TW2866C Datasheet

Total Page:16

File Type:pdf, Size:1020Kb

TW2866C Datasheet DATASHEET TW2866C FN8253 4-Channel Video Decoders and Audio Codecs and Rev. 0.00 February 3, 2012 Video Encoder for Security Application The TW2866 includes four high quality Provides multi-channel audio mixed analog NTSC/PAL/SECAM video decoders that convert output analog composite video signal to digital Supports I2S/DSP Master/Slave interface for component YCbCr data for security applications. record output and playback input Each channel contains 10 bit ADC and proprietary clamp and gain controllers and PCM 8/16 bit and u-Law/A-Law 8bit for audio utilizes 4H comb filter for separating luminance word length & chrominance to reduce cross noise artifacts. The TW2866 adopts the image enhancement Programmable audio sample rate that covers techniques, such as IF compensation filter, CTI popular frequencies of 8/16/32/44.1/48kHz and programmable peaking. TW2866 also Supports a two-wire serial host interface includes one NTSC/PAL video encoder with two 10 bit DAC’s to support CVBS and YC output. The Integrated one video encoder and two10 bit TW2866 also includes audio CODEC, which has video CMOS DACs. five audio Analog-to-Digital converters and one Integrated clock PLL for 108MHz clock output. Digital-to-Analog converter. A built-in audio controller can generate digital outputs for Ultra low power consumption (Typical recording/mixing and accepts digital input for 666.84mW) playback. 128 pin LQFP package Features Accepts all NTSC(M/4.43) / PAL(B/D/G/H/I/K/L/M/N/60)/SECAM standards with auto detection Integrated four video analog anti-aliasing filters and 10 bit CMOS ADCs High performance adaptive 4H comb filters for all NTSC/PAL standards IF compensation filter for improvement of color demodulation Color Transient Improvement (CTI) Automatic white peak control Programmable hue, saturation, contrast, brightness and sharpness Proprietary fast video locking system for non- realtime application Supports the standard ITU-R BT.656 format or time multiplexed output with 54/108MHz Provides simultaneous four channel Full D1 and CIF time-multiplexed outputs with 54MHz. Integrated five audio ADCs and one audio DAC FN8253 Rev. 0.00 Page 1 of 143 February 3, 2012 TW2866C Block Diagram X VIN1A 4H Comb e VD1[7:0] 6 c U AADDCC 5 Video Decoder a f 6 M VD2[7:0] r VIN1B . e T t VD3[7:0] B n I AIN1 AADDCC Decimation Filter VD4[7:0] e MPP1 c P a X VIN2A f MPP2 P 4H Comb r U ADC ADC e M Video Decoder t M MPP3 VIN2B n I MPP4 AIN2 AADDCC Decimation Filter r L CLKPOn o L t k P a c r XTO k o e l c n X o VIN3A C XTI l 4H Comb e U AADDCC C Video Decoder G VIN3B M CLKNOn e c t SCLK a s AIN3 AADDCC Decimation Filter f r o e SDAT H t n I IRQ VIN4A X 4H Comb U AADDCC Video Decoder ACLKR VIN4B M ASYNR ADATR AIN4 AADDCC Decimation Filter e c ADATM a S f r 2 I e ACLKP t n I ASYNP AIN5 Decimation Filter ADC ADATP AOUT DAC Interpolation Filter VYOUT DAC Digital Video ENCLK Encoder ED[7:0] VCOUT DAC Ordering Information PART PART PACKAGE PKG. NUMBER MARKING (Pb-free) DWG. # TW2866-LC1-CR TW2866 LC1-CR 128 Ld LQFP Q128.14x14 NOTE: 1. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb- free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. FN8253 Rev. 0.00 Page 2 of 143 February 3, 2012 TW2866C 0x06(CH1)/0x16(CH2)/0x26(CH3)/0x36(Ch4) – Hue Control Table of Contents Register .................................................................................. 61 0x07(CH1)/0x17(CH2)/0x27(CH3)/0x37(CH4) – Cropping Pin Diagram ...................................................................................... 5 Register, High ........................................................................ 62 Pin Descriptions .............................................................................. 6 0x08(CH1)/0x18(CH2)/0x28(CH3)/0x38(CH4) – Vertical Analog Video/Audio Interface Pins ..................................................... 6 Delay Register, Low .............................................................. 62 Digital Video/Audio Interface Pins ....................................................... 7 0x09(CH1)/0x19(CH2)/0x29(CH3)/0x39(CH4) – Vertical System Control Pins .............................................................................. 8 Active Register, Low ............................................................. 62 Power and Ground Pins ........................................................................ 9 0x0A(CH1)/0x1A(CH2)/0x2A(CH3)/0x3A(CH4) – Horizontal Functional Description ................................................................. 10 Delay Register, Low .............................................................. 