W AS HING T O N N at UR AL HE RIT a G E P RO G R AM Pollinators Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thresholds of Response in Nest Thermoregulation by Worker Bumble Bees, Bombus Bifarius Nearcticus (Hymenoptera: Apidae)
Ethology 107, 387Ð399 (2001) Ó 2001 Blackwell Wissenschafts-Verlag, Berlin ISSN 0179±1613 Animal Behavior Area, Department of Psychology, University of Washington, Seattle and Department of Psychology, University of Puget Sound, Tacoma Thresholds of Response in Nest Thermoregulation by Worker Bumble Bees, Bombus bifarius nearcticus (Hymenoptera: Apidae) Sean O'Donnell & Robin L. Foster O'Donnell, S. & Foster, R. L. 2001: Thresholds of response in nest thermoregulation by worker bumble bees, Bombus bifarius nearcticus (Hymenoptera: Apidae). Ethology 107, 387Ð399. Abstract Regulation of nest temperature is important to the ®tness of eusocial insect colonies. To maintain appropriate conditions for the developing brood, workers must exhibit thermoregulatory responses to ambient temperature. Because nest- mate workers dier in task performance, thermoregulatory behavior provides an opportunity to test threshold of response models for the regulation of division of labor. We found that worker bumble bees (Bombus bifarius nearcticus) responded to changes in ambient temperature by altering their rates of performing two tasks ± wing fanning and brood cell incubation. At the colony level, the rate of incubating decreased, and the rate of fanning increased, with increasing temperature. Changes in the number of workers performing these tasks were more important to the colony response than changes in workers' task perform- ance rates. At the individual level, workers' lifetime rates of incubation and fanning were positively correlated, and most individuals did not specialize exclusively on either of these temperature-sensitive tasks. However, workers diered in the maximum temperature at which they incubated and in the minimum temperature at which they fanned. More individuals fanned at high and incubated at low temperatures. -
Bumble Bees of the Western United States” by Jonathan Koch, James Strange, and Paul Williams (2012)
Adapted from the “Bumble Bees of the Western United States” by Jonathan Koch, James Strange, and Paul Williams (2012). Bumble bees are one of Wyoming’s most important and mild-mannered pollinators. There are more than 20 species in Wyoming, which you can often tell apart by the color patterns on their bodies. This guide shows color patterns for queen bees only, and some species can have multiple queen Bumble patterns! of Bees Areas in yellow indicate where each species Wyoming is found in Wyoming wyomingbiodiversity.org Black Tail Bumble Bee How can you tell Bombus melanopygus it's a bumble bee? Common Bumble bees are the largest bodied bees in Wyoming. Queens can be up to two inches long, but most queens and workers are somewhat smaller than that. They're very hairy all over their bodies, and carry pollen in “baskets” on their hind legs. Did you find a bumble bee? Submit your observation to the Xerces Society of Invertebrate Conservation's website: BumbleBeeWatch.org You can be a member of the citizen science community! Brown-Belted Bumble Bee California Bumble Bee Bombus griseocollis Bombus californicus Common Uncommon Central Bumble Bee Cuckoo Bumble Bee Bombus centralis Bombus insularis Common Common Fernald Cuckoo Bumble Bee Forest Bumble Bee Bombus fernaldae Bombus sylvicola Uncommon Uncommon Frigid Bumble Bee Fuzzy-Horned Bumble Bee Bombus frigidus Bombus mixtus Rare Common Half-Black Bumble Bee High Country Bumble Bee Bombus vagans Bombus balteatus Common Common Hunt’s Bumble Bee Morrison Bumble Bee Bombus huntii Bombus morrisoni Common Common Nevada Bumble Bee Red-Belted Bumble Bee Bombus nevadensis Bombus rufocinctus Common Common Suckley Cuckoo Bumble Bee Bombus suckleyi Red-Belted Bumble Bee, continued Uncommon Two-Form Bumble Bee Western Bumble Bee Bombus bifarius Bombus occidentalis Common Rare throughout much of its range, but common in Wyoming. -
Title: the Role of Nature Reserves in Preserving Saproxylic Biodiversity: Using Longhorn Beetles (Coleoptera: Cerambycidae) As Bioindicators
