Genetic Hair Disorders: a Review

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Hair Disorders: a Review Dermatol Ther (Heidelb) (2019) 9:421–448 https://doi.org/10.1007/s13555-019-0313-2 REVIEW Genetic Hair Disorders: A Review Azhar Ahmed . Hind Almohanna . Jacob Griggs . Antonella Tosti Received: April 1, 2019 / Published online: July 22, 2019 Ó The Author(s) 2019 ABSTRACT physical examination of hair and other ecto- dermal structures such as nails, sweat glands, Hair loss in early childhood represents a broad and sebaceous glands with the use of dermo- differential diagnosis which can be a diagnostic scopic devices and biopsy all provide important and therapeutic challenge for a physician. It is clues to establish the correct diagnosis. Under- important to consider the diagnosis of a genetic standing the pathophysiology of genetic hair hair disorder. Genetic hair disorders are a large defects will allow for better comprehension of group of inherited disorders, many of which are their treatment and prognosis. For example, in rare. Genetic hair abnormalities in children can patients with an isolated hair defect, the main be an isolated phenomenon or part of genetic problem is aesthetic. In contrast, when the hair syndromes. Hair changes may be a significant defect is associated with a syndrome, the prog- finding or even the initial presentation of a nosis will depend mainly on the associated syndrome giving a clue to the diagnosis, such as condition. Treatment of many genetic hair dis- Netherton syndrome and trichothiodystrophy. orders is focused on treating the primary cause Detailed history including family history and and minimizing trauma to the hair. Keywords: Alopecia; Children; Ectodermal Enhanced Digital Features To view enhanced digital features for this article go to https://doi.org/10.6084/ dysplasias; Genetic hair disorders; Hair loss; m9.figshare.8578415. Hair shaft disorders; Hypotrichosis A. Ahmed Department of Dermatology, King Fahad General INTRODUCTION Hospital, Medina, Saudi Arabia H. Almohanna Hair is a skin appendage that shares a common Department of Dermatology and Dermatologic developmental pathway with other ectodermal Surgery, Prince Sultan Military Medical City, tissue [1]. Human hair is a key phenotypic Riyadh, Saudi Arabia indicator of possible underlying metabolic or A. Ahmed (&) Á J. Griggs Á A. Tosti genetic syndromes. Department of Dermatology and Cutaneous Genetic hair disorders can cause severe Surgery, University of Miami Miller School of alopecia in both adults and children and may Medicine, University of Miami Hospital, Miami, FL, occasionally present as part of a multisystem USA e-mail: [email protected] syndrome. So, the diagnosis of these genetic 422 Dermatol Ther (Heidelb) (2019) 9:421–448 disorders is important not only for the initia- HYPOTRICHOSIS tion of proper therapy but also for the detection of other associated ectodermal anomalies and In hypotrichosis, sparse hair is the result of a for appropriate genetic counselling. Affected hair regeneration defect, caused by impairment children and their parents are usually psycho- in hair cycling and anchoring of the hair shaft logically impacted by such conditions. in the skin [2]. Mutations in different genes In this review we summarize the main have been associated with non-syndromic as genetic hair disorders and discuss the clinical well as syndromic forms [3], including features, known associated genetic abnormali- hypotrichosis simplex, hypotrichosis with ties, and current treatment modalities. The juvenile macular dystrophy (HJMD), Marie review will focus on hypotrichosis, hair shaft Unna hypotrichosis (MUH), and autosomal disorders (with and without increased fragility), recessive woolly hair/hypotrichosis simplex. and ectodermal dysplasia. Table 1 summarize the gene defect, clinical presentation, and Hypotrichosis Simplex treatment tried for each genetic hair disorder. Hypotrichosis simplex (HS) (Mendelian Inheri- METHODS tance in Man (MIM) 146520, MIM 278150, MIM 146550, MIM 613981, and MIM 605389) [4]isa We searched keywords using PubMed and descriptive term for the clinical manifestations Medline to identify all relevant publications. related to diffuse hair thinning without any The terms ‘‘Hair loss,’’ ‘‘Alopecia,’’ ‘‘Hypotri- morphological abnormalities of the hair shaft. chosis,’’ ‘‘Trichorrhexis nodosa,’’ ‘‘Trichorrhexis Several hereditary hypotrichosis simplex (HHS) invaginate,’’ ‘‘Bamboo hair,’’ ‘‘Pili torti,’’ ‘‘Tri- pedigrees have been published showing auto- chothiodystrophy,’’ ‘‘Monilethrix,’’ ‘‘Pili annu- somal dominant inheritance, while others show lati,’’ ‘‘Woolly hair,’’ ‘‘Uncombable hair autosomal recessive inheritance. Clinical vari- syndrome,’’ ‘‘Pili trianguli et canaliculi,’’ ‘‘Ecto- ability can be observed on the basis of patient’s dermal dysplasias,’’ ‘‘Trichorhinophalangeal age of onset, as well as eyebrow and eyelash syndrome,’’ ‘‘pediatric,’’ ‘‘congenital,’’ ‘‘genetic,’’ involvement [5]. Mutations in six genes have and ‘‘children’’ were included as a search terms been identified for isolated HS, and mutations to identify all relevant publications. in three of them—CDSN (MIM 602593), Three independent researchers performed a APCDD1 (MIM 607479), and RPL21 (MIM literature search to identify all relevant studies. 603636)—are responsible for autosomal domi- Only published articles written in English were nant forms [4]. chosen. A total of 159 articles within the last When the hypotrichosis simplex is only 50 years were selected to be included in this limited to the scalp, it is called hereditary review. hypotrichosis simplex of the scalp (HHSS) (MIM All procedures followed were in accordance 146520), which is a rare non-syndromic auto- with the ethical standards of the responsible somal dominant condition characterized by committee on human experimentation (insti- exclusively scalp hair loss, sparing other ecto- tutional and national) and with the Helsinki dermal structures and with no systemic abnor- Declaration of 1964, as revised in 2013. This malities [6]. It is caused by nonsense mutations article is based on previously conducted studies in the corneodesmosin gene (CDSN) which and does not contain any studies with human leads to expression of a truncated protein participants or animals performed by any of the probably toxic to hair growth [7]. authors. Tables/figures are original and have Patients present with normal hair at birth, been produced by the authors for this particular then a gradually progressive scalp hair loss publication. The authors have consent from the begins in the middle of the first decade ending patients for using their images in this with almost complete hair loss by the third publication. decade. Eyebrows, eyelashes, and other body Table 1 Summary table of gene defect, clinical presentation, and treatment of genetic hair disorders Dermatol Ther (Heidelb) (2019) 9:421–448 Tag Genetic defect Hair finding Other clinical findings Light or electron Treatment microscopy, or Trichoscopic finding Hypotrichosis Hereditary AD Exclusively scalp hair Other ectodermal structures Wiry, twisted scalp hair, Unsatisfactory hypotrichosis simplex Nonsense lossEyebrows, eyelashes, are normal and with no resembling PT Topical minoxidil can of the scalp mutations in the and other body hair are systemic abnormalities improve the hair density CDSN gene completely norma and texture Marie Unna AD. Normal to adequate hairs at Nails, teeth, and sweat glands Wearing wig is the best hypotrichosis Mutation of the birth then develop pattern are normal. Milia-like option U2HR gene, alopecia at puberty. facial lesions can occur located in Eyelashes, eyebrows, body chromosome hair and secondary sexual 8p21 hair are sparse Autosomal recessive Mutation inMor Since infancy sparse, coarse, woolly hair/ lipase dry, and tightly curled hair, hypotrichosis simplex membrane H usually blond or lighter gene than other family members. Hypotrichosis with AR Early hair loss, heralding Progressive degeneration of Light and scanning juvenile macular Gene defective in progressive degeneration of the retinal macula leading electron microscopy dystrophy to 16q22.1. This the retinal macula to early blindness during of the hair shaft region contains the second to third decade revealed PT CDH3, of life encoding P-cadherin 423 424 Table 1 continued Tag Genetic defect Hair finding Other clinical findings Light or electron Treatment microscopy, or Trichoscopic finding Hair Shaft Disorders with Increases Fragility Arginosuccinic aciduria Deficiency of Normal hair at birth but Failure to thrive and mental TN Managing the underlying arginosuccinic then develop TN