spicata 1 0 1 1 Sapindales Rutaceae Philotheca spicata 1 1 1 0 Saxifragales Crassulaceae Crassula closiana 0 1 1 1 Saxifragales Haloragaceae Glischrocaryon aureum 1 0 0 0 Saxifragales Haloragaceae Glischrocaryon aureum 1 1 0 0 147 Texas Tech University, Yanni Chen, May 2014

Saxifragales Haloragaceae Glischrocaryon aureum 1 0 1 0 Saxifragales Haloragaceae Glischrocaryon aureum 1 1 1 0 Saxifragales Haloragaceae Glischrocaryon aureum 1 0 0 0 Saxifragales Haloragaceae Glischrocaryon aureum 0 0 1 0 Saxifragales Haloragaceae Gonocarpus cordiger 1 0 0 0 Saxifragales Haloragaceae Gonocarpus cordiger 1 1 0 0 Saxifragales Haloragaceae Gonocarpus cordiger 1 0 1 0 Saxifragales Haloragaceae Gonocarpus cordiger 1 1 1 0 Saxifragales Haloragaceae Gonocarpus pithyoides 0 0 0 1 Saxifragales Haloragaceae Gonocarpus pithyoides 0 0 1 1 Solanales Convolvulaceae Convolvulus fruticulosus 1 1 0 0 Solanales Convolvulaceae Convolvulus fruticulosus 1 1 1 0 Solanales Convolvulaceae Convolvulus lanuginosus 1 1 1 0 Solanales Convolvulaceae Dichondra repens 0 1 0 0 Solanales Solanaceae littorea 1 1 1 1 Solanales Solanaceae Anthocercis littorea 1 1 2 1 Solanales Solanaceae Capsicum annuum 1 1 2 1 Solanales Solanaceae Duboisia myoporoides 0 1 0 0 Solanales Solanaceae Lycopersicon esculentum 1 1 1 0 Solanales Solanaceae Lycopersicon esculentum 1 1 2 1 Solanales Solanaceae Nicotiana attenuata 1 1 1 0 Solanales Solanaceae Nicotiana forsteri 0 1 0 0 Solanales Solanaceae Nicotiana linearis 1 1 0 0 Solanales Solanaceae Nicotiana linearis 1 1 0 0 Solanales Solanaceae Solan viarum 1 1 1 1 Solanales Solanaceae Solan viarum 1 1 2 1 Solanales Solanaceae Solanum aphyodendron 1 1 1 1 Solanales Solanaceae Solanum aphyodendron 1 1 1 0 Solanales Solanaceae Solanum aphyodendron 1 1 1 0 148 Texas Tech University, Yanni Chen, May 2014

Solanales Solanaceae Solanum aviculare 0 1 0 0 Solanales Solanaceae Solanum centrale 1 1 1 1 Solanales Solanaceae Solanum centrale 1 1 2 1 Solanales Solanaceae Solanum chippendalei 1 1 1 0 Solanales Solanaceae Solanum chippendalei 1 1 2 0 Solanales Solanaceae Solanum cunninghamii 1 1 1 1 Solanales Solanaceae Solanum cunninghamii 1 1 2 1 Solanales Solanaceae Solanum dioicum 1 1 1 1 Solanales Solanaceae Solanum dioicum 1 1 2 1 Solanales Solanaceae Solanum diversiflorum 1 1 1 0 Solanales Solanaceae Solanum diversiflorum 1 1 2 0 Solanales Solanaceae Solanum ligustrinum 1 1 0 0 Solanales Solanaceae Solanum nigrum 0 1 0 0 Solanales Solanaceae Solanum orbiculatum 1 1 1 1 Solanales Solanaceae Solanum orbiculatum 1 1 2 1 Solanales Solanaceae Solanum orbiculatum 1 1 1 1 Solanales Solanaceae Solanum orbiculatum 1 1 2 1 Solanales Solanaceae Solanum phlomoidess 1 1 1 1 Solanales Solanaceae Solanum phlomoidess 1 1 2 1 Solanales Solanaceae Solanum stelligerum 0 1 0 0 Solanales Solanaceae Solanum sturtianum 1 1 1 0 Solanales Solanaceae Solanum sturtianum 1 1 2 0 Vitales Vitaceae Tetrastigma mitens 0 1 0 0 Zygophyllales Zygophyllaceae Nitraria billardierei 1 1 1 0 Zygophyllales Zygophyllaceae Nitraria billardierei 1 1 2 1 Zygophyllales Zygophyllaceae Zygophyllum fruticulosum 1 1 1 0 Zygophyllales Zygophyllaceae Zygophyllum fruticulosum 1 1 2 0

