Benchmark Special Stains Product Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PAPANICOLAOU STAINING SYSTEM (Procedure No. HT40)
PAPANICOLAOU 6. Tap water......................................................................................................................rinse STAINING SYSTEM 7. Scott’s Tap Water Substitute................................................................................10 dips (Procedure No. HT40) 8. Tap water......................................................................................................................rinse 9. ReagentAlcohol,95%.........................................................................................10dips _______________________________________________ 10. PapanicolaouStainOG6..............................................................................1.5minutes INTENDED USE 11. ReagentAlcohol,95%.........................................................................................10dips _______________________________________________ 12. PapanicolaouStainModifiedEA,OR PapanicolaouStainEA50,OR The Sigma-Aldrich Papanicolaou Staining system is intended for staining exfoliative PapanicolaouStainEA65.............................................................................2.5minutes cells in cytologic specimens. Papanicolaou staining reagents are for “In Vitro Diagnostic 13. ReagentAlcohol,95%,twochanges..........................................................10dipseach Use.” 1 14. ReagentAlcohol,100%.....................................................................................1minute Papanicolaou staining techniques, reviewed in a concise report -
Tender Enquiry No: 8-61/Stores/LHMC/AT/2020-21
Tender Enquiry No: 8-61/Stores/LHMC/AT/2020-21 भारत सरकार Government of India स्वास्थ्य सेवा महानिदेशालय Directorate General of Health Services स्वास्थ्य एवं पररवार कल्याण मंत्रालय Ministry of Health & Family Welfare ग मेनडकल कॉलेज एवं श्रीमती सुचेता कृपलािी अस्पतालﴂलेडी हनड Lady Hardinge Medical College & Smt. Sucheta Kriplani Hospital शहीद भगत नसंह मागग, िई नदल्ली – ११०००१ Shaheed Bhagat Singh Marg, New Delhi-110001 ३ नसतम्बर २०२० / 3rd September 2020 भंडार अिुभाग/Stores Section Tender Documents for Advertised Tender Enquiry for running rate contract of Kits, Chemicals & Reagents required for Lady Hardinge Medical College & Associated Hospitals New Delhi (Two Bid System) Tender Enquiry No: 8-61/Stores/LHMC/AT/2020-21 Dated: 3rd September 2020 Amount of Bid Security: Rs. 2,00,000.00 (Rs. Two Lakh Only) Tender Fee: Rs. 0 (Can be downloaded from Central Public Procurement Portal or LHMC Website) CRITICAL DATES Start Date of Sale of Tender: 04/09/2020 11.00 AM to 1.30 PM and from 2.30 PM to 4.00 PM End Date of Sale of Tender: 12/10/2020 4.00 PM Start Date for Submission of Tender: 13/10/2020, 10.00 AM onwards, Time Schedule for Submission of Tender: 14/10/2020, upto 11.00 AM Time Schedule for Opening of Tender: 14/10/2020, 11.30 AM A. INSTRUCTIONS 1. LHMC & Associated Hospitals proposed to enter into a rate-contract (R/C) for the supply of Chemicals, Reagents & Kits valid for a period of 24 months from the date of opening of the Price Bid, can be extended for a period of 12 months or more on mutual consent on existing terms & conditions. -
FUCHSIN ACID Powder Dye, C.I. 42685
FUCHSIN ACID powder dye, C.I. 42685 IVD In vitro diagnostic medical device Acid Fuchsine, Acid Violet 19, BSC certified dye For staining of connective tissues using Van Gieson and Mallory methods INSTRUCTIONS FOR USE REF Catalogue number: FA-P-25 (25 g) Introduction Histology, cytology and other related scientific disciplines study the microscopic anatomy of tissues and cells. In order to achieve a good tissue and cellular structure, the samples need to be stained in a correct manner. Fuchsin Acid is a triarylmethane dye that can be used for trichrome staining of connective tissues according to Mallory and Van Gieson. Mallory developed staining method for visualizing collagen connective tissues, modified and advanced during time. If the sample is fixated in Zenker's solution, it enables quality separation of individual tissue components. The Van Gieson dye solution is used as a contrasting dye in the mentioned