retardation. disorder lyase Zinc sulfate 45mg/day and Citrullinemia Deficiency of Abnormally fragile hair with TN 50 mg/day was tried arginosuccinate TN – synthetase Netherton syndrome AR mutations in short sparse fragile hair with CIE or ILC, atopic athesis TI Treatment is aimed to deal the SPINK5 TI (elevated di IgE) with the skin findings of gene Netherton syndrome more than the hair abnormality, and may include low dose oral steroids, etretinate,psoralen ultraviolet A therapy, topical tacrolimus, and lactate lotion 12% Dermatol Ther (Heidelb) (2019) 9:421–448 Dermatol Ther (Heidelb) (2019) 9:421–448 Table 1 continued Tag Genetic defect Hair finding Other clinical findings Light or electron Treatment microscopy, or Trichoscopic finding Monilethrix AD (KRT81 , Normal hair at birth replaced keratosis pilaris, koilonychia, Light microscopy shows systemic retinoid therapy KRT83, and by dull brittle hair.it retarded growth and typical beaded or where etretinate at 0.5 KRT86 gene commonly
Recommended publications
  • Segmental Overvekst Og Vaskulærmalformasjoner V02
    2/1/2021 Segmental overvekst og vaskulærmalformasjoner v02 Avdeling for medisinsk genetikk Segmental overvekst og vaskulærmalformasjoner Genpanel, versjon v02 * Enkelte genomiske regioner har lav eller ingen sekvensdekning ved eksomsekvensering. Dette skyldes at de har stor likhet med andre områder i genomet, slik at spesifikk gjenkjennelse av disse områdene og påvisning av varianter i disse områdene, blir vanskelig og upålitelig. Disse genetiske regionene har vi identifisert ved å benytte USCS segmental duplication hvor områder større enn 1 kb og ≥90% likhet med andre regioner i genomet, gjenkjennes (https://genome.ucsc.edu). Vi gjør oppmerksom på at ved identifiseringav ekson oppstrøms for startkodon kan eksonnummereringen endres uten at transkript ID endres. Avdelingens websider har en full oversikt over områder som er affisert av segmentale duplikasjoner. ** Transkriptets kodende ekson. Ekson Gen Gen affisert (HGNC (HGNC Transkript Ekson** Fenotype av symbol) ID) segdup* ACVRL1 175 NM_000020.3 2-10 Telangiectasia, hereditary hemorrhagic, type 2 OMIM ADAMTS3 219 NM_014243.3 1-22 Hennekam lymphangiectasia- lymphedema syndrome 3 OMIM AKT1 391 NM_005163.2 2-14 Cowden syndrome 6 OMIM Proteus syndrome, somatic OMIM AKT2 392 NM_001626.6 2-14 Diabetes mellitus, type II OMIM Hypoinsulinemic hypoglycemia with hemihypertrophy OMIM AKT3 393 NM_005465.7 2-14 Megalencephaly-polymicrogyria- polydactyly-hydrocephalus syndrome 2 OMIM file:///data/SegOv_v02-web.html 1/7 2/1/2021 Segmental overvekst og vaskulærmalformasjoner v02 Ekson Gen Gen affisert (HGNC (HGNC
    [Show full text]
  • Phenotypic and Genotypic Characterisation of Noonan-Like
    1of5 ELECTRONIC LETTER J Med Genet: first published as 10.1136/jmg.2004.024091 on 2 February 2005. Downloaded from Phenotypic and genotypic characterisation of Noonan-like/ multiple giant cell lesion syndrome J S Lee, M Tartaglia, B D Gelb, K Fridrich, S Sachs, C A Stratakis, M Muenke, P G Robey, M T Collins, A Slavotinek ............................................................................................................................... J Med Genet 2005;42:e11 (http://www.jmedgenet.com/cgi/content/full/42/2/e11). doi: 10.1136/jmg.2004.024091 oonan-like/multiple giant cell lesion syndrome (NL/ MGCLS; OMIM 163955) is a rare condition1–3 with Key points Nphenotypic overlap with Noonan’s syndrome (OMIM 163950) and cherubism (OMIM 118400) (table 1). N Noonan-like/multiple giant cell lesion syndrome (NL/ Recently, missense mutations in the PTPN11 gene on MGCLS) has clinical similarities with Noonan’s syn- chromosome 12q24.1 have been identified as the cause of drome and cherubism. It is unclear whether it is a Noonan’s syndrome in 45% of familial and sporadic cases,45 distinct entity or a variant of Noonan’s syndrome or indicating genetic heterogeneity within the syndrome. In the cherubism. 5 study by Tartaglia et al, there was a family in which three N Three unrelated patients with NL/MGCLS were char- members had features of Noonan’s syndrome; two of these acterised, two of whom were found to have mutations had incidental mandibular giant cell lesions.3 All three in the PTPN11 gene, the mutation found in 45% of members were found to have a PTPN11 mutation known to patients with Noonan’s syndrome.
