Introduced and Indigenous Fungi of the Ross Island Historic Huts and Pristine Areas of Antarctica

Total Page:16

File Type:pdf, Size:1020Kb

Introduced and Indigenous Fungi of the Ross Island Historic Huts and Pristine Areas of Antarctica Polar Biol DOI 10.1007/s00300-011-1060-8 ORIGINAL PAPER Introduced and indigenous fungi of the Ross Island historic huts and pristine areas of Antarctica R. L. Farrell • B. E. Arenz • S. M. Duncan • B. W. Held • J. A. Jurgens • R. A. Blanchette Received: 12 February 2011 / Revised: 20 June 2011 / Accepted: 29 June 2011 Ó Springer-Verlag 2011 Abstract This review summarizes research concerning historic sites, and one historic site showed noticeably higher Antarctic fungi at the century-old historic huts of the Heroic diversity, which led to the conclusion that this is a variable Period of exploration in the Ross Dependency 1898–1917 that should not be generalized. Cultured fungi were cold and fungi in pristine terrestrial locations. The motivation of active, and the broader scientific significance of this finding the research was initially to identify potential fungal causes was that climate change (warming) may not adversely affect of degradation of the historic huts and artifacts. The these fungal species unless they were out-competed by new research was extended to study fungal presence at pristine arrivals or unfavorable changes in ecosystem domination sites for comparison purposes and to consider the role of occur. fungi in the respective ecosystems. We employed classical microbiology for isolation of viable organisms, and culture- Keywords Terrestrial Á Climate change Á Biodiversity Á independent DNA analyses. The research provided baseline Adaptation data on microbial biodiversity. Principal findings were that there is significant overlap of the yeasts and filamentous fungi isolated from the historic sites, soil, and historic- Introduction introduced materials (i.e., wood, foodstuffs) and isolated from environmental samples in pristine locations. Aerial Fungi have been isolated from a wide variety of locations spore monitoring confirmed that winter spore counts were in Antarctica (Vishniac 1996). Onofri et al. (2004) reported high and, in some cases, similar to those found in summer. that in Antarctica, 0.6% of the known fungal species were Microbial diversity varied between the three Ross Island water molds (kingdom Chromista) and 99.4% were com- posed of true fungi including yeasts (unicellular organisms) and filamentous fungi from the phyla Chytidiomycota, This article is an invited contribution on Global Tipping Points Zygomycota, Ascomycota, and Basidiomycota. Paleobio- (Global Change and Antarctic Terrestrial Biodiversity) and part of the logical and paleoecological investigations have demon- SCAR EBA program. I. Hogg and D. Wall (Guest Editors). strated the presence of Antarctic fossil fungal biota (Taylor and White 1989). Diversity of fungi in the fossil record of R. L. Farrell (&) Á S. M. Duncan Department of Biological Sciences, The University of Waikato, the Triassic and Jurassic Periods, as well as the potential Private Bag 3105, Hamilton 3240, New Zealand relationships that existed among the major groups of fungi, e-mail: [email protected] was described by Taylor and White (1989) and included ancestors of endogonaceous mycorrhizal associations, B. E. Arenz Á B. W. Held Á J. A. Jurgens Á R. A. Blanchette Department of Plant Pathology, University of Minnesota, which are widespread today. However, the presence of St Paul, MN 55108, USA fungi in extensively degraded organic material (e.g., peat) suggested that they were primarily saprophytic and func- Present Address: tioned as major decomposers (Kidston and Lang 1921; S. M. Duncan Department of Bioproducts and Biosystems Engineering, Stubblefield and Taylor 1983; White and Taylor 1988). University of Minnesota, St. Paul, MN 55108, USA Taylor and White (1989) introduced the hypothesis that the 123 Polar Biol fungi in the fossil record were terrestrial saprophytes, decades of human activities have affected these areas. As degrading organic materials, and evolved on shorelines and Discovery Hut is in close proximity (\500 m) of McMurdo in swamps, where organic materials accumulated prior to Station, possible inputs to this site unique from the other the evolution of land plants. historic sites included windblown debris and foot traffic. Non-Antarctic organic materials were introduced, along Early work on the fungi found in association with the with new exotic micro-organisms, so-called