62 Video Input Formats ............................................................................. 10 0x0B(CH1)/0x1B(CH2)/0x2B(CH3)/0x3B(CH4) – Horizontal Analog Frontend ................................................................................... 11 Active Register, Low ............................................................. 63 Decimation Filter ................................................................................. 12 0x0C(CH1)/0x1C(CH2)/0x2C(CH3)/0x3C(CH4) – Automatic Gain Control and Clamping ............................................ 13 Macrovision Detection .......................................................... 63 Sync Processing ................................................................................... 13 0x0D(CH1)/0x1D(CH2)/0x2D(CH3)/0x3D(CH4) – Chip Y/C Separation ....................................................................................... 13 STATUS II .............................................................................. 63 Color Decoding ..................................................................................... 15 0x0E(CH1)/0x1E(CH2)/0x2E(CH3)/0x3E(CH4) – Standard Chrominance Demodulation ............................................................. 15 Selection................................................................................. 64 ACC (Automatic Color gain control) ................................................. 16 0x0F(CH1)/0x1F(CH2)/0x2F(CH3)/0x3F(CH4) – Standard Chrominance Processing ................................................................... 16 Recognition ............................................................................ 65 Chrominance Gain, Offset and Hue Adjustment ............................ 16 0xE4(CH1)/0xE7(CH2)/0xEA(CH3)/0xED(CH4) – Vertical CTI (Color Transient Improvement).................................................. 16 Scaling Register, Low ........................................................... 65 Luminance Processing ....................................................................... 16 0xE5(CH1)/0xE8(CH2)/0xEB(CH3)/0xEE(CH4) – Scaling Video Cropping ..................................................................................... 17 Register, High ........................................................................ 65 VDELAY + VACTIVE < Total number of lines per field......................... 17 0xE6(CH1)/0xE9(CH2)/0xEC(CH3)/0xEF(CH4) – Horizontal Video Scaler ........................................................................................... 18 Scaling Register, Low ........................................................... 65 Output Format ....................................................................................... 21 0xA4(CH1)/0xA5(CH2)/0xA6(CH3)/0xA7(CH4) – ID ITU-R BT.656 Format ........................................................................ 21 Detection Control ................................................................... 66 Two Channel ITU-R BT.656 Time-multiplexed Format with 0xC4(CH1)/0xC5(CH2)/0xC6(CH3)/0xC7(CH4) – H monitor ....... 66 54MHz.................................................................................... 22 0x80 – Software Reset Control Register .......................................... 66 Four Channel CIF Time-multiplexed Format with 54MHz ............. 23 0x81 – Analog Control Register ........................................................ 67 Four Channel D1 Time-division-multiplexed Format with 0x82 – Analog Control Reister2 ........................................................ 67 108MHz ................................................................................. 25 0x83 – Control Register I ................................................................... 68 Output Enabling Act ........................................................................... 27 0x84 – Color Killer Hysteresis Control Register ............................... 68 Video Output Channel Selection ...................................................... 27 0x85 – Vertical Sharpness ................................................................ 68 Extra Sync Output .............................................................................. 27 0x86 – Coring Control Register ......................................................... 69 Video Encoder ....................................................................................... 30 0x87 – Clamping Gain ....................................................................... 69 Output Standard Selection ................................................................ 30 0x88 – Individual AGC Gain .............................................................