149 Texas Tech University, Yanni Chen, May 2014 Appendix C Species from Binary Logistic Analysis Species from binary logistic analysis of the relationship species figures (growth form, fire relation, orders) and smoke response to smoke applications. R (Responses): 1 = positive response, negative response and idiosyncratic; 0 = neutral. Non dormant species (germination percentage >75% under control) were not included in the analysis. GF (Growth form): 0 = annual, annual biennial, biennial; 1 = perennial. Species may annual, biennial, perennial are exclude from the analysis. FR (Fire-relationship): 1 = fire related species; 0 = fire free species. SS (Seed source): 1 = individual seeds, 0 = soil seed bank. In/Ex-situ: 1 = Ex-situ, 0 = In-situ. SA (Smoke application): 1 = aqueous smoke solution, 0 = aerial smoke.

In/Ex- Other fire Order Family Species SS GF FR SA R situ cue Apiales Apiaceae Anthriscus caucalis 0 0 0 1 0 none 1 Apiales Apiaceae Anthriscus caucalis 0 0 0 1 0 heat 1 Apiales Apiaceae Bowlesia incana 0 0 0 1 0 none 0 Apiales Apiaceae Bowlesia incana 0 0 0 1 0 heat 0 Apiales Apiaceae Actinotus leucocephalus 1 0 1 1 1 none 1 Apiales Apiaceae Actinotus leucocephalus 1 0 1 1 1 heat 1 Apiales Apiaceae Mulinum spinosum 1 1 1 1 0 none 0 Apiales Apiaceae Mulinum spinosum 1 1 1 1 0 heat 0 Apiales Apiaceae Platysace ericoides 0 1 1 1 1 none 0 Asterales Asteraceae Centaurea melitensis 0 0 0 1 0 none 0 Asterales Asteraceae Centaurea melitensis 0 0 0 1 0 heat 0 Asterales Asteraceae Chrysanthemum segetum 1 0 0 1 1 none 1 Asterales Asteraceae Gamochaeta coarctata 0 0 0 1 0 none 0 Asterales Asteraceae Gamochaeta coarctata 0 0 0 1 0 heat 0 Asterales Asteraceae Logfia gallica 0 0 0 1 0 none 0 Asterales Asteraceae Logfia gallica 0 0 0 1 0 heat 0 Asterales Asteraceae Madia sativa 0 0 0 1 0 none 0 150 Texas Tech University, Yanni Chen, May 2014

Asterales Asteraceae Madia sativa 0 0 0 1 0 heat 0 Asterales Asteraceae Chaenactis artemisiifolia 1 0 1 1 1 none 1 Asterales Asteraceae Arnoglossum atriplicfolium 1 1 1 1 0 none 0 Asterales Asteraceae Boltonia decurrens 1 1 1 1 0 none 0 Asterales Asteraceae Coreopsis lanceolata 1 1 1 1 0 none 1 Asterales Asteraceae Coreopsis lanceolata 1 1 1 1 0 none 1 Asterales Asteraceae Dittrichia viscosa 1 1 1 1 0 none 1 Asterales Asteraceae Echinacea angustifolia 1 1 1 1 0 none 1 Asterales Asteraceae Echinacea angustifolia 1 1 1 1 0 none 0 Asterales Asteraceae Echinacea atrorubens 1 1 1 1 0 none 0 Asterales Asteraceae Echinacea pallida 1 1 1 1 0 none 1 Asterales Asteraceae Echinacea paradoxa 1 1 1 1 0 none 1 Asterales Asteraceae Echinacea purpurea 1 1 1 1 0 none 1 Asterales Asteraceae Echinacea purpurea 1 1 1 1 0 none 1 Asterales Asteraceae Echinacea tennesseensis 1 1 1 1 0 none 1 Asterales Asteraceae Helianthus grosseserratus 1 1 1 1 0 none 0 Asterales Asteraceae Helichrysum aureonitens 1 1 1 1 1 none 1 Asterales Asteraceae Liatris asspera 1 1 1 1 0 none 0 Asterales Asteraceae Liatris mucronata 1 1 1 1 0 none 0 Asterales Asteraceae Liatris pycnostachya 1 1 1 1 0 none 0 Asterales Asteraceae Liatris scariosa 1 1 1 1 0 none 1 Asterales Asteraceae Parthenium integrifolium 1 1 1 1 0 none 1 Asterales Asteraceae Senecio jacobaea 1 1 1 1 0 none 1 Asterales Asteraceae Silphium laciniatum 1 1 1 1 0 none 0 Asterales Asteraceae Solidago rigida 1 1 1 1 0 none 1 Asterales Asteraceae Symphyotrichum laeve 1 1 1 1 0 none 0 Asterales Asteraceae Senecia bracteolatus 1 1 1 1 0 heat 1 151 Texas Tech University, Yanni Chen, May 2014