aliens that Heroic Era historic huts focused on the long-term survival either resided on or had colonized the organic materials, of organisms in the food supplies and the horse-associated with the establishment of the base sites of the Heroic Era of materials (Meyer et al. 1962, 1963; Nedwell et al. 1994). exploration. The first confirmed and undisputed human Long-term survival of any fungi in Antarctica required landing in Antarctica was 1895 when a Norwegian whaling capability to exist and proliferate in Antarctic conditions, expedition landed at Cape Adare. One of the Norwegians, temperature being a major but not the only consideration. Carston Borchgrevink, returned to lead the Southern Cross Cold tolerant organisms were capable of regeneration at Expedition (1898–1900), and its remnant prefabricated cold temperatures and were defined by Gerday et al. (1997) huts, named after Borchgrevink’s mother ‘‘Camp Ridley,’’ as psychrophiles or psychrotrophs. A psychrophile was make Antarctica the only continent with its original defined as an organism capable of growth at or below 0°C dwellings still extant. The British National Antarctic but unable to grow above 20°C, whereas a psychrotroph (Discovery) Expedition (1901–1904) led by Robert F. Scott was capable of growth at around 0°C and also grew well assembled a prefabricated wooden building of timber that above 20°C (Gerday et al. 1997). Many fungi isolated in originated from Australia, commonly referred to as Dis- Antarctica were cold tolerant strains of mesophiles adapted covery Hut, at Hut Point on Ross Island to shelter and store to grow at temperatures as low as 1°C (Kerry 1990; Azmi supplies for 48 men for 3 years. Discovery Hut was used and Seppelt 1998). Thomas-Hall et al. (2010) described extensively by the latter expeditions in the Heroic Era as a three novel cold-adapted yeasts found in Antarctica, which key stepping-stone to the southern latitudes and a shelter were also found in the Italian Alps, and psychrophilic for those who returned from the South. The British Ant- yeasts were isolated from Antarctica as described by di arctic (Nimrod) Expedition (1907–1909), led by Ernest Menna (1960). Recently, Xiao et al. (2010) reported the Shackleton, followed in 1908 with a prefabricated building psychrophilic ascomycete species, Antarctomyces psych- from East London, England, the Nimrod Hut, which was rotrophicus, isolated from the soils of the maritime and assembled at Cape Royds to house a shore party of 15 men. continental areas of Antarctica, suggesting a wide distri- Scott returned in 1911 on the ill-fated British Antarctic bution of this fungal species in Antarctica. (Terra Nova) Expedition (1910–1913). This 25-person This review summarizes our understanding of cold expedition erected a large prefabricated building, Terra adaptation, diversity, proliferation and impact of Antarctic Nova Hut, which originated from London, England, at fungi, from studies of pristine terrestrial locations and at the Cape Evans to provide accommodation and an additional century-old historic huts of the Heroic Period of exploration smaller structure that was framed in wood and lined with in the Ross Dependency. Much of the review is taken from asbestos sheeting for taking magnetic observations. the results of research conducted between 1999 and 2011, The Heroic Era expeditions had the primary goals to which focused on the deterioration and conservation of the discover new land and to be the first to reach the Geo- historic sites and environs. The research additionally graphic South Pole, the South Magnetic Pole as well as addressed understanding the diversity and mechanisms of address scientific objectives. When the expeditions ended cold adaptation and proliferation of Antarctic fungi, using a and the relief ships arrived, a rapid exodus allowed only multidisciplinary approach including microbiology, bio- essential items to be returned to England. The huts and chemistry, genetics, molecular biology, geochemistry, thousands of items including food stores and fuel depots geomorphology, and bio-geography, and using molecular with unused containers of petroleum products, asbestos techniques to compare the identified fungi of pristine sites materials, and diverse chemicals were left behind and introduced historic huts/artifacts, characterizing their (Blanchette et al. 2004a). The three Ross Island historic activities and main roles in these environments. huts were subsequently occupied by Shackleton’s Ross Sea party (under Aeneas