Recommended publications
  • "(222A. A772AMMAY Sept
    Sept. 29, 1959 L. DIETCH 2,906,814 SIGNAL OPERATED AUTOMATIC COLOR KILLER SYSTEM Filed April 28, l955 2. Sheets-Sheet l AAW22 a a2 aa’ a2/2 ass 122A 2 ASAf MaaZ AVA272M 77AAF42 4. A (So a 72.7 3.39 M269 22 66 (ol) (4) (C) -- - - - Hí2.É.-aws7 (a) A38 INVENTOR. Aawaz A7cay Aza y "(222a. A772AMMAY Sept. 29, 1959 L, DIETCH 2,906,814 SIGNAL OPERATED AUTOMATIC COLOR KILLER SYSTEM Filed April 28, 1955 2 Sheets-Sheet 2 |- 2,906,814 United States Patent Office Patented Sept. 29, 1959 1. 2 the phase of the sync bursts with the phase of the locally produced wave to derive a correction voltage for con trolling the frequency and phase of the oscillator which 2,906,814 produces the reference wave at the receiver. It is SIGNAL OPERATED AUTOMATIC COLOR desirable that synchronization of the receiver's color KILLERSYSTEM reference oscillator have been effected before the chro minance channel is activated, in order to prevent the Leonard Dietch, Haddonfield, N.J., assignor to Radio production of spurious color information pending such Corporation of America, a corporation of Delaware synchronization. Application April 28, 1955, Serial No. 504,503 O It is, therefore, a primary object of the present inven tion to provide new and improved automatic color chan 4 Claims. (C. 178-5.4) nel disabling means. Another object of the invention is the provision of automatic color channel disabling means, the operation The present invention relates to circuitry for automati 15 of which is correlated with the action of the receiver cally switching between two modes of operation and, color.
    [Show full text]
  • Tv Signal Processor for Multi System
    To our customers, Old Company Name in Catalogs and Other Documents On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding. Renesas Electronics website: http://www.renesas.com April 1st, 2010 Renesas Electronics Corporation Issued by: Renesas Electronics Corporation (http://www.renesas.com) Send any inquiries to http://www.renesas.com/inquiry. Notice 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples.
    [Show full text]
  • Video Compression for New Formats
    ANNÉE 2016 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Bretagne Loire pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : Traitement du Signal et Télécommunications Ecole doctorale Matisse présentée par Philippe Bordes Préparée à l’unité de recherche UMR 6074 - INRIA Institut National Recherche en Informatique et Automatique Adapting Video Thèse soutenue à Rennes le 18 Janvier 2016 devant le jury composé de : Compression to new Thomas SIKORA formats Professeur [Tech. Universität Berlin] / rapporteur François-Xavier COUDOUX Professeur [Université de Valenciennes] / rapporteur Olivier DEFORGES Professeur [Institut d'Electronique et de Télécommunications de Rennes] / examinateur Marco CAGNAZZO Professeur [Telecom Paris Tech] / examinateur Philippe GUILLOTEL Distinguished Scientist [Technicolor] / examinateur Christine GUILLEMOT Directeur de Recherche [INRIA Bretagne et Atlantique] / directeur de thèse Adapting Video Compression to new formats Résumé en français Adaptation de la Compression Vidéo aux nouveaux formats Introduction Le domaine de la compression vidéo se trouve au carrefour de l’avènement des nouvelles technologies d’écrans, l’arrivée de nouveaux appareils connectés et le déploiement de nouveaux services et applications (vidéo à la demande, jeux en réseau, YouTube et vidéo amateurs…). Certaines de ces technologies ne sont pas vraiment nouvelles, mais elles ont progressé récemment pour atteindre un niveau de maturité tel qu’elles représentent maintenant un marché considérable, tout en changeant petit à petit nos habitudes et notre manière de consommer la vidéo en général. Les technologies d’écrans ont rapidement évolués du plasma, LED, LCD, LCD avec rétro- éclairage LED, et maintenant OLED et Quantum Dots. Cette évolution a permis une augmentation de la luminosité des écrans et d’élargir le spectre des couleurs affichables.