Asterales Asteraceae Senecia bracteolatus 1 1 1 1 0 none 0 Asterales Calyceraceae Boopis gracilis 1 0 1 1 0 none 0 Asterales Calyceraceae Boopis gracilis 1 0 1 1 0 heat 0 Asterales Goodeniaceae Dampiera soicta 0 1 1 1 1 none 0 Asterales Stylidiaceae Stylidium affine 1 1 1 1 0 none 1 Asterales Stylidiaceae Stylidium crossocephalum 1 1 1 1 0 none 1 Asterales Stylidiaceae Stylidium soboliferum 0 1 1 1 1 none 1 Boraginales Boraginaceae Amsinckia hispida 0 0 0 1 0 none 0 Boraginales Boraginaceae Amsinckia hispida 0 0 0 1 0 heat 0 Boraginales Boraginaceae Cryptantha clevelandi 1 0 1 1 1 none 1 Boraginales Boraginaceae Cryptantha micrantha 1 0 1 1 1 none 1 Boraginales Boraginaceae Eriodictyon crassifolium 1 1 1 1 1 none 1 Boraginales Hydrophyllaceae Emmenanthe penduliflora 1 0 1 1 0 none 1 Boraginales Hydrophyllaceae Emmenanthe penduliflora 1 0 1 1 1 none 1 Boraginales Hydrophyllaceae Eucrypta chrysanthemifolia 1 0 1 1 1 none 1 Boraginales Hydrophyllaceae Phacelia brachyloba 1 0 1 1 1 none 0 Boraginales Hydrophyllaceae Phacelia grandiflora 1 0 1 1 0 none 1 Boraginales Hydrophyllaceae Phacelia grandiflora 1 0 1 1 1 none 1 Boraginales Hydrophyllaceae Phacelia minor 1 0 1 1 1 none 1 Brassicales Brassicaceae Cardamine hirsuta 0 0 0 1 0 none 0 Brassicales Brassicaceae Cardamine hirsuta 0 0 0 1 0 heat 0 Brassicales Brassicaceae Sinapis alba 1 0 0 1 1 none 0 Brassicales Brassicaceae Caulanthus heterophyllus 1 0 1 1 1 none 1 Brassicales Gyrostemonaceae Gyrostemon racemiger 1 1 1 1 1 none 0 Brassicales Gyrostemonaceae Gyrostemon racemiger 1 1 1 1 1 heat 0 Brassicales Gyrostemonaceae Codonocarpus cotinifolius 1 1 1 1 1 none 1 Brassicales Gyrostemonaceae Codonocarpus cotinifolius 1 1 1 1 1 heat 1 152