Mackintosh) in 1915–1917. The huts were abandoned when the last expeditions left in 1917 and Results and discussion were not revisited until 1947. After establishment of the United States (later named) McMurdo Station in 1955, the Study locations and methodology ‘‘Heroic Era’’ huts were visited periodically until the early 1960’s. Since then, conservators, tourists, base staff, and Samples were taken from the environment (soils, scoria, scientists have visited the huts regularly. Accordingly, sandstone, quartz, moss, air, feathers, fecal material, and 123 Polar Biol melt water) and Heroic Era-introduced non-Antarctic bags or tubes and stored at below 0°C until processed in materials (wood, straw, paper, boxes, rope, burlap, textiles,
Recommended publications
  • Bitter Rot of Apples
    Bitter Rot of Apples: Recent Changes in What We Know and Implications for Disease Management (A review of recent literature and perspectives on what we still need to learn) Compiled for a presentation at the Cumberland-Shenandoah Fruit Workers Conference in Winchester, VA, December 1-2, 2016 Dave Rosenberger, Plant Pathologist and Professor Emeritus Cornell’s Hudson Valley Lab, Highland, NY Apple growers, private consultants, and extension specialists have all noted that bitter rot is increasingly common and is causing sporadic but economically significant losses throughout the northeastern and north central apple growing regions of North America. Forty years ago, bitter rot was considered a “southern disease” and apples with bitter rot were rarely observed in northern production regions. Four factors have probably contributed to the increasing incidence of bitter rot in these regions. First, as a result of global warming, we have more days during summer with warm wetting events that are essential for initiating bitter rot infections and perhaps for increasing inoculum within orchards before the bitter rot pathogens move to apple fruit. Second, some new cultivars (e.g., Honeycrisp) are very susceptible to infection. Third, we are also growing more late-maturing cultivars such as Cripps Pink that may be picked in early November, and these cultivars may need additional fungicide sprays during September and/or early October if they are to be fully protected from bitter rot. Finally, mancozeb fungicides are very effective against Colletotrichum species, and the season-long use of mancozeb may have suppressed Colletotrichum populations in apple orchards prior to 1990 when the mancozeb labels were changed to prohibit applications during summer (i.e., within 77 days of harvest).
    [Show full text]
  • Preliminary Classification of Leotiomycetes
    Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades.
    [Show full text]
  • Pygoscelis Adeliae) Faeces Sampled at the Cape Crozier Colony, Antarctica
    Journal of General Virology (2014), 95, 1352–1365 DOI 10.1099/vir.0.064436-0 A novel papillomavirus in Ade´lie penguin (Pygoscelis adeliae) faeces sampled at the Cape Crozier colony, Antarctica Arvind Varsani,1,2,3 Simona Kraberger,1 Scott Jennings,4 Elizabeth L. Porzig,5 Laurel Julian,1 Melanie Massaro,6 Annie Pollard,5 Grant Ballard7 and David G. Ainley5 Correspondence 1School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Arvind Varsani Private Bag 4800, Christchurch 8140, New Zealand [email protected] 2Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA 3Electron Microscope Unit, Division of Medical Biochemistry, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, 7700, South Africa 4Department of Fisheries and Wildlife, Oregon Cooperative Fish and Wildlife Research Unit, US Geological Survey, Oregon State University, Corvallis, OR, USA 5HT Harvey and Associates, Los Gatos, CA 95032, USA 6School of Environmental Sciences, Charles Sturt University, Albury, NSW 2640, Australia 7Point Blue Conservation Science, Petaluma, CA 94954, USA Papillomaviruses are epitheliotropic viruses that have circular dsDNA genomes encapsidated in non-enveloped virions. They have been found to infect a variety of mammals, reptiles and birds, but so far they have not been found in amphibians. Using a next-generation sequencing de novo assembly contig-informed recovery, we cloned and Sanger sequenced the complete genome of a novel papillomavirus from the faecal matter of Ade´lie penguins (Pygoscelis adeliae) nesting on Ross Island, Antarctica. The genome had all the usual features of a papillomavirus and an E9 ORF encoding a protein of unknown function that is found in all avian papillomaviruses to date.