    [Show full text]
  • SAF7115 Multistandard Video Decoder with Super-Adaptive Comb Filter
    SAF7115 Multistandard video decoder with super-adaptive comb filter, scaler and VBI data read-back via I2C-bus Rev. 01 — 15 October 2008 Product data sheet 1. General description The SAF7115 is a video capture device that, due to its improved comb filter performance and 10-bit video output capabilities, is suitable for various applications such as In-car video reception, In-car entertainment or In-car navigation. The SAF7115 is a combination of a two channel analog preprocessing circuit and a high performance scaler. The two channel analog preprocessing circuit includes source-selection, an anti-aliasing filter and Analog-to-Digital Converter (ADC) per channel, an automatic clamp and gain control, two Clock Generation Circuits (CGC1 and CGC2) and a digital multi standard decoder that contains two-dimensional chrominance/luminance separation utilizing an improved adaptive comb filter. The high performance scaler has variable horizontal and vertical up and down scaling and a brightness/contrast/saturation control circuit. The decoder is based on the principle of line-locked clock decoding and is able to decode the color of PAL, SECAM and NTSC signals into ITU-601 compatible color component values. The SAF7115 accepts CVBS or S-video (Y/C) from TV or VCR sources as analog inputs, including weak and distorted signals. The expansion port (X-port) for digital video (bi-directional half duplex, D1 compatible) can be used to either output unscaled video using 10-bit or 8-bit dithered resolution or to connect to other external digital video sources for reuse of the SAF7115 scaler features. The enhanced image port (I-port) of the SAF7115 supports 8-bit and 16-bit wide output data with auxiliary reference data for interfacing, e.g.
    [Show full text]
  • AN9717: Ycbcr to RGB Considerations (Multimedia)
    YCbCr to RGB Considerations TM Application Note March 1997 AN9717 Author: Keith Jack Introduction Converting 4:2:2 to 4:4:4 YCbCr Many video ICs now generate 4:2:2 YCbCr video data. The Prior to converting YCbCr data to R´G´B´ data, the 4:2:2 YCbCr color space was developed as part of ITU-R BT.601 YCbCr data must be converted to 4:4:4 YCbCr data. For the (formerly CCIR 601) during the development of a world-wide YCbCr to RGB conversion process, each Y sample must digital component video standard. have a corresponding Cb and Cr sample. Some of these video ICs also generate digital RGB video Figure 1 illustrates the positioning of YCbCr samples for the data, using lookup tables to assist with the YCbCr to RGB 4:4:4 format. Each sample has a Y, a Cb, and a Cr value. conversion. By understanding the YCbCr to RGB conversion Each sample is typically 8 bits (consumer applications) or 10 process, the lookup tables can be eliminated, resulting in a bits (professional editing applications) per component. substantial cost savings. Figure 2 illustrates the positioning of YCbCr samples for the This application note covers some of the considerations for 4:2:2 format. For every two horizontal Y samples, there is converting the YCbCr data to RGB data without the use of one Cb and Cr sample. Each sample is typically 8 bits (con- lookup tables. The process basically consists of three steps: sumer applications) or 10 bits (professional editing applica- tions) per component.