Title: The role of nature reserves in preserving saproxylic biodiversity: using longhorn beetles (Coleoptera: Cerambycidae) as bioindicators Author: Lech Karpiński, István Maák, Piotr Węgierek Citation style: Karpiński Lech, Maák István, Węgierek Piotr. (2021). The role of nature reserves in preserving saproxylic biodiversity: using longhorn beetles (Coleoptera: Cerambycidae) as bioindicators. "The European Zoological Journal" (2021, iss. 1, s. 487-504), doi 10.1080/24750263.2021.1900427 The European Zoological Journal, 2021, 487–504 https://doi.org/10.1080/24750263.2021.1900427 The role of nature reserves in preserving saproxylic biodiversity: using longhorn beetles (Coleoptera: Cerambycidae) as bioindicators L. KARPIŃSKI 1*, I. MAÁK 2, & P. WEGIEREK 3 1Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland, 2Department of Ecology, University of Szeged, Szeged, Hungary, and 3Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland (Received 9 August 2020; accepted 2 March 2021) Abstract The potential of forest nature reserves as refuges for biodiversity seems to be overlooked probably due to their small size. These, however, may constitute important safe havens for saproxylic organisms since forest reserves are relatively numerous in Europe. Saproxylic beetles are among the key groups for the assessment of biodiversity in forest habitats and longhorn beetles may play an important role in bioindication as they are ecologically associated with various micro- habitats and considered a very heterogeneous family of insects. To study the role of forest reserves as important habitats for saproxylic beetles, we compared cerambycid assemblages in corresponding pairs of sites (nature reserves and managed stands) in a forest region under high anthropogenic pressure (Upper Silesia, Poland, Central Europe). -
The Conservation Management and Ecology of Northeastern North
THE CONSERVATION MANAGEMENT AND ECOLOGY OF NORTHEASTERN NORTH AMERICAN BUMBLE BEES AMANDA LICZNER A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN BIOLOGY YORK UNIVERSITY TORONTO, ONTARIO September 2020 © Amanda Liczner, 2020 ii Abstract Bumble bees (Bombus spp.; Apidae) are among the pollinators most in decline globally with a main cause being habitat loss. Habitat requirements for bumble bees are poorly understood presenting a research gap. The purpose of my dissertation is to characterize the habitat of bumble bees at different spatial scales using: a systematic literature review of bumble bee nesting and overwintering habitat globally (Chapter 1); surveys of local and landcover variables for two at-risk bumble bee species (Bombus terricola, and B. pensylvanicus) in southern Ontario (Chapter 2); identification of conservation priority areas for bumble bee species in Canada (Chapter 3); and an analysis of the methodology for locating bumble bee nests using detection dogs (Chapter 4). The main findings were current literature on bumble bee nesting and overwintering habitat is limited and biased towards the United Kingdom and agricultural habitats (Ch.1). Bumble bees overwinter underground, often on shaded banks or near trees. Nests were mostly underground and found in many landscapes (Ch.1). B. terricola and B. pensylvanicus have distinct habitat characteristics (Ch.2). Landscape predictors explained more variation in the species data than local or floral resources (Ch.2). Among local variables, floral resources were consistently important throughout the season (Ch.2). Most bumble bee conservation priority areas are in western Canada, southern Ontario, southern Quebec and across the Maritimes and are most often located within woody savannas (Ch.3). -
UC Berkeley UC Berkeley Electronic Theses and Dissertations
UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Bees and belonging: Pesticide detection for wild bees in California agriculture and sense of belonging for undergraduates in a mentorship program Permalink https://escholarship.org/uc/item/8z91q49s Author Ward, Laura True Publication Date 2020 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Bees and belonging: Pesticide detection for wild bees in California agriculture and sense of belonging for undergraduates in a mentorship program By Laura T Ward A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, and Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Nicholas J. Mills, Chair Professor Erica Bree Rosenblum Professor Eileen A. Lacey Fall 2020 Bees and belonging: Pesticide detection for wild bees in California agriculture and sense of belonging for undergraduates in a mentorship program © 2020 by Laura T Ward Abstract Bees and belonging: Pesticide detection for wild bees in California agriculture and sense of belonging for undergraduates in a mentorship program By Laura T Ward Doctor of Philosophy in Environmental Science, Policy, and Management University of California, Berkeley Professor Nicholas J. Mills, Chair This dissertation combines two disparate subjects: bees and belonging. The first two chapters explore pesticide exposure for wild bees and honey bees visiting crop and non-crop plants in northern California agriculture. The final chapter utilizes surveys from a mentorship program as a case study to analyze sense of belonging among undergraduates. The first chapter of this dissertation explores pesticide exposure for wild bees and honey bees visiting sunflower crops. -