    [Show full text]
  • <I>Cryptosporiopsis Ericae</I>
    MYCOTAXON Volume 112, pp. 457–461 April–June 2010 Cadophora malorum and Cryptosporiopsis ericae isolated from medicinal plants of the Orchidaceae in China Juan Chen, Hai-Ling Dong, Zhi-Xia Meng & Shun-Xing Guo* [email protected] Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, & Peking Union Medical College Beijing 100194, P. R. China Abstract —Two species in the anamorphic genera Cadophora and Cryptosporiopsis are newly recorded as endophytes from medicinal plants of the Orchidaceae in China. Cadophora malorum was isolated from a stem of Bletilla striata in Hubei Province, and Cryptosporiopsis ericae from a root of Spiranthes sinensis in Tibet. These are the first records of these fungi from plants of the Orchidaceae. Key words — endophytic fungi, taxonomy Introduction Orchids are unique among plants in their modes of nutrition (myco- heterotrophy) involving direct and often obligate relationships with fungi (Leake 1994). Thus, fungi are critical for an orchid’s growth and development. Orchid mycorrhizas have been historically regarded as the third distinct structural lineage of mycorrhizas in addition to ecto-related and arbuscular mycorrhizas (Imhof 2009). Recently, non-mycorrhizal endophytic fungi associated with orchids have been shown to serve as potential growth promoters and source of bioactivity substances (Guo & Wang 2001), implying further application in the fields of cultivation and natural medicine. During a survey of endophytic fungi associated with traditional medicinal plants of Bletilla striata (Thunb.) Rchb.f. and Spiranthes sinensis (Pers.) Ames (Orchidaceae) in China, Cadophora malorum and Cryptosporiopsis ericae were isolated from plant tissues. These are the first records of these anamorphic species from orchids.
    [Show full text]
  • Passenger Logbook: Expedition Antarctica
    Logbook HAN 1601 Expedition Antarctica The World’s Southernmost Nursery USHUAIA – USHUAIA 10th – 28th January 2016 aboard MS HANSEATIC South Georgia Island (Mount Paget is the rounded dome on the left, Grytviken is hidden out of sight in a harbor; photo January 2014). Text: Richard MacDonald Photographs: Richard MacDonald & lecturer staff “One hand for the boat.” 2 MS HANSEATIC MS Hanseatic anchored New Island, Falkland Islands, 12 January 2016. Built: March 1993 Registered Port: Nassau Flag: Bahamas Weight: 8,378 GRT Overall length: 122.80 m/403 ft Beam: 18 m/59 ft Draught: 4.91 m/16 ft Main Engines: 2 MAK 8M453 C 2 x 2,940 kW 2 Propellers CP, 300 cm Speed: 16 knots Complement: 171 passengers 125 officers and crew 3 DECK & ENGINE CREW Ship’s Officers Captain: Thilo Natke Chief Officer: Nicole Schnell Chief Engineer: Giulio Vlacic Hotel Manager: Doris Adler Maître d’hôtel: Mirko Kirchhöfer Ship’s Surgeon: Dr. Ursula Bellut Chief Purser: Hendrik Fongern Chief Chef: Udo Grigas Pianist Magdelena Majerovả The shore party prepares to greet the first Zodiac of passengers landing at Whaler’s Bay, Deception Island, Antarctica. 4 HOTEL & EXPEDITION STAFF Cruise Director: Ulrike Schleifenbaum Hostess: Bettina Schlennstedt Cruise Sales Birgit Volberg Zodiac driver: Claas Stanko Expedition Leader: Dr. Arne Kertelhein Lecturer (climate & glaciology): Dr. Gerit Birnbaum Lecturer (geology): Heike Fries Lecturer (polar history): Dr. Arne Kertelhein Lecturer (polar history): Dr. Hans-Joachim “HaJo” Lauenstein Lecturer (biology): Richard MacDonald Lecturer (biology): Sylvia Stevens Your Expedition Lecturer Team for Hanseatic Cruise 1601 (from left to right): Sylvia Stevens, Gerit Birnbaum, Heike Fries, HaJo Lauenstein, Richard MacDonald, and Arne Kertelhein.