    [Show full text]
  • 1966 1967 Color
    A HOWARD W. SAMS PUBLICATION NOVEMBER 1966150¢ PF Reporter® the magazine of electronic servicing r 1966 JANUARY AUGUST 2,400,000 color sets sold Know Your 1967 Color Circuits r 1 Servicing Bandpass Amplifiers L . r r plus... 01101,;aa t;It,rA r.u-)V3 ,a.,,,1- .3 Color Chaos A:.; Remote Control Pay TV 7: 3, '; v`. _ 3 r, ^ki New Tube & Transistor Data l FARALc'GR riazi, Improves Color Reception Three Ways 1. Plus GAIN-to provide sharper directivity to Plus -300 and 75 ohm outputs for match to either eliminate multipath reception. twinlead or coax. And full, flat gain over the entire FM band. 2. Plus FLATNESS-to eliminate tilts which cause incorrect colors on the TV screen. Industry Plus these quality mechanical features: Self-clean- experts say that color antennas must be flat within ing wedge -snap locks that tighten with vibration, ±2 db. Paralog-Plus antennas are flat within +1 Cycolac insulators to eliminate cumbersome cross db per channel. feed points, Golden Armor coating, Square boom construction, One-piece antenna array-and more. 3. Plus MATCH -to prevent color -distorting phase shifts. Check on how these plus features can help make plus profits for you. See your Jerrold distributor, The unique feature of the Paralog-Plus is a or write: BI MODAL DIRECTOR system. Its parasitic ele- ments combine two hi -band directors into a single director covering all to -band channels, plus the DISTRIBUTOR SALES DIVISION entire FM band. Thus, more of the elements work 401 Walnut St., Phila., Pa. 19105 to bring in any given channel.
    [Show full text]
  • TW9900 Data Short
    DATA SHORT To request the full datasheet, please visit www.intersil.com/products/TW9900 TW9900 FN7767 Low Power NTSC/PAL/SECAM Video Decoder with VBI Slicer Rev 5.00 April 7, 2016 The TW9900 is a low power NTSC/PAL/SECAM video decoder Features chip that is designed for portable applications. It consumes less than 100mW in typical composite input applications. The Video Decoder available power-down mode further reduces the power consumption. It uses the 1.8V for both analog and digital • NTSC (M, 4.43) and PAL (B, D, G, H, I, M, N, N combination), supply voltage and 3.3V for I/O power. A single 27MHz crystal PAL (60), SECAM support with automatic format detection is all that is needed to decode all analog video standards. • Software selectable analog inputs allow any of the following The video decoder decodes the baseband analog CVBS or combinations, e.g., 2 CVBS or 1 Y/C S-video signals into digital 8-bit 4:2:2 YCbCr for output. It • Built-in analog anti-alias filter consists of analog front-end with input source selection, • Two 10-bit ADCs and analog clamping circuit variable gain amplifier and analog-to-digital converters, Y/C separation circuit, multi-standard color decoder (PAL BGHI, • Fully programmable static gain or automatic gain control for PAL M, PAL N, combination PAL N, NTSC M, NTSC 4.43 and the Y-channel SECAM) and synchronization circuitry. The Y/C separation is • Programmable white peak control for the Y-channel done with high quality adaptive 4H comb filter for reduced • 4-H adaptive comb filter Y/C separation cross color and cross luminance.
