Molecular Systematics of North American Phoxinin Genera (Actinopterygii: Cyprinidae) Inferred from Mitochondrial 12S and 16S Ribosomal RNA Sequences

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Systematics of North American Phoxinin Genera (Actinopterygii: Cyprinidae) Inferred from Mitochondrial 12S and 16S Ribosomal RNA Sequences Blackwell Science, LtdOxford, UKZOJZoological Journal of the Linnean Society0024-4082The Lin- nean Society of London, 2003? 2003 1391 6380 Original Article A. M. SIMONS ET AL. NORTH AMERICAN PHOXININ SYSTEMATICS Zoological Journal of the Linnean Society, 2003, 139, 63–80. With 7 figures Molecular systematics of North American phoxinin genera (Actinopterygii: Cyprinidae) inferred from mitochondrial 12S and 16S ribosomal RNA sequences ANDREW M. SIMONS1*, PETER B. BERENDZEN1 and RICHARD L. MAYDEN2 1University of Minnesota, Department of Fisheries, Wildlife, and Conservation Biology & Bell Museum of Natural History 1980 Folwell Avenue, St Paul, MN 55108, USA 2Saint Louis University, Department of Biology, 3507 Laclede Avenue, St Louis, MO 63103, USA Received June 2002; accepted for publication December 2002 The cyprinid fish fauna of North America is relatively large, with approximately 300 species, and all but one of these are considered phoxinins. The phylogenetic relationships of the North American phoxinins continue to pose diffi- culties for systematists. Results of morphological analyses are not consistent owing to differences interpreting and coding characters. Herein, we present phylogenetic analyses of mitochondrial 12S and 16S ribosomal RNA sequence data for representatives of nearly all genera of North American phoxinins. The data were analysed using parsimony, weighted parsimony, maximum likelihood and bayesian analyses. Results from weighted parsimony, likelihood and the bayesian analysis are largely consistent as they all account for differing substitution rates between transitions and transversions. Several major clades within the fauna can be recognized and are strongly supported by all anal- yses. These include the western clade, creek chub–plagopterin clade and the open posterior myodome clade. The shiner clade is nested in the open posterior myodome clade and is the most species-rich clade of North American phoxinins. Relationships within this clade were not well resolved by our analyses. This may reflect the inability of the mitochondrial RNA genes to resolve recent speciation events or taxon sampling within the shiner clade. © 2003 The Linnean Society of London, Zoological Journal of the Linnean Society, 2003, 139, 63–80. ADDITIONAL KEYWORDS: bayesian estimation – evolution – maximum likelihood – parsimony. INTRODUCTION with all North American genera in the subfamily Leu- ciscinae. Leuciscinae was diagnosed by two charac- The family Cyprinidae is native to all continents ters: pharyngeal arch with one or two rows of teeth, except for Australia, Antarctica and South America and the loss of the suborbital–infraorbital connection. (Mayden, 1991). Over 2000 species have been Within Leuciscinae, two lineages of cyprinids were described (Nelson, 1994), 300 of which are from North recognized, both of which are present in North Amer- America (Mayden et al., 1992). Their high diversity ica, leuciscins and phoxinins. The leuciscins are pri- and widespread distribution have made cyprinids one marily Eurasian, with a single North American of the most difficult groups of fishes to understand tax- representative, the golden shiner (Notemigonus cryso- onomically and systematically (Mayden, 1989, 1991). leucas [Mitchill]). Phoxinins make up the remaining Various researchers have attempted to decipher the North American cyprinid diversity. There are several phylogenetic history and classify these fishes. One of Eurasian phoxinin genera known but their relation- the latest efforts employing phylogenetic systematics ship to the North American taxa is currently was by Cavender & Coburn (1992). Cavender & unresolved. Coburn recognized several subfamilies worldwide, The North American phoxinins are one of the most taxonomically difficult groups of fishes on the conti- nent. The large number of taxa, their diverse and com- *Corresponding author. E-mail: [email protected] plex morphological evolution, and their widespread © 2003 The Linnean Society of London, Zoological Journal of the Linnean Society, 2003, 139, 63–80 63 64 A. M. SIMONS ET AL. distribution has hampered an understanding of their Relationships and classification of North Ameri- phylogenetic relationships, essential for comprehend- can