method. Picric acid in the solution is the source of acid pH value and functions as cytoplasmic and muscle dye. Product description FUCHSIN ACID - Biological Stain Commision (BSC) certified powder dye for creating solution for connective tissues staining according to Van Gieson and Mallory methods. Other preparations and reagents used in preparing the dye solution: Phosphotungstic acid (H3PW12O40·xH2O) Picric acid (C6H3N3O7) Microscopy powder dyes, such as BioGnost's Orange G dye (product code OG-P-25, OG-P-100) Microscopy powder dyes, such as BioGnost's Aniline Blue dye (product code CAB-P-25G) Preparing the solutions for staining Mallory's dyes for connective tissues: 0.25% solution of Fuchsin Acid dye Dissolve 0.25 g of Fuchsin Acid dye in 100 ml of distilled/demineralized water. -
Reagents for Hospitals Medical and Research Laboratories Reagents for Hospitals
Reagents for Hospitals Medical and Research Laboratories Reagents for Hospitals Summary About us 4 Medical Laboratories 6 Microscopy / p. 7 Indroduction / p. 7 Reagents for Histology / p. 30 Giemsa Stain Sample Processing / p. 8 PAS Staining Getting the sample Masson’s Trichrome Staining Types of processing Reticulin fiber staining Pathological anatomy laboratory process From sampling to processing Reagents for Cytology / p. 38 Papanicolaou Stain Techniques and Stages / p. 10 Fixing / p. 10 Reagents for Clinical Microbiology / p. 41 Types of Chemical Fixative Agents Gram Staining Formaldehyde Fixation Procedure Ziehl-Neelsen Stain Histofix pre-dosed and Substitutes of Formaldehyde Other staining solutions Reagents for Fixing Decalcifiers Reagents for Hematology / p. 48 Kit for Fast Staining in Haematology (Fast Panoptic) Drying and Clearing / p. 16 May Grünwald-Giemsa or Pappenheim Stain Reagents for Drying Wright’s Stain Reagents for Clearing Other Products Inclusion / p. 19 Auxiliary Products / p. 52 Embedding media General Reagents Reagents for Embedding (paraffins) pH Indicator strips Derquim detergents Cutting / p. 20 Rehydration / p. 21 Deparaffinization-Hydration Reagents for Deparaffinization-Hydration Staining / p. 22 Dyes for microscopy Hematoxylin-Eosin Stain Hematoxylins Eosins Reagents for Staining Powdered dyes Dyes in solution Mounting / p. 29 Mounting media and Immersion oils 2 Panreac Applichem Research Laboratories 58 Reagents for Genomics / p. 58 PCR / p. 58 DNA Decontamination / p. 59 Gel electrophoresis / p. 59 Nucleic Acid Isolation / p. 59 Cloning Assays / p. 60 Buffers and Solvents / p. 60 Reagents for Proteomics / p. 61 Products for electrophoresis and blotting / p. 61 Reagents for Cell Culture / p. 64 Banish cell culture contamination / p. 64 Trends on new techniques for Clinical Diagnosis 65 Liquid Biopsies / p. -
New Tetrachromic VOF Stain (Type III-G.S) for Normal and Pathological Fish Tissues C
ORIGINAL PAPER New Tetrachromic VOF Stain (Type III-G.S) for Normal and Pathological Fish Tissues C. Sarasquete,* M. Gutiérrez Instituto de Ciencias Marinas de Andalucía, CSIC Polígono Río San Pedro, Apdo oficial, Puerto Real, Cádiz, Spain richrome methods invariably use dyes in acid ©2005, European Journal of Histochemistry pH solvents, usually diluted in aqueous acetic Tacid, and the concentration of this acid A new VOF Type III-G.S stain was applied to histological sec- matches the concentration of dye. Staining depends tions of different organs and tissues of healthy and pathologi- largely on the attachment of dyes to proteins. The cal larvae, juvenile and adult fish species (Solea senegalensis; acid pH itself is necessary to maximise the amount Sparus aurata; Diplodus sargo; Pagrus auriga; Argyrosomus regius and Halobatrachus didactylus). In comparison to the of dye that will attach to tissue amino groups. original Gutiérrez´VOF stain, more acid dyes of contrasting Proteins have both positively (amino groups) and colours and polychromatic/metachromatic properties were negatively (carboxyl and hydroxyl) charged groups. incorporated as essential constituents of the tetrachromic VOF Usually one predominates and this will have an stain. This facilitates the selective staining of different basic tissues and improves the morphological analysis of histo- overall negative or positive charge (being an acid or chemical approaches of the cell components. The VOF-Type III a basic protein). These charges can, however, bal- G.S stain is composed of a mixture of several dyes of varying ance each other out to some degree. Phosphate size and molecular weight (Orange G< acid Fuchsin< Light green<Methyl Blue<Fast Green), which are used simultane- groups of DNA and binding-proteins are important ously, and it enables the individual tissues to be selectively dif- in nuclear staining.The ionisation of basic groups of ferentiated and stained. -