Insects Associated with the Flowers of Two Species of Malacothrix{A^Tekaceke) on San Miguel Island, California
INSECTS ASSOCIATED WITH THE FLOWERS OF TWO SPECIES OF MALACOTHRIX{A^TEKACEKE) ON SAN MIGUEL ISLAND, CALIFORNIA BY SCOTT E. MILLER' AND W. S. DAVIS^ The insects associated with Malacothrix incana (Nutt.) T. & G. and M. implicata Eastwood on San Miguel Island were sampled as part of a general analysis of hybridization between the two species on the island (Davis and Philbrick, 1986). On San Miguel Island, M. incana is widely distributed on unstabilized and stabilized sand dunes on slopes near the ocean or on sandy substrate on the upper surfaces of the island including the slopes of San Miguel Peak and Green Mountain. In contrast, M. implicata is generally restricted to the slopes near the ocean or the walls of canyons above the ocean. Hybrid plants were found only where M. incana and M. implicata were growing in a common area and constituted less than 1% of the total number of the three forms in these areas. Hybrid plants were most frequent on the slopes above Cuyler Harbor and above Tyler Bight. Plants of M. implicata are spreading or erect perennials with large heads containing up to 80 florets. The ligules are white and have a purple stripe on the abaxial surface. Plants of M. incana are peren- nial and become mound-shaped after several years of growth. The large heads contain up to 100 florets with yellow ligules. The hybrid is also perennial and has large heads with pale yellow florets whose ligules often bear a reddish stripe on the abaxial surface. During our visit to San Miguel Island in May, 1984 a majority of the plants of M. -
Global Trends in Bumble Bee Health
EN65CH11_Cameron ARjats.cls December 18, 2019 20:52 Annual Review of Entomology Global Trends in Bumble Bee Health Sydney A. Cameron1,∗ and Ben M. Sadd2 1Department of Entomology, University of Illinois, Urbana, Illinois 61801, USA; email: [email protected] 2School of Biological Sciences, Illinois State University, Normal, Illinois 61790, USA; email: [email protected] Annu. Rev. Entomol. 2020. 65:209–32 Keywords First published as a Review in Advance on Bombus, pollinator, status, decline, conservation, neonicotinoids, pathogens October 14, 2019 The Annual Review of Entomology is online at Abstract ento.annualreviews.org Bumble bees (Bombus) are unusually important pollinators, with approx- https://doi.org/10.1146/annurev-ento-011118- imately 260 wild species native to all biogeographic regions except sub- 111847 Saharan Africa, Australia, and New Zealand. As they are vitally important in Copyright © 2020 by Annual Reviews. natural ecosystems and to agricultural food production globally, the increase Annu. Rev. Entomol. 2020.65:209-232. Downloaded from www.annualreviews.org All rights reserved in reports of declining distribution and abundance over the past decade ∗ Corresponding author has led to an explosion of interest in bumble bee population decline. We Access provided by University of Illinois - Urbana Champaign on 02/11/20. For personal use only. summarize data on the threat status of wild bumble bee species across bio- geographic regions, underscoring regions lacking assessment data. Focusing on data-rich studies, we also synthesize recent research on potential causes of population declines. There is evidence that habitat loss, changing climate, pathogen transmission, invasion of nonnative species, and pesticides, oper- ating individually and in combination, negatively impact bumble bee health, and that effects may depend on species and locality. -
Portland Field Guide