    [Show full text]
  • Megalencephaly and Macrocephaly
    277 Megalencephaly and Macrocephaly KellenD.Winden,MD,PhD1 Christopher J. Yuskaitis, MD, PhD1 Annapurna Poduri, MD, MPH2 1 Department of Neurology, Boston Children’s Hospital, Boston, Address for correspondence Annapurna Poduri, Epilepsy Genetics Massachusetts Program, Division of Epilepsy and Clinical Electrophysiology, 2 Epilepsy Genetics Program, Division of Epilepsy and Clinical Department of Neurology, Fegan 9, Boston Children’s Hospital, 300 Electrophysiology, Department of Neurology, Boston Children’s Longwood Avenue, Boston, MA 02115 Hospital, Boston, Massachusetts (e-mail: [email protected]). Semin Neurol 2015;35:277–287. Abstract Megalencephaly is a developmental disorder characterized by brain overgrowth secondary to increased size and/or numbers of neurons and glia. These disorders can be divided into metabolic and developmental categories based on their molecular etiologies. Metabolic megalencephalies are mostly caused by genetic defects in cellular metabolism, whereas developmental megalencephalies have recently been shown to be caused by alterations in signaling pathways that regulate neuronal replication, growth, and migration. These disorders often lead to epilepsy, developmental disabilities, and Keywords behavioral problems; specific disorders have associations with overgrowth or abnor- ► megalencephaly malities in other tissues. The molecular underpinnings of many of these disorders are ► hemimegalencephaly now understood, providing insight into how dysregulation of critical pathways leads to ►
    [Show full text]
  • Cardiomyopathy Precision Panel Overview Indications
    Cardiomyopathy Precision Panel Overview Cardiomyopathies are a group of conditions with a strong genetic background that structurally hinder the heart to pump out blood to the rest of the body due to weakness in the heart muscles. These diseases affect individuals of all ages and can lead to heart failure and sudden cardiac death. If there is a family history of cardiomyopathy it is strongly recommended to undergo genetic testing to be aware of the family risk, personal risk, and treatment options. Most types of cardiomyopathies are inherited in a dominant manner, which means that one altered copy of the gene is enough for the disease to present in an individual. The symptoms of cardiomyopathy are variable, and these diseases can present in different ways. There are 5 types of cardiomyopathies, the most common being hypertrophic cardiomyopathy: 1. Hypertrophic cardiomyopathy (HCM) 2. Dilated cardiomyopathy (DCM) 3. Restrictive cardiomyopathy (RCM) 4. Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC) 5. Isolated Left Ventricular Non-Compaction Cardiomyopathy (LVNC). The Igenomix Cardiomyopathy Precision Panel serves as a diagnostic and tool ultimately leading to a better management and prognosis of the disease. It provides a comprehensive analysis of the genes involved in this disease using next-generation sequencing (NGS) to fully understand the spectrum of relevant genes. Indications The Igenomix Cardiomyopathy Precision Panel is indicated in those cases where there is a clinical suspicion of cardiomyopathy with or without the following manifestations: - Shortness of breath - Fatigue - Arrythmia (abnormal heart rhythm) - Family history of arrhythmia - Abnormal scans - Ventricular tachycardia - Ventricular fibrillation - Chest Pain - Dizziness - Sudden cardiac death in the family 1 Clinical Utility The clinical utility of this panel is: - The genetic and molecular diagnosis for an accurate clinical diagnosis of a patient with personal or family history of cardiomyopathy, channelopathy or sudden cardiac death.