Comparative Examination of Commonly Used Some Fixatives with Routine Histochemical Staining’S for the Optimal Histological Appearance in the Gill Tissue of Zebrafish
Kocatepe Veterinary Journal Kocatepe Vet J (2019) 12(2):158-167 RESEARCH ARTICLE DOI: 10.30607/kvj.526779 Comparative Examination of Commonly Used Some Fixatives with Routine Histochemical Staining’s for The Optimal Histological Appearance in The Gill Tissue of Zebrafish Aykut ULUCAN1*, Hayati YÜKSEL2, Muhammed Bahaeddin DÖRTBUDAK2, Seda YAKUT3 1Bingol University, Vocational School of Health Services, Department of Medical Services and Techniques, Turkey 2Bingol University, Faculty of Veterinary Medicine, Department of Pathology, Turkey 3Bingol University, Faculty of Veterinary Medicine, Department of Histology and Embryology, Turkey ABSTRACT Histopathological studies related to Zebrafish which are used as a model organism in researching the pathogenesis of many diseases increase day by day. Because of the increasing importance of zebrafish research, experiments on this animal model are more prominent and gill tissue is frequently examined in various disease models using zebrafish. As it is known, at the end of the experimental animal model studies, if the histopathological examination is to be done, the tissues should be fixed. The purpose of fixation is to keep cellular and extracellular components in vivo as much as possible. Therefore, the choice of fixation methods and fixatives has a significant effect on tissue processing. In this study, we aimed to optimize fixation techniques and staining protocols for producing ideal slides and histological images of gill tissue in zebrafish. In our study, to determine the optimal histology in the zebrafish-gill tissue, the tissues were fixed with Bouin’s, Carnoy’s, 10% neutral buffered formalin (NBF), Davidson’s, and Dietrich’s solutions. Following the routine tissue processing, the sections were stained with Hematoxylin and Eosin (H&E) and Masson’s Trichrome (MT) stains. -
Medical Bacteriology
LECTURE NOTES Degree and Diploma Programs For Environmental Health Students Medical Bacteriology Abilo Tadesse, Meseret Alem University of Gondar In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education September 2006 Funded under USAID Cooperative Agreement No. 663-A-00-00-0358-00. Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education. Important Guidelines for Printing and Photocopying Limited permission is granted free of charge to print or photocopy all pages of this publication for educational, not-for-profit use by health care workers, students or faculty. All copies must retain all author credits and copyright notices included in the original document. Under no circumstances is it permissible to sell or distribute on a commercial basis, or to claim authorship of, copies of material reproduced from this publication. ©2006 by Abilo Tadesse, Meseret Alem All rights reserved. Except as expressly provided above, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the author or authors. This material is intended for educational use only by practicing health care workers or students and faculty in a health care field. PREFACE Text book on Medical Bacteriology for Medical Laboratory Technology students are not available as need, so this lecture note will alleviate the acute shortage of text books and reference materials on medical bacteriology. -
Evaluation of Better Staining Method Among Hematoxylin and Eosin, Giemsa and Periodic Acid Schiff-Alcian Blue for the Detection