Texas Tech University, Yanni Chen, May 2014

Caryophyllales Aizoaceae Skiatophytum tripolium 1 0 1 1 1 none 0 Caryophyllales Amaranthaceae Chenopodium album 1 0 0 1 1 none 1 Caryophyllales Caryophyllaceae Silene multinervia 1 0 1 1 1 none 1 Caryophyllales Caryophyllaceae Silene regia 1 1 1 1 0 none 1 Ericales Ericaceae Epacris lanuginosa 1 1 1 1 1 heat 1 Ericales Ericaceae Epacris obtusifolia 1 1 1 1 1 heat 1 Ericales Ericaceae Arctostaphylos pungens 1 1 1 1 0 heat 1 Ericales Ericaceae Arctostaphylos pungens 1 1 1 1 0 heat and 1 charoal Ericales Ericaceae Arctostaphylos viscida 1 1 1 1 1 none 0 Ericales Ericaceae Astroloma pinifolium 0 1 1 1 1 none 0 Ericales Ericaceae Brachyloma daphnoides 0 1 1 1 1 none 0 Ericales Ericaceae Epacris impressa 0 1 1 1 1 none 1 Ericales Ericaceae Epacris impressa 0 1 1 1 1 none 1 Ericales Ericaceae Epacris startii 1 1 1 1 1 none 1 Ericales Ericaceae Epacris startii 1 1 1 1 1 heat 0 Ericales Ericaceae Erica terminalis 1 1 1 1 1 none 1 Ericales Ericaceae Erica umbellata 1 1 1 1 1 none 1 Ericales Ericaceae Leucopogon ericoides 0 1 1 1 1 none 0 Ericales Ericaceae Leucopogon virgatus 0 1 1 1 1 none 0 Ericales Ericaceae Monotoca scoparia 0 1 1 1 1 none 0 Ericales Polemoniaceae Allophyllum glutinosum 1 0 1 1 1 none 1 Ericales Primulaceae Coris monspeliensis 1 1 1 1 1 none 1 Fabales Fabaceae Trifolium glomeratum 0 0 0 1 0 none 0 Fabales Fabaceae Trifolium glomeratum 0 0 0 1 0 heat 0 Fabales Fabaceae Trifolium angustifolium 1 0 1 1 0 none 1 Fabales Fabaceae Baptisia australis 1 1 1 1 0 none 0

153

Texas Tech University, Yanni Chen, May 2014

Fabales Fabaceae Lespedeza capatata 1 1 1 1 0 none 1 Fabales Fabaceae Dillwynia hispida 0 1 1 1 1 none 0 Fabales Fabaceae Acacia angustissima 1 1 1 1 1 heat 1 Fabales Fabaceae Acacia angustissima 1 1 1 1 1 heat and ash 1 Fabales Fabaceae Acacia angustissima 1 1 1 1 1 none 0 Fabales Fabaceae Dalea purpurea 1 1 1 1 0 none 0 Fabales Fabaceae Amorpha canescens 1 1 1 1 0 none 0 Fabales Fabaceae Astragulus canadensis 1 1 1 1 0 none 1 Fabales Fabaceae Acacia catechu 1 1 1 1 0 none 1 Fabales Fabaceae Bauhinia variegata 1 1 1 1 0 none 1 Fabales Fabaceae Dalbergia latifolia 1 1 1 1 0 none 1 Fabales Fabaceae Crotalaria longirostrata 1 1 1 1 1 heat 1 Fabales Fabaceae Crotalaria longirostrata 1 1 1 1 1 heat and ash 1 Fabales Fabaceae Crotalaria longirostrata 1 1 1 1 1 none 0 Fabales Fabaceae Acacia oxycedrus 0 1 1 1 1 none 0 Fabales Fabaceae Anthyllis cytisoides 1 1 1 1 1 none 0 Fabales Fabaceae Anthyllis lagascana 1 1 1 1 1 none 0 Fabales Fabaceae Bossiaea cinerea 0 1 1 1 1 none 0 Fabales Fabaceae Bossiaea heterophylla 0 1 1 1 1 none 0 Fabales Fabaceae Calicotome villosa 1 1 1 1 1 none 0 Fabales Fabaceae Compholobium huegelii 0 1 1 1 1 none 0 Fabales Fabaceae Coronilla minima 1 1 1 1 1 none 0 Fabales Fabaceae Dorycnium pentaphyllum 1 1 1 1 1 none 0 Fabales Fabaceae Genista scorpius 1 1 1 1 1 none 0 Fabales Fabaceae Genista triacanthos 1 1 1 1 1 none 0 Fabales Fabaceae Genista umbellata 1 1 1 1 1 none 0 Fabales Fabaceae Ononis minutissima 1 1 1 1 1 none 0 154