    [Show full text]
  • Concomitant Manifestation of Pili Annulati and Alopecia Areata: Coincidental Rather Than True Association
    Acta Derm Venereol 2011; 91: 459–462 CLINICAL REPORT Concomitant Manifestation of Pili Annulati and Alopecia Areata: Coincidental Rather than True Association Kathrin A. GIEHL1, Matthias SCHMUTH2, Antonella TOSTI3, David A. De BERKER4, Alexander CRISPIN5, Hans WOLFF1 and Jorge FRANK6,7 Department of Dermatology, 1Ludwig-Maximilian University, Munich, Germany, 2Medical University Innsbruck, Austria, 3University of Bologna, Italy, 4University of Bristol, UK, 5Department of Medical Informatics, Biometry and Epidemiology, Ludwig-Maximilian University, Munich, Germany, 6Depart- ment of Dermatology, and 7GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC), The Netherlands The autosomal dominantly inherited hair disorder pili with these cavities, most patients with PA do not report annulati is characterized by alternating light and dark increased hair fragility (5, 6). bands of the hair shaft. Concomitant manifestation of A locus for PA has been shown on chromosome pili annulati with alopecia areata has been reported 12p24.32–24.33 (7, 8). A previous study of hair follicle previously on several occasions. However, no systematic morphology indicates that the disease may arise from evaluation of patients manifesting both diseases has been a defect that putatively affects a regulatory element performed. We studied the simultaneous or sequential involved in the assembly of structural proteins within occurrence of pili annulati and alopecia areata in indi- the extracellular matrix (9). viduals diagnosed in different European academic der- In contrast to PA, alopecia areata (AA) is a polyge- matology units. We included 162 Caucasian individuals netic, immune-mediated disorder of the hair follicle from 14 extended families, comprising 76 affected and that has an unpredictable, and sometimes self-limiting, 86 unaffected family members.
    [Show full text]
  • Prospective Observational Study in a Tertiary
    CLINICAL STUDY OF PROFILE OF ADOLESCENT DERMATOSES AND THEIR EFFECT ON QUALITY OF LIFE IN ADOLESCENTS – PROSPECTIVE OBSERVATIONAL STUDY IN A TERTIARY CARE HOSPITAL IN SOUTH INDIA Dissertation Submitted to THE TAMILNADU DR.M.G.R. MEDICAL UNIVERSITY IN PARTIAL FULFILMENT FOR THE AWARD OF THE DEGREE OF DOCTOR OF MEDICINE IN DERMATOLOGY, VENEREOLOGY & LEPROSY Register No.: 201730251 BRANCH XX MAY 2020 DEPARTMENT OF DERMATOLOGY VENEREOLOGY & LEPROSY TIRUNELVELI MEDICAL COLLEGE TIRUNELVELI -11 BONAFIDE CERTIFICATE This is to certify that this dissertation entitled “CLINICAL STUDY OF PROFILE OF ADOLESCENT DERMATOSES AND THEIR EFFECT ON QUALITY OF LIFE IN ADOLESCENTS – PROSPECTIVE OBSERVATIONAL STUDY IN A TERTIARY CARE HOSPITAL IN SOUTH INDIA” is a bonafide research work done by Dr.ARAVIND BASKAR.M, Postgraduate student of Department of Dermatology, Venereology and Leprosy, Tirunelveli Medical College during the academic year 2017 – 2020 for the award of degree of M.D. Dermatology, Venereology and Leprosy – Branch XX. This work has not previously formed the basis for the award of any Degree or Diploma. Dr.P.Nirmaladevi.M.D., Professor & Head of the Department Department of DVL Tirunelveli Medical College, Tirunelveli - 627011 Dr.S.M.Kannan M.S.Mch., The DEAN Tirunelveli Medical College, Tirunelveli - 627011 CERTIFICATE This is to certify that the dissertation titled as “CLINICAL STUDY OF PROFILE OF ADOLESCENT DERMATOSES AND THEIR EFFECT ON QUALITY OF LIFE IN ADOLESCENTS – PROSPECTIVE OBSERVATIONAL STUDY IN A TERTIARY CARE HOSPITAL IN SOUTH INDIA” submitted by Dr.ARAVIND BASKAR.M is a original work done by him in the Department of Dermatology,Venereology & Leprosy,Tirunelveli Medical College,Tirunelveli for the award of the Degree of DOCTOR OF MEDICINE in DERMATOLOGY, VENEREOLOGY AND LEPROSY during the academic period 2017 – 2020.