FIELD GUIDE FRITZ HAEG’S ANIMAL ESTATES REGIONAL MODEL HOMES 5.0 PORTLAND, OREGON 5 . N 0 O P G O RE RTLAND, O ANIMAL ESTATES 5.0 PORTLAND, OREGON DOUGLAS F. COOLEY MEMORIAL ART GALLERY REED COLLEGE 26 AUGUST–5 OCTOBER 2008 FRITZ HAEG 04 INTRODUCTION 10 IN LIVABLE CITIES IS FRITZ HAEG PRESERVATION OF THE WILD MIKE HOUCK 06 BUILD A BETTER SNAG! 14 SNAGS AND LOGS STEPHANIE SNYDER CHARLOTTE CORKRAN ANIMAL CLIENTS 18 CLIENT 5.1 34 CLIENT 5.5 VAUX’S SWIFT NORTHWESTERN GARTER SNAKE CHAETURA VAUXI THAMNOPHIS SIRTALIS TETRATAENIA CONTENTS BOB SALLINGER TIERRA CURRY 2 2 CLIENT 5.2 38 CLIENT 5.6 WHITE-BREASTED NUTHATCH ORANGE-RUMPED BUMBLEBEE SITTA CAROLINENSIS BOMBUS MELANOPYGUS CHARLOTTE CORKRAN CHRISTOPHER MARSHALL 26 CLIENT 5.3 42 CLIENT 5.7 OLIVE-SIDED FLYCATCHER SNAIL-EATING GROUND BEETLE CONTOPUS COOPERI SCAPHINOTUS ANGULATUS CHARLOTTE CORKRAN CHRISTOPHER MARSHALL 30 CLIENT 5.4 SILVER-HAIRED BAT LASIONYCTERIS NOCTIVAGANS CHARLOTTE CORKRAN 46 FIELD NOTES 48 CREDITS CLIENT 5.1 VAUX’S SWIFT CHAETURA VAUXI The ongoing Animal Estates lished between the man-made and the wild. initiative creates dwellings for Animals and their habitats are woven back into our cities, strip malls, garages, offi ce parks, animals that have been displaced freeways, backyards, parking lots, and neigh- by humans. Each edition of borhoods. Animal Estates intends to provide a the project is accompanied by provocative twenty-fi rst-century model for the some combination of events, human-animal relationship that is more intimate, visible, and thoughtful. workshops, exhibitions, videos, printed materials, and a temporary PORTLAND headquarters presenting an ever- In the gallery, the temporary Animal Estates expanding urban wildlife archive. -
Boring Beetles (Coleoptera: Scolytidae, Buprestidae, Cerambycidae) in White Spruce (Picea Glauca (Moench) Voss) Ecosystems of Alaska
United States Department of Agriculture Effect of Ecosystem Disturbance Forest Service on Diversity of Bark and Wood- Pacific Northwest Research Station Boring Beetles (Coleoptera: Research Paper PNW-RP-546 April 2002 Scolytidae, Buprestidae, Cerambycidae) in White Spruce (Picea glauca (Moench) Voss) Ecosystems of Alaska Richard A. Werner This publication reports research involving pesticides. It does not contain recommenda- tions for their use, nor does it imply that the uses discussed here have been registered. All uses of pesticides must be registered by appropriate state and federal agencies, or both, before they can be recommended. CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife—if they are not handled or applied properly. Use all pesticides selectively and carefully. Follow recommended practices for the disposal of surplus pesticides and pesticide containers. Author Richard A. Werner was a research entomologist (retired), Pacific Northwest Research Station, 8080 NW Ridgewood Drive, Corvallis, OR 97330. He is currently a volunteer at the Pacific Northwest Research Station conducting research for the Long Term Ecological Research Program in Alaska. Abstract Werner, Richard A. 2002. Effect of ecosystem disturbance on diversity of bark and wood-boring beetles (Coleoptera: Scolytidae, Buprestidae, Cerambycidae) in white spruce (Picea glauca (Moench) Voss) ecosystems of Alaska. Res. Pap. PNW-RP-546. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 15 p. Fire and timber harvest are the two major disturbances that alter forest ecosystems in interior Alaska. Both types of disturbance provide habitats that attract wood borers and bark beetles the first year after the disturbance, but populations then decrease to levels below those in undisturbed sites. -
Bombus Vancouverensis Cresson, 1878 Common Name: Two Form Bumble Bee ELCODE: IIHYM24070 Taxonomic Serial No.: 714787
Alaska Natural Heritage Program Conservation Status Report Bombus vancouverensis Cresson, 1878 Common Name: Two Form Bumble Bee ELCODE: IIHYM24070 Taxonomic Serial No.: 714787 Synonyms: Pyrobombus bifarius Cresson, 1878; Bombus bifarius Cresson, 1878 Taxonomy Notes: Williams et al. (2014) report that DNA barcode data indicate this species has two lineages. However, the Barcode of Life Data System (BOLD) has all samples of this species (n = 163) grouped in a single BIN (BOLD:AAB4830). Ghisbain et al. (2020) concluded that B. bifarius sensu stricto does not occur in Alaska, and therefore all specimens are now B. vancouverensis and Sikes & Rykken (2020) concurred. Report last updated – November 2, 2020 Conservation Status G5 S3 Occurrences, Range Number of Occurrences: 20, number of museum records: 3,646 (Canadian National Collection, Illinois Natural History Survey, University of Alaska Museum Insect Collection, University of