Evaluation of Better Staining Method among Original Article Hematoxylin and Eosin, Giemsa and Periodic Acid Schiff-Alcian Blue for the Detection of Helicobacter pylori in Gastric Biopsies Submitted: 18 May 2020 Accepted: 4 Aug 2020 Abdullah Saleh ALKHAMISS Online: 27 Oct 2020 Department of Pathology and Laboratory Medicine, Collage of Medicine, Qassim University, Qassim, Saudi Arabia To cite this article: Alkhamiss AS. Evaluation of better staining method among hematoxylin and eosin, Giemsa and periodic acid Schiff-Alcian blue for the detection of Helicobacter pylori in gastric biopsies. Malays J Med Sci. 2020;27(5):53–61. https://doi.org/10.21315/mjms2020.27.5.6 To link to this article: https://doi.org/10.21315/mjms2020.27.5.6 Abstract Background: This study was undertaken to evaluate the preferred method (Giemsa or periodic acid Schiff-Alcian blue [PAS-AB] stains) of detecting Helicobacter pylori (H. pylori) in gastric mucosal biopsies in terms of sensitivity, specificity and applicability. To the best of my knowledge, this is the first report comparing Giemsa and PAS-AB staining for the detection of H. pylori in such biopsies. Methods: The formalin-fixed paraffin-embedded blocks of 49 gastric biopsies from different patients were collected from the archive of anatomical pathology at King Abdulaziz Medical City, National Guard, Riyadh, Saudi Arabia. From each block, three slides were prepared and analysed using the hematoxylin and eosin (H&E), Giemsa and PAS-AB stains to detect the presence/absence of H. pylori, and the results were compared in terms of sensitivity, specificity and applicability. Results: The majority of the biopsies in this study showed antrum-type gastric mucosa. -
Reticulin Stain
US 20110229879A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0229879 A1 CHURUKIAN (43) Pub. Date: Sep. 22, 2011 (54) METHODS AND COMPOSITIONS FOR Publication Classification NUCLEAR STANING (51) Int. Cl. (75) Inventor: Charles J. CHURUKIAN, CI2O I/68 (2006.01) Rochester, NY (US) (52) U.S. Cl. ......................................................... 435/6.1 (73) Assignee: UNIVERSITY OF ROCHESTER, Rochester, NY (US) (57) ABSTRACT The present invention relates to compositions, methods, and (21) Appl. No.: 13/052,791 kits Suitable for detecting nucleic acids inabiological sample. The nuclear staining composition of the present invention (22) Filed: Mar. 21, 2011 contains a pH buffering reagent, a solubilizing reagent, a basic dye, and an aqueous medium. The composition can be Related U.S. Application Data used alone to detect nucleic acids in a biological sample or in (60) Provisional application No. 61/315,483, filed on Mar. combination with other histological dyes for nuclear counter 19, 2010. staining. Reticulin Stain Patent Application Publication Sep. 22, 2011 Sheet 1 of 3 US 2011/0229879 A1 Reticulin Stain Figures 1A-1B Patent Application Publication Sep. 22, 2011 Sheet 2 of 3 US 2011/0229879 A1 Iron Stain Figures 2A-2B Patent Application Publication Sep. 22, 2011 Sheet 3 of 3 US 2011/0229879 A1 Alcian Blue Figures 3A-3B US 2011/0229.879 A1 Sep. 22, 2011 METHODS AND COMPOSITIONS FOR composition of the present invention does not precipitate in NUCLEAR STANING Solution and has a shelf-life of at least one year. In addition, nuclear staining with the composition of the present invention achieves brighter, more brilliant nuclear staining showing 0001. -
20 to 30 Sec)
457 Observations on a highly specific method for the histochemical detection of sulphated mucopolysaccharides, and its possible mechanisms By I. D. HEATH (From the Department of Anatomy, University of St. Andrews, Queen's College, Dundee. Present address: General Hospital, Nottingham) With 3 plates (figs, i to 3) Summary Whereas basic dyes in aqueous solutions stain chromatin, all mucins, mast cells, the ground substance of cartilage, and epidermis, it has been shown that a 0-03 % solution of basic dye in 5% aluminium sulphate produces a highly specific staining reaction for sulphated mucopolysaccharides. The best dyes are nuclear fast red (Herzberg) and methylene blue. Acid dyes in solutions of aluminium salts are induced to stain the ground substance of cartilage. These observations have been confirmed in a num- ber of species. Other metallic ions have similar properties and the use of green and purple chromic salts indicate that co-ordination plays