    [Show full text]
  • 12-Bit, Integrated, Multiformat SDTV/HDTV Video Decoder and RGB Graphics Digitizer
    12-Bit, Integrated, Multiformat SDTV/HDTV Video Decoder and RGB Graphics Digitizer Data Sheet ADV7403 FEATURES GENERAL DESCRIPTION 4 Noise Shaped Video (NSV)® 12-bit analog-to-digital The ADV7403 is a high quality, single chip, multiformat video converters (ADCs) sampling up to 140 MHz (140 MHz decoder and graphics digitizer. This multiformat decoder supports speed grade only) the conversion of PAL, NTSC, and SECAM standards in the Mux with 12 analog input channels form of composite or S-Video into a digital ITU-R BT.656 format. SCART fast blank support The ADV7403 also supports the decoding of a component Internal antialias filters RGB/YPrPb video signal into a digital YCrCb or RGB pixel output NTSC/PAL/SECAM color standards support stream. The support for component video includes standards 525p/625p component progressive scan support such as 525i, 625i, 525p, 625p, 720p, 1080i, 1250i, and many 720p/1080i component HDTV support other HD and SMPTE standards. Graphic digitization is also Digitizes RGB graphics up to 1280 × 1024 at 75 Hz (SXGA) supported by the ADV7403; it is capable of digitizing RGB (140 MHz speed grade only) graphics signals from VGA to SXGA rates and converting them 24-bit digital input port supports data from DVI/HDMI into a digital RGB or YCrCb pixel output stream. SCART and receiver IC overlay functionality are enabled by the ability of the ADV7403 Any-to-any, 3 × 3 color-space conversion matrix to simultaneously process CVBS and standard definition RGB Industrial temperature range: −40°C to +85°C signals. The fast blank pin controls the mixing of these signals.
    [Show full text]
  • SAA7114 PAL/NTSC/SECAM Video Decoder with Adaptive PAL/NTSC Comb filter, VBI Data Slicer and High Performance Scaler Rev
    SAA7114 PAL/NTSC/SECAM video decoder with adaptive PAL/NTSC comb filter, VBI data slicer and high performance scaler Rev. 03 — 17 January 2006 Product data sheet 1. General description The SAA7114 is a video capture device for applications at the image port of Video Graphics Array (VGA) controllers. The SAA7114 is a combination of a two-channel analog preprocessing circuit including source selection, anti-aliasing filter and Analog-to-Digital Converter (ADC), an automatic clamp and gain control, a Clock Generation Circuit (CGC), a digital multistandard decoder containing two-dimensional chrominance/luminance separation by an adaptive comb filter and a high performance scaler, including variable horizontal and vertical up and downscaling and a brightness, contrast and saturation control circuit. It is a highly integrated circuit for desktop video and similar applications. The decoder is based on the principle of line-locked clock decoding and is able to decode the color of PAL, SECAM and NTSC signals into ITU 601 compatible color component values. The SAA7114 accepts CVBS or S-video (Y/C) as analog inputs from TV or VCR sources, including weak and distorted signals. An expansion port (X port) for digital video (bidirectional half duplex, D1 compatible) is also supported to connect to MPEG or a video phone codec. At the so called image port (I port) the SAA7114 supports 8-bit or 16-bit wide output data with auxiliary reference data for interfacing to VGA controllers. The target application for the SAA7114 is to capture and scale video images, to be provided as a digital video stream through the image port of a VGA controller, for display via the frame buffer of the VGA, or for capture to system memory.
    [Show full text]
  • BT 656 DECODER BT.656 Decoder with Colour-Space Converter Key
    BT_656_DECODER BT.656 Decoder with Colour-Space Converter Rev. 1.4 Key Design Features Block Diagram ● Synthesizable, technology independent VHDL Core ● Converts industry standard BT.656 digital video to 24-bit RGB ● Integrated 4:2:2 YCbCr to RGB888 colour-space converter ● Both PAL and NTSC (576i and 480i) input formats supported ● All signals synchronous with the pixel clock ● Small implementation size ideal for all types of FPGA ● Compatible with a wide range of SD video decoder ICs Applications ● BT.656 input video capture and processing Figure 1: BT.656 Decoder architecture ● PAL & NTSC SDTV interlaced format conversion General Description ● Connectivity with a wide range of commercially available video decoder ICs BT_656_DECODER (Figure 1) is a digital video decoder with integrated ● Simple and cost-effective method for capturing digital video into colour-space converter. It's function is to extract the valid pixels from a your FPGA or ASIC BT.656 video stream and convert them to 24-bit RGB for subsequent processing. Generic Parameters Video decoding begins after reset is de-asserted and on the rising-edge of clk when the video_val signal is asserted high. (The signal video_val is a clock-enable signal that enables the sampling and processing of each input byte). Generic name Description Type Valid range mode Input video mode integer 0: PAL (576i) Pixels are extracted from the BT.656 input stream and converted to 1: NTSC (480i) RGB888 format. These pixels are then presented at the output of the decoder together with field and sync flags. All signals are synchronous with the input clock.