Texas Tech University, Yanni Chen, May 2014

Fabales Fabaceae Retama sphaerocarpa 1 1 1 1 0 none 1 Fabales Fabaceae Ulex borgiae 1 1 1 1 1 none 1 Fabales Fabaceae Ulex parviflorus 1 1 1 1 1 none 0 Fabales Polygonaceae Rumex obtusifolius 1 1 0 1 1 none 0 Fabales Polygonaceae Rumex acetosella 1 1 1 1 0 none 0 Lamiales Lamiaceae Salvia columbariae 1 0 1 1 1 none 1 Lamiales Lamiaceae Pycnanthemum pilosum 1 1 1 1 0 none 0 Lamiales Lamiaceae Salvia farinacea 1 1 1 1 0 none 1 Lamiales Lamiaceae Salvia penstemonoides 1 1 1 1 0 none 0 Lamiales Lamiaceae Monarda fistulosa 1 1 1 1 0 none 1 Lamiales Lamiaceae Trichostema lanatum 1 1 1 1 1 none 0 Lamiales Lamiaceae Lavandula latifolia 1 1 1 1 1 none 1 Lamiales Lamiaceae Lavandula stoechas 1 1 1 1 1 none 1 Lamiales Lamiaceae Lavandula stoechas 1 1 1 1 1 none 0 Lamiales Lamiaceae Rosmarinus officinalis 1 1 1 1 1 none 1 Lamiales Lamiaceae Salvia apiana 1 1 1 1 1 none 1 Lamiales Lamiaceae Salvia leucophylla 1 1 1 1 1 none 1 Lamiales Lamiaceae Salvia mellifera 1 1 1 1 1 none 1 Lamiales Lamiaceae Satureja thymbra 1 1 1 1 1 none 1 Lamiales Lamiaceae Teucrium capitatum 1 1 1 1 1 none 0 Lamiales Lamiaceae Teucrium ronnigeri 1 1 1 1 1 none 1 Lamiales Scrophulariaceae Antirrhinum kelloggii 1 0 1 1 1 none 1 Lamiales Scrophulariaceae Antirrhinum nuttallianum 1 0 1 1 1 none 1 Lamiales Scrophulariaceae Mimulus bolanderi 1 0 1 1 1 none 1 Lamiales Scrophulariaceae Mimulus gracilipes 1 0 1 1 1 none 1 Lamiales Scrophulariaceae Antirrhinum coulterianum 1 0 1 1 1 none 1 Lamiales Scrophulariaceae Penstemon barbatus 1 1 1 1 0 none 0 155

Texas Tech University, Yanni Chen, May 2014

Lamiales Scrophulariaceae Penstemon barbatus 1 1 1 1 1 none 1 Lamiales Scrophulariaceae Penstemon barbatus 1 1 1 1 1 heat 1 Lamiales Scrophulariaceae Penstemon barbatus 1 1 1 1 1 charred wood 0 Lamiales Scrophulariaceae Penstemon cobaea 1 1 1 1 0 none 1 Lamiales Scrophulariaceae Penstemon centranthifolius 1 1 1 1 1 none 1 Lamiales Verbenaceae Tectoma grandis 1 1 1 1 0 none 1 Malvales Cistaceae Cistus incanus 1 1 1 1 0 none 1 Malvales Cistaceae Cistus albidus 1 1 1 1 1 none 0 Malvales Cistaceae Cistus albidus 1 1 1 1 1 none 0 Malvales Cistaceae Cistus creticus 1 1 1 1 1 none 0 Malvales Cistaceae Cistus crispus 1 1 1 1 0 none 1 Malvales Cistaceae Cistus ladanifer 1 1 1 1 0 none 1 Malvales Cistaceae Cistus monspeliensis 1 1 1 1 1 none 0 Malvales Cistaceae Cistus monspeliensis 1 1 1 1 0 none 1 Malvales Cistaceae Cistus salviifolius 1 1 1 1 0 none 1 Malvales Cistaceae Cistus salviifolius 1 1 1 1 1 none 0 Malvales Cistaceae Cistus salviifolius 1 1 1 1 1 none 0 Malvales Cistaceae Fumana ericoides 1 1 1 1 1 none 0 Malvales Cistaceae Fumana ericoides 1 1 1 1 1 none 0 Malvales Cistaceae Fumana thymifolia 1 1 1 1 1 none 0 Malvales Cistaceae Fumana thymifolia 1 1 1 1 1 none 0 Malvales Cistaceae Helianthemum syriacum 1 1 1 1 1 none 0 Malvales Cistaceae Xolantha tuberaria 1 1 1 1 1 none 0 Malvales Malvaceae Fremontodendron 1 1 1 1 1 none 0 californicum Malvales Malvaceae Malacothamnus fremontii 1 1 1 1 1 none 0 Myrtales Myrtaceae Calytrix breviseta 0 1 1 0 1 none 1