    [Show full text]
  • Fungi Occurring on Waterhyacinth
    J. Aquat. Plant Manage. 50: 25-32 Fungi occurring on waterhyacinth (Eichhornia crassipes [Martius] Solms-Laubach) in Niger River in Mali and their evaluation as mycoherbicides KARIM DAGNO, RACHID LAHLALI, MAMOUROU DIOURTÉ, AND M. HAÏSSAM JIJAKLI1 ABSTRACT enabling the breeding of mosquitoes, bilharzias, and other human parasites (Adebayo and Uyi 2010). Water quality is We recovered 116 fungal isolates in 7 genera from water- affected as well, by the increasing accumulation of detritus hyacinth plants having pronounced blight symptoms col- in the water (Morsy 2004). Fishing can be affected because lected in Mali. Isolation frequency of the genera was Cur- of the competitive advantage given to trash fish species in vularia (60.32%), Fusarium (42.92%), Alternaria (11.6%), weed-infested waters. In many instances, fish are killed when Coniothyrium (11.6%), Phoma (3.48%), Stemphylium (3.48%), oxygen levels are depleted through plant respiration and de- and Cadophora (1.16%). On the basis of in vivo pathogenicity composition of senescent vegetation. The waterhyacinth in- tests in which the diseased leaf area percentage and disease festation is particularly severe in the Delta of Niger and in all severity were visually estimated using a disease severity index, irrigation systems of the Office of Niger (ON) according to three isolates, Fusarium sp. Mln799, Cadophora sp. Mln715, Dembélé (1994). Several billion dollars are spent each year and Alternaria sp. Mlb684 caused severe disease. These were by the Office du Niger and Energie du Mali to control this later identified asGibberella sacchari Summerell & J.F. Leslie, weed in the Niger River (Dagno et al.
    [Show full text]
  • Cadophora Margaritata Sp. Nov. and Other Fungi Associated with the Longhorn Beetles Anoplophora Glabripennis and Saperda Carcharias in Finland
    Antonie van Leeuwenhoek https://doi.org/10.1007/s10482-018-1112-y ORIGINAL PAPER Cadophora margaritata sp. nov. and other fungi associated with the longhorn beetles Anoplophora glabripennis and Saperda carcharias in Finland Riikka Linnakoski . Risto Kasanen . Ilmeini Lasarov . Tiia Marttinen . Abbot O. Oghenekaro . Hui Sun . Fred O. Asiegbu . Michael J. Wingfield . Jarkko Hantula . Kari Helio¨vaara Received: 25 January 2018 / Accepted: 7 June 2018 Ó Springer International Publishing AG, part of Springer Nature 2018 Abstract Symbiosis with microbes is crucial for obtained from Populus tremula colonised by S. survival and development of wood-inhabiting long- carcharias, and Betula pendula and Salix caprea horn beetles (Coleoptera: Cerambycidae). Thus, infested by A. glabripennis, and compared these to the knowledge of the endemic fungal associates of insects samples collected from intact wood material. This would facilitate risk assessment in cases where a new study detected a number of plant pathogenic and invasive pest occupies the same ecological niche. saprotrophic fungi, and species with known potential However, the diversity of fungi associated with insects for enzymatic degradation of wood components. remains poorly understood. The aim of this study was Phylogenetic analyses of the most commonly encoun- to investigate fungi associated with the native large tered fungi isolated from the longhorn beetles revealed poplar longhorn beetle (Saperda carcharias) and the an association with fungi residing in the Cadophora– recently introduced Asian longhorn beetle (Ano- Mollisia species complex. A commonly encountered plophora glabripennis) infesting hardwood trees in fungus was Cadophora spadicis, a recently described Finland. We studied the cultivable fungal associates fungus associated with wood-decay.