    [Show full text]
  • 04 Rampazzo 04 Rampazzo
    Heart International / Vol. 2 no. 1, 2006 / pp. 17-26 © Wichtig Editore, 2006 Genetic bases of arrhythmogenic right ventricular cardiomyopathy ALESSANDRA RAMPAZZO Department of Biology, University of Padova - Italy ABSTRACT: Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a heart muscle disease in which the pathological substrate is a fibro-fatty replacement of the right ventricular myocardi- um. The major clinical features are different types of arrhythmias with a left branch block pattern. ARVC shows autosomal dominant inheritance with incomplete penetrance. Recessive forms were also described, although in association with skin disorders. Ten genetic loci have been discovered so far and mutations were reported in five different genes. ARVD1 was associated with regulatory mutations of transforming growth factor beta-3 (TGFβ3), whereas ARVD2, characterized by effort-induced polymorphic arrhythmias, was associated with mutations in cardiac ryanodine receptor-2 (RYR2). All other mutations identified to date have been detected in genes encoding desmosomal proteins: plakoglobin (JUP) which causes Naxos disease (a recessive form of ARVC associated with palmoplantar keratosis and woolly hair); desmoplakin (DSP) which causes the autosomal dominant ARVD8 and plakophilin-2 (PKP2) in- volved in ARVD9. Desmosomes are important cell-to-cell adhesion junctions predominantly found in epidermis and heart; they are believed to couple cytoskeletal elements to plasma mem- brane in cell-to-cell or cell-to-substrate adhesions. (Heart International 2006; 2: 17-26) KEY WORDS: Arrhythmias, Sudden death, Molecular genetics, Desmosomes INTRODUCTION electrocardiographic depolarization/repolarization changes and arrhythmias of right ventricular origin (5). Ventricu- Arrhythmogenic right ventricular cardiomyopathy/ lar tachycardias are thought to be due to re-entry be- dysplasia (ARVC/D) is a myocardial disease in which tween the abnormal and normal areas of the right ven- myocardium of the right ventricular free wall is partially tricular myocardium.
    [Show full text]
  • Prevalence and Incidence of Rare Diseases: Bibliographic Data
    Number 1 | January 2019 Prevalence and incidence of rare diseases: Bibliographic data Prevalence, incidence or number of published cases listed by diseases (in alphabetical order) www.orpha.net www.orphadata.org If a range of national data is available, the average is Methodology calculated to estimate the worldwide or European prevalence or incidence. When a range of data sources is available, the most Orphanet carries out a systematic survey of literature in recent data source that meets a certain number of quality order to estimate the prevalence and incidence of rare criteria is favoured (registries, meta-analyses, diseases. This study aims to collect new data regarding population-based studies, large cohorts studies). point prevalence, birth prevalence and incidence, and to update already published data according to new For congenital diseases, the prevalence is estimated, so scientific studies or other available data. that: Prevalence = birth prevalence x (patient life This data is presented in the following reports published expectancy/general population life expectancy). biannually: When only incidence data is documented, the prevalence is estimated when possible, so that : • Prevalence, incidence or number of published cases listed by diseases (in alphabetical order); Prevalence = incidence x disease mean duration. • Diseases listed by decreasing prevalence, incidence When neither prevalence nor incidence data is available, or number of published cases; which is the case for very rare diseases, the number of cases or families documented in the medical literature is Data collection provided. A number of different sources are used : Limitations of the study • Registries (RARECARE, EUROCAT, etc) ; The prevalence and incidence data presented in this report are only estimations and cannot be considered to • National/international health institutes and agencies be absolutely correct.