156 Texas Tech University, Yanni Chen, May 2014

Myrtales Myrtaceae Calytrix tetragona 0 1 1 1 1 none 0 Myrtales Myrtaceae Eucalyptus viminalis 0 1 1 1 1 none 0 Myrtales Myrtaceae Leptospermum cominentale 0 1 1 1 1 none 0 Myrtales Myrtaceae Leptospermum myrsinoides 0 1 1 1 1 none 1 Myrtales Myrtaceae Leptospermum myrsinoides 0 1 1 1 1 none 1 Myrtales Onagraceae Camissonia californica 1 0 1 1 1 none 1 Myrtales Onagraceae Epilobium glandulosum 1 1 1 1 0 none 1 Poales Cyperaceae Caustis pentandra 0 1 1 1 1 none 0 Poales Cyperaceae Lepidosperma concavum 0 1 1 1 1 none 0 Poales Cyperaceae Isolepis marginata 0 0 1 1 1 none 1 Poales Poaceae Alopecurus myosuroides 1 0 0 1 1 none 0 Poales Poaceae Avena barbata 0 0 0 1 0 none 1 Poales Poaceae Avena barbata 0 0 0 1 0 heat 0 Poales Poaceae Avena fatua 1 0 0 1 1 none 1 Poales Poaceae Bromus berteroanus 0 0 0 1 0 none 1 Poales Poaceae Bromus berteroanus 0 0 0 1 0 heat 0 Poales Poaceae Bromus sterilis 1 0 0 1 1 none 1 Poales Poaceae Bromus tectorum 1 0 0 1 1 none 0 Poales Poaceae Lophochloa cristata 0 0 0 1 0 none 0 Poales Poaceae Lophochloa cristata 0 0 0 1 0 heat 0 Poales Poaceae Phalaris paradoxa 1 0 0 1 1 none 0 Poales Poaceae Poa anua 0 0 0 1 0 none 0 Poales Poaceae Poa anua 0 0 0 1 0 heat 0 Poales Poaceae Vulpia bromoides 0 0 0 1 0 none 0 Poales Poaceae Vulpia bromoides 0 0 0 1 0 heat 0 Poales Poaceae Zea mays 1 0 0 1 0 none 1 Poales Poaceae Zea mays 1 0 0 1 1 none 1 157