    [Show full text]
  • 10-Bit, 4× Oversampled SDTV Video Decoder with Deinterlacer ADV7280
    10-Bit, 4× Oversampled SDTV Video Decoder with Deinterlacer Data Sheet ADV7280 FEATURES APPLICATIONS Worldwide NTSC/PAL/SECAM color demodulation support Smartphone/multimedia handsets One 10-bit analog-to-digital converter (ADC), 4× oversampling Automotive infotainment per channel for CVBS, Y/C, and YPrPb modes DVRs for video security Analog video input channels with on-chip antialiasing filter Media players ADV7280: up to 4 input channels GENERAL DESCRIPTION ADV7280-M: up to 8 input channels Video input support for CVBS (composite), Y/C (S-Video), The ADV7280/ADV7280-M are versatile one-chip, multiformat and YPrPb (component) video decoders. The ADV7280/ADV7280-M automatically detect NTSC/PAL/SECAM autodetection standard analog baseband video signals compatible with worldwide Up to 1.47 V common-mode input range solution NTSC, PAL, and SECAM standards in the form of composite, Excellent common-mode noise rejection capabilities S-Video, and component video. 5-line adaptive 2D comb filter and CTI video enhancement The ADV7280 converts the analog video signals into a YCrCb Adaptive Digital Line Length Tracking (ADLLT), signal 4:2:2 video data stream that is compatible with the 8-bit ITU-R processing, and enhanced FIFO management provide BT.656 interface standard. The ADV7280-M converts the analog mini-time base correction (TBC) functionality video signals into an 8-bit YCrCb 4:2:2 video data stream that is Integrated automatic gain control (AGC) with adaptive output over a mobile industry processor interface (MIPI®) CSI-2 peak white mode interface. Fast switching capability Integrated interlaced-to-progressive (I2P) video output The analog video inputs of the ADV7280/ADV7280-M accept converter single-ended signals.
    [Show full text]
  • YCS 100 N High Quality Digital Decoder with Video Decoder & Encoder Time Base Stabilization N Decodes Composite Video Into S-Video
    SIGNAL PROCESSORS YCS 100 n High quality digital decoder with VIDEO DECODER & ENCODER time base stabilization n Decodes composite video into S-video n Encodes S-video into composite video n Simultaneous composite video and S-video output n Buffered loop-throughs for local video monitoring n Compatible with NTSC, PAL, and SECAM video signals n Compact, rack-mountable metal enclosure The Extron YCS 100 is a video transcoder that decodes composite video into S-video, and encodes S-video into composite video. It is ideal for applications requiring video signal conversion, such as conference rooms, classrooms, video production facilities, and residential entertainment systems. www.extron.com DESCRIPTION SPECIFICATIONS (CONT.) The Extron YCS 100 combines a composite video to S-video decoder and an S-video to composite video encoder in a single enclosure. It automatically Minimum/maximum levels ..................... Analog: 0.3 V to 1.5 Vp-p for Y with no offset at detects NTSC, PAL, and SECAM format video signals, and simultaneously unity gain outputs composite video and S-video to allow for recording and display at Impedance ............................................ 75 ohms the same time. The YCS 100 is ideal for applications in conference rooms, Return loss ............................................. -27 dB for Y, -31 dB for C @ 5 MHz Input coupling ........................................ AC coupled classrooms, video production facilities, and residential entertainment systems. Signal processing type ............................ Analog encoding VIDEO The YCS 100 features a high quality digital decoder with time base stabilization to optimize performance with composite video sources, including worn or Video output — encoder porTION multi-generation videotapes, consumer VCRs, and other devices with unstable Number/signal type ...............................
    [Show full text]