    [Show full text]
  • MECHANISMS in ENDOCRINOLOGY: Novel Genetic Causes of Short Stature
    J M Wit and others Genetics of short stature 174:4 R145–R173 Review MECHANISMS IN ENDOCRINOLOGY Novel genetic causes of short stature 1 1 2 2 Jan M Wit , Wilma Oostdijk , Monique Losekoot , Hermine A van Duyvenvoorde , Correspondence Claudia A L Ruivenkamp2 and Sarina G Kant2 should be addressed to J M Wit Departments of 1Paediatrics and 2Clinical Genetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, Email The Netherlands [email protected] Abstract The fast technological development, particularly single nucleotide polymorphism array, array-comparative genomic hybridization, and whole exome sequencing, has led to the discovery of many novel genetic causes of growth failure. In this review we discuss a selection of these, according to a diagnostic classification centred on the epiphyseal growth plate. We successively discuss disorders in hormone signalling, paracrine factors, matrix molecules, intracellular pathways, and fundamental cellular processes, followed by chromosomal aberrations including copy number variants (CNVs) and imprinting disorders associated with short stature. Many novel causes of GH deficiency (GHD) as part of combined pituitary hormone deficiency have been uncovered. The most frequent genetic causes of isolated GHD are GH1 and GHRHR defects, but several novel causes have recently been found, such as GHSR, RNPC3, and IFT172 mutations. Besides well-defined causes of GH insensitivity (GHR, STAT5B, IGFALS, IGF1 defects), disorders of NFkB signalling, STAT3 and IGF2 have recently been discovered. Heterozygous IGF1R defects are a relatively frequent cause of prenatal and postnatal growth retardation. TRHA mutations cause a syndromic form of short stature with elevated T3/T4 ratio. Disorders of signalling of various paracrine factors (FGFs, BMPs, WNTs, PTHrP/IHH, and CNP/NPR2) or genetic defects affecting cartilage extracellular matrix usually cause disproportionate short stature.
    [Show full text]
  • Revisiting Hair Follicle Embryology, Anatomy and the Follicular Cycle
    etology sm & o C T r f i o c h l o a l n o r Silva et al., J Cosmo Trichol 2019, 5:1 g u y o J Journal of Cosmetology & Trichology DOI: 10.4172/2471-9323.1000141 ISSN: 2471-9323 Review Article Open Access Revisiting Hair Follicle Embryology, Anatomy and the Follicular Cycle Laura Maria Andrade Silva1*, Ricardo Hsieh2, Silvia Vanessa Lourenço3, Bruno de Oliveira Rocha1, Ricardo Romiti4, Neusa Yuriko Sakai Valente4,5, Alessandra Anzai4 and Juliana Dumet Fernandes1 1Department of Dermatology, Magalhães Neto Outpatient Clinic, Professor Edgar Santos School Hospital Complex, The Federal University of Bahia (C-HUPES/UFBa), Salvador/BA-Brazil 2Institute of Tropical Medicine of São Paulo, The University of São Paulo (IMT/USP), São Paulo/SP-Brazil 3Department of Stomatology, School of Dentistry, The University of São Paulo (FO/USP), São Paulo/SP-Brazil 4Department of Dermatology, University of São Paulo Medical School, The University of São Paulo (FMUSP), São Paulo/SP-Brazil 5Department of Dermatology, Hospital of the Public Server of the State of São Paulo (IAMSPE), São Paulo/SP-Brazil *Corresponding author: Laura Maria Andrade Silva, Department of Dermatology, Magalhães Neto Outpatient Clinic, Professor Edgar Santos School Hospital Complex, The Federal University of Bahia (C-HUPES/UFBa) Salvador/BA-Brazil, Tel: +55(71)3283-8380; +55(71)99981-7759; E-mail: [email protected] Received date: January 17, 2019; Accepted date: March 07, 2019; Published date: March 12, 2019 Copyright: © 2019 Silva LMA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Is the Loose Anagen Hair Syndrome a Keratin Disorder? a Clinical and Molecular Study