Texas Tech University, Yanni Chen, May 2014

Poales Poaceae Sorghum halepense 1 1 0 1 1 none 0 Poales Poaceae Aira elegans 0 0 1 1 1 none 0 Poales Poaceae Brachiaria distichophylla 1 0 1 1 1 none 0 Poales Poaceae Brachiaria lata 1 0 1 1 1 none 0 Poales Poaceae Dactylis glomerata 1 0 1 1 0 none 1 Poales Poaceae Euclasta Condylotricha 1 0 1 1 1 none 1 Poales Poaceae Loudetia togoensis 1 0 1 1 1 none 0 Poales Poaceae Rottboellia exaltata 1 0 1 1 1 none 0 Poales Poaceae Andropogon ascinodis 1 1 1 1 1 none 0 Poales Poaceae Andropogon gayanus 1 1 1 1 1 none 0 Poales Poaceae Andropogon gerardii 1 1 1 1 0 none 0 Poales Poaceae Boureloua curtipendula 1 1 1 1 0 none 1 Poales Poaceae Boureloua curtipendula 1 1 1 1 0 none 0 Poales Poaceae Bouteloua eriopoda 1 1 1 1 0 none 0 Poales Poaceae Bouteloua gracilis 1 1 1 1 0 none 1 Poales Poaceae Chasmanthium latifolium 1 1 1 1 0 none 0 Poales Poaceae Cymbopogon schoenanthus 1 1 1 1 1 none 0 Poales Poaceae Elymus hystrix 1 1 1 1 0 none 0 Poales Poaceae Festuca pallescens 1 1 1 1 0 none 0 Poales Poaceae Pappostipa speciosa 1 1 1 1 0 none 0 Poales Poaceae Sorghastrum nutans 1 1 1 1 0 none 0 Poales Poaceae Sporobolus heterolepis 1 1 1 1 0 none 0 Poales Poaceae Stipa speciosa 1 1 1 1 0 none 0 Poales Poaceae Stipa speciosa 1 1 1 1 0 heat 0 Poales Poaceae Themeda triandra 1 1 1 1 0 none 1 Poales Poaceae Themeda triandra 1 1 1 1 0 none 1 Poales Poaceae Themeda triandra 1 1 1 1 1 none 1 158 Texas Tech University, Yanni Chen, May 2014

Poales Poaceae Themeda triandra 1 1 1 1 1 none 1 Poales Poaceae Austrostipa compressa 1 0 1 1 1 heat 1 Poales Poaceae Austrostipa compressa 1 0 1 1 1 none 0 Poales Poaceae Schyzachyrium scoparium 1 1 1 1 0 none 0 Poales Restionaceae Centrolepis aristata 0 0 1 1 1 none 1 Poales Restionaceae Hypolaena fastigiata 0 1 1 1 1 none 0 Proteales Proteaceae Grevillea linearifolia 1 1 1 1 0 none 1 Proteales Proteaceae Grevillea linearifolia 1 1 1 1 0 heat 1 Proteales Proteaceae Grevillea scapigera 1 1 1 1 1 heat 1 Proteales Proteaceae Grevillea scapigera 1 1 1 1 1 none 0 Proteales Proteaceae Stirlingia latifolia 1 1 1 1 0 none 0 Proteales Proteaceae Conospermum triplinervium 1 1 1 1 0 none 1 Proteales Proteaceae Banksia marginata 0 1 1 1 1 none 0 Proteales Proteaceae Banksia servata 0 1 1 1 1 none 0 Ranunculales Papaveraceae Papaver rhoeas 1 0 0 1 1 none 0 Ranunculales Papaveraceae Dicentra chrysantha 1 1 1 1 1 none 0 Ranunculales Papaveraceae Dendromecon rigida 1 1 1 1 1 none 0 Ranunculales Papaveraceae Romneya coulteri 1 1 1 1 1 none 1 Ranunculales Ranunculaceae Clematis vitalba 1 1 1 1 0 none 1 Rosales Rhamnaceae Ceanothus americanus 1 1 1 1 0 none 1 Rosales Rosaceae Aphanes arvensis 0 0 0 1 0 heat 1 Rosales Rosaceae Aphanes arvensis 0 0 0 1 0 none 0 Rosales Rosaceae 1 1 1 1 1 none 1 Rosales Rosaceae Sarcopoterium spinosum 1 1 1 1 1 none 1 Solanales Convolvulaceae Convolvulus lanuginosus 1 1 1 1 1 none 0 Solanales Solanaceae Nicotiana linearis 1 0 1 1 0 none 0 Solanales Solanaceae Nicotiana linearis 1 0 1 1 0 heat 0 159 Texas Tech University, Yanni Chen, May 2014

Solanales Solanaceae Solanum aphyodendron 1 1 1 1 1 heat and ash 1 Solanales Solanaceae Solanum aphyodendron 1 1 1 1 1 none 0 Solanales Solanaceae Solanum aphyodendron 1 1 1 1 1 heat 0

160