    [Show full text]
  • Fungal Biodiversity in Extreme Environments and Wood Degradation Potential
    http://waikato.researchgateway.ac.nz/ Research Commons at the University of Waikato Copyright Statement: The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). The thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: Any use you make of these documents or images must be for research or private study purposes only, and you may not make them available to any other person. Authors control the copyright of their thesis. You will recognise the author’s right to be identified as the author of the thesis, and due acknowledgement will be made to the author where appropriate. You will obtain the author’s permission before publishing any material from the thesis. Fungal biodiversity in extreme environments and wood degradation potential A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biological Sciences at The University of Waikato by Joel Allan Jurgens 2010 Abstract This doctoral thesis reports results from a multidisciplinary investigation of fungi from extreme locations, focusing on one of the driest and thermally broad regions of the world, the Taklimakan Desert, with comparisons to polar region deserts. Additionally, the capability of select fungal isolates to decay lignocellulosic substrates and produce degradative related enzymes at various temperatures was demonstrated. The Taklimakan Desert is located in the western portion of the People’s Republic of China, a region of extremes dominated by both limited precipitation, less than 25 mm of rain annually and tremendous temperature variation.
    [Show full text]
  • November 1960 I Believe That the Major Exports of Antarctica Are Scientific Data
    JIET L S. Antarctic Projects OfficerI November 1960 I believe that the major exports of Antarctica are scientific data. Certainly that is true now and I think it will be true for a long time and I think these data may turn out to be of vastly, more value to all mankind than all of the mineral riches of the continent and the life of the seas that surround it. The Polar Regions in Their Relation to Human Affairs, by Laurence M. Gould (Bow- man Memorial Lectures, Series Four), The American Geographiql Society, New York, 1958 page 29.. I ITOJ TJM II IU1viBEt 3 IToveber 1960 CONTENTS 1 The First Month 1 Air Operations 2 Ship Oper&tions 3 Project MAGNET NAF McMurdo Sounds October Weather 4 4 DEEP FREEZE 62 Volunteers Solicited A DAY AT TEE SOUTH POLE STATION, by Paul A Siple 5 in Antarctica 8 International Cooperation 8 Foreign Observer Exchange Program 9 Scientific Exchange Program NavyPrograrn 9 Argentine Navy-U.S. Station Cooperation 9 10 Other Programs 10 Worlds Largest Aircraft in Antarctic Operation 11 ANTARCTICA, by Emil Schulthess The Antarctic Treaty 11 11 USNS PRIVATE FRANIC 3. FETRARCA (TAK-250) 1961 Scientific Leaders 12 NAAF Little Rockford Reopened 13 13 First Flight to Hallett Station 14 Simmer Operations Begin at South Pole First DEEP FREEZE 61 Airdrop 14 15 DEEP FREEZE 61 Cargo Antarctic Real Estate 15 Antarctic Chronology,. 1960-61 16 The 'AuuOiA vises to t):iank Di * ?a]. A, Siple for his artj.ole Wh.4b begins n page 5 Matera1 for other sections of bhis issue was drawn from radio messages and fran information provided bY the DepBr1nozrt of State the Nat0na1 Academy , of Soienoes the NatgnA1 Science Fouxidation the Office 6f NAval Re- search, and the U, 3, Navy Hydziograpbio Offioe, Tiis, issue of tie 3n oovers: i16, aótivitiès o events 11 Novóiber The of the Uxitéd States.
    [Show full text]
  • Windmill Islands 15 60 Island 40
    110°30'0"E 110°40'0"E 2 71 72 73 74 4 7 5 000 76 77 78 79 4 8 0 000 81 82 83 84 4 8 5 000 86 87 88 89 20 4 9 0 000 S " 0 ' S " 4 0 2 ' ° 4 Churchill Point 2 0 6 2 4 6 ° 0 6 0 0 0 6 0 0 0 6 0 41 6 0 5 6 5 0 3 47 3 6 6 2 2 13 2 0 Ford Island 4 11 Herring Island 0 6 0 1 8 1 0 82 6 CACHEF IRBF1 0 0 6 1 1 0 6 2 4 47 0 81 1 51 0 78 4 0 0 4 8 0 0 Cloyd Island 4 6 0 0 2 0 0 4 4 Holl 2 0 4 3 0 20 20 3 Island 0 TNGN 6 O'Connor Island 0 4 90 0 0.3° Werlein 2 Windmill Islands 15 60 Island 40 3 0 IRBH1 99° 2 Map 3 of 5 3 3 P E T E R S O N 3 0 2 0 2 MN 4 Edition 2 0 True, Grid and Magnetic North 40 Horizontal Datum: WGS84 are shown diagrammatically for 48 Zimmerman Island E G L A C I E R the centre of this series of maps. Sack Island G Projection: UTM Zone 49 Magnetic North is correct for A 2 1 0.5 0 1 2 2 S 3 3 2007 and moves westerly by S 49 " Km 0 ' S " S about 0.12° per year.