    STUDY Is the Loose Anagen Hair Syndrome a Keratin Disorder? A Clinical and Molecular Study Vale´rie Chapalain, MD; Hermelita Winter, PhD; Lutz Langbein, PhD; Jean-Michel Le Roy, MD; Christine Labre`ze, MD; Milos Nikolic, MD; Ju¨rgen Schweizer, PhD; Alain Taı¨eb, MD Objectives: To report the clinical features of the loose seldom cut their hair, and 4 had unmanageable hair. One anagen hair syndrome and to test the hypothesis that the patient had hypodontia. Two patients had an additional typical gap between the hair and the inner root sheath clinical phenotype of diffuse partial woolly hair. The fam- may result from hereditary defects in the inner root sheath ily history was positive for loose anagen hair syndrome or the apposed companion layer. in 5 patients. Marked improvement was noted after treat- ment with 5% minoxidil lotion in 7 of the 11 patients Design: Case series. treated. Polymerase chain reaction analysis of the gene segments encoding the ␣-helical 1A and 2B subdomains Setting: A pediatric dermatology unit (referral center). of K6hf, the type II cytokeratin exclusively expressed in the companion layer, was performed in 9 families. In Patients: A consecutive sample of 17 children (13 girls). 3 of these 9 families, a heterozygous glutamic acid and For 9 of them and their first-degree relatives, molecular lysine mutation, E337K, was identified in the L2 linker analyses were performed in the K6HF gene with 50 ap- region of K6HF. propriate controls. Conclusions: Diffuse partial woolly hair can be associ- Intervention: Minoxidil therapy (5% lotion) in 11 pa- ated with loose anagen hair syndrome.
    [Show full text]
  • De Novo Heterozygous Desmoplakin Mutations Leading to Naxos-Carvajal Disease
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2012 De novo heterozygous desmoplakin mutations leading to Naxos-Carvajal disease Keller, Dagmar I ; Stepowski, Dimitri ; Balmer, Christian ; Simon, Françoise ; Guenthard, Joelle ; Bauer, Fabrice ; Itin, Peter ; David, Nadine ; Drouin-Garraud, Valérie ; Fressart, Véronique Abstract: STUDY/PRINCIPLES: Arrythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is an autosomal-dominantly inherited disease caused by mutations in genes encoding desmosomal proteins and is characterised by fibrofatty replacement occurring predominantly in the right ventricle and canre- sult in sudden cardiac death. Naxos and Carvajal syndrome, autosomal recessive forms of ARVC/D, are characterised by involvement of the right and/or left ventricle in association with palmoplantar kerato- derma and woolly hair. The aim of the present study has been to screen for mutations in the desmosomal protein genes of two unrelated patients with Naxos-Carvajal syndrome. METHODS AND RESULTS: Desmosomal protein genes were screened for mutations by polymerase chain reaction as well as direct sequencing approach. In each patient we identified a single heterozygous de novo mutation in the desmo- plakin gene DSP, p.Leu583Pro and p.Thr564Ile, leading to severe combined cardiac/dermatological and cardiac/dermatological/dental phenotypes. The DSP missense mutations are localised in the N termi- nal domain of desmoplakin. CONCLUSION: The identified variations in DSP involve highly conserved residues. Moreover, the variations are de novo mutations and they are localised in critical protein domains that appear to be mutation hot spots. We assume that these heterozygous variations are causal for the mixed Naxos-Carvajal syndrome phenotype in the screened patients.
    [Show full text]