Alberta Museums, Koch et al. 2015). AK Range Extent: Bombus vancouverensis occurrences 359,987 km2; 4-km2 grid cells: 19. Found on the Seward Peninsula, and in Interior Alaska, the Matanuska Valley and the Copper River Basin. Also in Haines and Alaska-Canada Border at Stewart. North American Distribution: Alaska and south west Yukon Territory to British Columbia to the Pacific Northwest. In the Great Basin, Rocky Mountains, Arizona, New Mexico, Sierra Mountains and California Coast. Trends Trends are based on museum voucher collections of all Bombus species. Short-term trends are focus the past two decades (2000’s and 2010s), whereas long-term trends are based on all years. Data originate from museum voucher collections only and are summarized by decade. White bars indicate the number of voucher collections for the species. -
Unique Bee Communities Within Vacant Lots and Urban Farms Result from Variation in Surrounding Urbanization Intensity
sustainability Article Unique Bee Communities within Vacant Lots and Urban Farms Result from Variation in Surrounding Urbanization Intensity Frances S. Sivakoff ID , Scott P. Prajzner and Mary M. Gardiner * ID Department of Entomology, The Ohio State University, 2021 Coffey Road, Columbus, OH 43210, USA; [email protected] (F.S.S.); [email protected] (S.P.P.) * Correspondence: [email protected]; Tel.: +1-330-601-6628 Received: 1 May 2018; Accepted: 5 June 2018; Published: 8 June 2018 Abstract: We investigated the relative importance of vacant lot and urban farm habitat features and their surrounding landscape context on bee community richness, abundance, composition, and resource use patterns. Three years of pan trap collections from 16 sites yielded a rich assemblage of bees from vacant lots and urban farms, with 98 species documented. We collected a greater bee abundance from vacant lots, and the two forms of greenspace supported significantly different bee communities. Plant–pollinator networks constructed from floral visitation observations revealed that, while the average number of bees utilizing available resources, niche breadth, and niche overlap were similar, the composition of floral resources and common foragers varied by habitat type. Finally, we found that the proportion of impervious surface and number of greenspace patches in the surrounding landscape strongly influenced bee assemblages. At a local scale (100 m radius), patch isolation appeared to limit colonization of vacant lots and urban farms. However, at a larger landscape scale (1000 m radius), increasing urbanization resulted in a greater concentration of bees utilizing vacant lots and urban farms, illustrating that maintaining greenspaces provides important habitat, even within highly developed landscapes. -
Crop and Semi-Natural Habitat Configuration Affects
insects Article Crop and Semi-Natural Habitat Configuration Affects Diversity and Abundance of Native Bees (Hymenoptera: Anthophila) in a Large-Field Cotton Agroecosystem Isaac L. Esquivel 1,2,*, Katherine A. Parys 3 , Karen W. Wright 1, Micky D. Eubanks 1, John D. Oswald 1, Robert N. Coulson 1 and Michael J. Brewer 1,2 1 Department of Entomology, Texas A&M University, College Station, TX 77843, USA; [email protected] (K.W.W.); [email protected] (M.D.E.); [email protected] (J.D.O.); [email protected] (R.N.C.); [email protected] (M.J.B.) 2 Department of Entomology, Texas A&M AgriLife Research, Corpus Christi, TX 78406, USA 3 Pollinator Health in Southern Crop Ecosystems Research Unit, USDA-ARS, Stoneville, MS 38732, USA; [email protected] * Correspondence: [email protected] Simple Summary: Commercial cotton growing systems are one of the most intensely managed, economically, and culturally important fiber cropping systems worldwide. The composition and configuration of crop species and semi-natural habitat can have significant effects on ecosystem ser- vices such as pollination. Here, we investigated the local-scale effect on the arrangement of different Citation: Esquivel, I.L.; Parys, K.A.; crop fields and surrounding semi-natural habitat in a large-field commercial cotton system on the Wright, K.W.; Eubanks, M.D.; Oswald, diversity and abundance of native bee pollinators. Using bee bowl traps at crop interfaces (cotton J.D.; Coulson, R.N.; Brewer, M.J. Crop grown next to cotton, sorghum, or semi-natural habitat along with a natural habitat comparator), and Semi-Natural Habitat we found a total of 32 bee species in 13 genera across 3 families.