    [Show full text]
  • A 9000-Year Record of Adélie Penguin Occupation and Diet in the Windmill Islands, East Antarctica STEVEN D
    Antarctic Science 17 (1): 57–66 (2005) © Antarctic Science Ltd Printed in the UK DOI: 10.1017/S0954102005002427 A 9000-year record of Adélie penguin occupation and diet in the Windmill Islands, East Antarctica STEVEN D. EMSLIE1 and ERIC J. WOEHLER2 1University of North Carolina, Department of Biological Sciences, 601 S. College Road, Wilmington, NC 28403, USA 2Australian Antarctic Division, Channel Highway, Kingston, TAS 7050, Australia [email protected] Abstract: We investigated 17 abandoned Adélie penguin (Pygoscelis adeliae) colonies in the Windmill Islands, East Antarctica, in summer 2002/03. Forty radiocarbon dates on penguin bones and eggshells from 13 of these sites indicate a near continuous occupation by breeding penguins in this region for over 9000 years. These dates refine the recent geological record in this region and indicate that deglaciation of the northern islands occurred much earlier than previously suggested. Dietary remains from these sites include at least 23 taxa of cephalopods and teleost fish. Quantification of these remains indicates significant fluctuations in the relative abundance of two of the more common major prey taxa. The Antarctic silverfish (Pleuragramma antarcticum Boulenger) was the most common teleost prey during all time periods represented by the ages of the sites, but preservational factors may explain a gradual decrease in the remains of this species in increasingly older sites. The most common cephalopod in the sediments was the squid, Psychroteuthis glacialis Thiele, which occurred in low numbers in most sites except one (Site 75). An unusually high number of squid beaks preserved in Site 75, dating to approximately 5700–6100 cal. yr BP, does not correlate with a decrease in fish prey at that time.
    [Show full text]
  • The Root-Symbiotic Rhizoscyphus Ericae Aggregate and Hyaloscypha (Leotiomycetes) Are Congeneric: Phylogenetic and Experimental Evidence
    available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 92: 195–225 (2019). The root-symbiotic Rhizoscyphus ericae aggregate and Hyaloscypha (Leotiomycetes) are congeneric: Phylogenetic and experimental evidence J. Fehrer1*,3,M.Reblova1,3, V. Bambasova1, and M. Vohník1,2 1Institute of Botany, Czech Academy of Sciences, 252 43 Průhonice, Czech Republic; 2Department of Plant Experimental Biology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic *Correspondence: J. Fehrer, [email protected] 3These authors contributed equally to the paper. Abstract: Data mining for a phylogenetic study including the prominent ericoid mycorrhizal fungus Rhizoscyphus ericae revealed nearly identical ITS sequences of the bryophilous Hyaloscypha hepaticicola suggesting they are conspecific. Additional genetic markers and a broader taxonomic sampling furthermore suggested that the sexual Hyaloscypha and the asexual Meliniomyces may be congeneric. In order to further elucidate these issues, type strains of all species traditionally treated as members of the Rhizoscyphus ericae aggregate (REA) and related taxa were subjected to phylogenetic analyses based on ITS, nrLSU, mtSSU, and rpb2 markers to produce comparable datasets while an in vitro re-synthesis experiment was conducted to examine the root-symbiotic potential of H. hepaticicola in the Ericaceae. Phylogenetic evidence demonstrates that sterile root-associated Meliniomyces, sexual Hyaloscypha and Rhizoscyphus, based on R. ericae, are indeed congeneric. To this monophylum also belongs the phialidic dematiaceous hyphomycetes Cadophora finlandica and Chloridium paucisporum. We provide a taxonomic revision of the REA; Meliniomyces and Rhizoscyphus are reduced to synonymy under Hyaloscypha. Pseudaegerita, typified by P. corticalis, an asexual morph of H. spiralis which is a core member of Hyaloscypha, is also transferred to the synonymy of the latter genus.
    [Show full text]