a part in the reaction. Methylation, saponification, and sulphation experiments show that the sulphate group is essential. This has been confirmed by using pure chemical substances in gelatin models. Oxidation of keratin with performic acid, which produces sulphonic groups, causes hair (previously negative) to react. From this it is suggested that sul- phonic groups may also react, and that the reactive groups need not be attached to mucopolysaccharides. It is further suggested that the specificity of sulphated muco- polysaccharides is due to the fact that they are the only substances present in the tis- sues with a sufficient concentration of sulphate groups. Experiments with solochrome azurine show that the aluminium is attached to all tissue elements irrespective of their nature. -
Microsporidia Are an Obligate Intracellular, Spore-Forming Parasite That Has Been Implicated in Emerging Infectious Diseases
The Malaysian Journal of Medical Sciences, Volume 15, Supplement 1, 2008 OB-1 MICROSPORIDIA INFECTION: A SERIES OF CASE REPORT Zeehaida M, Siti Asma H and Kirnpal-Kaur BS Department of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus 16150 Kubang Kerian, Kelantan, Malaysia. Introduction: Microsporidia are an obligate intracellular, spore-forming parasite that has been implicated in emerging infectious diseases. They are increasingly recognized as opportunistic parasites in AIDS patients as well as pathogens in immunocompetent individuals. Though more then 1000 species were named in Microsporidia phylum, only 11 to 14 species were known to infect human. A wide range of clinical presentation was associated with this infection. Chronic diarrhea is the commonest manifestation however myositis, keratoconjunctivitis and disseminated infection have been reported. Objective: To review cases with microsporidia infection. Patients and Method: All requests for suspected cases of microsporidia sent to the Medical Microbiology and Parasitology laboratory, School of Medical Sciences, USM from year 2003 to 2007 were reviewed. Patients were considered positive whenever the microsporidia oocysts were detected by Gram Chromotrope staining method. The detailed histories of patients with positive results were traced from the hospital record office. Results: Five patients were detected as positive for microsporidia oocyst within 4 years study period. Four of them were children aged 3 months to 8 years old. One patient was an immunocompromised adult. All patients had gastrointestinal symptoms. No other clinical manifestations were reported. Discussion and Conclusion: This study demonstrated that microsporidia are present in our local setting despite the fact that their detection is low. -
Bone Histomorphometry
PCMD Histology Core Learning Lunch Series Bone Histomorphometry Wei-Ju Tseng July 11th, 2019 Mckay Orthopaedic Research Laboratory Department of Orthopaedic Surgery Perelman School of Medicine University of Pennsylvania Philadelphia, PA Bone Histomorphometry • Histological methods to assess bone phenotype • Methylmethacrylate (MMA) embedding (Erben 1997) – Mineralized (undecalcified) bone – Good penetration into tissue – Easy to be removed • Static histomorphometry (5-µm section) – Goldner’s Trichrome staining – Toluidine blue staining – Von Kossa staining • Dynamic histomorphometry (8-µm section) – Fluorochrome labeling Penn Standardized Nomenclature Recommended Reading: Standardized Nomenclature, Symbols, and Units for Bone Histomorphometry: A 2012 Update of the Report of the ASBMR Histomorphometry Nomenclature Committee Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM. J Bone Miner Res. 2013 Jan;28(1):2-17. doi: 10.1002/jbmr.1805. Penn Choice of Skeletal Sites Penn Sample Preparation and Sectioning • Specimens – Harvest (Open the samples) – Fixation – Dehydration – MMA embedding Solutions • Preparation Time – 10-14 days Penn Sample Preparation and Sectioning • Specimens – Harvest (Open the samples) – Fixation – Dehydration – MMA embedding Solutions • Preparation Time – 10-14 days • Sectioning – Polycut-S motorized microtome Penn Region of Interest (ROI) Penn Lin et al. Bone Res. 2015; 3: 15028. Region of Interest (ROI) Penn Lin et al. Bone Res. 2015; 3: 15028. Region