phoxinins have been chaotic since Rafinesque ing the evolution of biodiversity of these fishes. The (1818) described Notropis atherinoides (Fig. 2a). A tremendous breadth of trophic morphologies, breeding proliferation of generic and specific names has behaviours and habitat preferences (to name a few resulted in complex synonymies; some taxa have characteristics) is unmatched by any other group of been described a number of times, even within the North American fishes. Like cyprinid groups from same paper, e.g. Girard (1856). The confusion con- other continents, North American phoxinins contain tinued through the early part of the 20th century, algivores, herbivores (Fig. 1c,d), planktivores and pis- reflecting the absence of a coherent philosophy gov- civores (Fig. 1a,f), often with specialized oral morphol- erning classification and taxonomy. The cyprinid ogies for obtaining food. The most bizarre of these is fauna was considered to contain two distinct Exoglossum maxillinguae (Lesueur), a species that groups, a western fauna and an eastern fauna. The has been reported to use its modified lower jaw to western fauna contained taxa native to Pacific pluck eyes out of other fishes (Scott & Crossman, 1973; drainages whereas the eastern fauna contained Page & Burr, 1991). Breeding behaviours are very taxa native to the Mississippi, other Gulf of Mexico diverse; these include various courtship displays with drainages and Atlantic drainages. Although several spawning over unprepared substrate, in rock crevices, taxa obviously did not conform to this pattern, this cavities beneath rocks and on large, gravel nests. view has persisted. Members of the genus Nocomis (Fig. 2h) construct In the 1950s, Reeve Bailey dramatically revised the nests over 1 m in diameter and up to one-third of a taxonomic structure of several groups of North Amer- metre in height (Johnston & Page, 1992). Other spe- ican fishes. In an attempt to simplify the classification cies are known as nest associates and spawn over cyp- of minnows, Bailey (1951, 1956) synonymized several rinid or non-cyprinid fish species nests and leave genera based on a few morphological characters. parental care to the nest-constructing species. Pter- These characters include the presence and position of onotropis hubbsi (Bailey & Robison) and Notropis barbels, scalation and gut morphology. His simplifica- cummingsae Myers spawn over nests of sunfishes and tion of cyprinid classification was paralleled by basses (Centrarchidae) (Fletcher & Burr, 1992, 1993), similar changes in the classification of the North species that are normally considered predators, and American darters (Bailey, 1951; Bailey, Winn & initiate their spawning only after the presumed Smith, 1954; Bailey & Gosline, 1955). These taxo- release of pheromones contained in the milt of the cen- nomic changes were not proposed in papers on classi- trarchid species male (Hunter & Hasler, 1965). North fication but as footnotes in keys (Bailey, 1951, 1956) or American phoxinins are found in a wide range of hab- as commentaries in papers on distribution (Bailey itats, including high-velocity headwater streams, et al., 1954). Although there were some immediate large, silt-laden rivers, swamps and lakes and exhibit reactions to these taxonomic changes (Lachner & Jen- a wide range of morphologies allowing them to persist kins, 1967; McPhail & Lindsey, 1970; Jenkins & Lach- in these habitats (Figs 1, 2). ner, 1971), they strongly influenced work on North Many early classifications relied on morphological American fish systematics. Hubbs & Miller (1977: characters such as scalation, position of fin insertion, 275) effectively summarized the confusion: ‘It is abun- gut morphology and pharyngeal tooth counts to delin- dantly obvious that much of the generic placement in eate taxonomic boundaries. These classifications were American cyprinids is in a chaotic state, and that the not phylogenetic and were generally based on subjec- prime significance attributed to intestinal coiling vs. tive evaluations of the degree of taxonomic differenti- the single compressed-S configuration, and to the ation provided by various morphological features. presence vs. absence of a maxillary barbel, in the tax- Some characters were considered indicative of generic onomy of the group has been very considerably dis- differences, whereas others were indicative of specific credited.’ Hubbs focused on morphological differences or subspecific differentiation. This approach generated whereas Bailey focused on similarities. The differ- taxonomic instability and confusion. The emergence of ences between Hubbs’ and Bailey’s views perhaps phylogenetic systematics has altered the arguments reflects the tensions of systematic thought of the time, from the value of particular characters or character that classifications should reflect both history and systems to phylogeny reconstruction and appropriate adaptation. interpretation of characters. Although disagreements The introduction of a fundamentally phylogenetic still exist, recent phylogenetic studies are converging approach to classification marked the first real change on a consensus of North American phoxinin relation- in systematics of North American fishes (reviewed by ships. Herein, we review historical approaches and Mayden & Burr, 1992). Mayden (1989)
Recommended publications
  • CAT Vertebradosgt CDC CECON USAC 2019
    Catálogo de Autoridades Taxonómicas de vertebrados de Guatemala CDC-CECON-USAC 2019 Centro de Datos para la Conservación (CDC) Centro de Estudios Conservacionistas (Cecon) Facultad de Ciencias Químicas y Farmacia Universidad de San Carlos de Guatemala Este documento fue elaborado por el Centro de Datos para la Conservación (CDC) del Centro de Estudios Conservacionistas (Cecon) de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala. Guatemala, 2019 Textos y edición: Manolo J. García. Zoólogo CDC Primera edición, 2019 Centro de Estudios Conservacionistas (Cecon) de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala ISBN: 978-9929-570-19-1 Cita sugerida: Centro de Estudios Conservacionistas [Cecon]. (2019). Catálogo de autoridades taxonómicas de vertebrados de Guatemala (Documento técnico). Guatemala: Centro de Datos para la Conservación [CDC], Centro de Estudios Conservacionistas [Cecon], Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala [Usac]. Índice 1. Presentación ............................................................................................ 4 2. Directrices generales para uso del CAT .............................................. 5 2.1 El grupo objetivo ..................................................................... 5 2.2 Categorías taxonómicas ......................................................... 5 2.3 Nombre de autoridades .......................................................... 5 2.4 Estatus taxonómico
    [Show full text]
  • Research Funding (Total $2,552,481) $15,000 2019
    CURRICULUM VITAE TENNESSEE AQUARIUM CONSERVATION INSTITUTE 175 BAYLOR SCHOOL RD CHATTANOOGA, TN 37405 RESEARCH FUNDING (TOTAL $2,552,481) $15,000 2019. Global Wildlife Conservation. Rediscovering the critically endangered Syr-Darya Shovelnose Sturgeon. $10,000 2019. Tennessee Wildlife Resources Agency. Propagation of the Common Logperch as a host for endangered mussel larvae. $8,420 2019. Tennessee Wildlife Resources Agency. Monitoring for the Laurel Dace. $4,417 2019. Tennessee Wildlife Resources Agency. Examining interactions between Laurel Dace (Chrosomus saylori) and sunfish $12,670 2019. Trout Unlimited. Southern Appalachian Brook Trout propagation for reintroduction to Shell Creek. $106,851 2019. Private Donation. Microplastic accumulation in fishes of the southeast. $1,471. 2019. AZFA-Clark Waldram Conservation Grant. Mayfly propagation for captive propagation programs. $20,000. 2019. Tennessee Valley Authority. Assessment of genetic diversity within Blotchside Logperch. $25,000. 2019. Riverview Foundation. Launching Hidden Rivers in the Southeast. $11,170. 2018. Trout Unlimited. Propagation of Southern Appalachian Brook Trout for Supplemental Reintroduction. $1,471. 2018. AZFA Clark Waldram Conservation Grant. Climate Change Impacts on Headwater Stream Vertebrates in Southeastern United States $1,000. 2018. Hamilton County Health Department. Step 1 Teaching Garden Grants for Sequoyah School Garden. $41,000. 2018. Riverview Foundation. River Teachers: Workshops for Educators. $1,000. 2018. Tennessee Valley Authority. Youth Freshwater Summit $20,000. 2017. Tennessee Valley Authority. Lake Sturgeon Propagation. $7,500 2017. Trout Unlimited. Brook Trout Propagation. $24,783. 2017. Tennessee Wildlife Resource Agency. Assessment of Percina macrocephala and Etheostoma cinereum populations within the Duck River Basin. $35,000. 2017. U.S. Fish and Wildlife Service. Status surveys for conservation status of Ashy (Etheostoma cinereum) and Redlips (Etheostoma maydeni) Darters.
    [Show full text]
  • North Carolina Wildlife Resources Commission Gordon Myers, Executive Director
    North Carolina Wildlife Resources Commission Gordon Myers, Executive Director March 1, 2016 Honorable Jimmy Dixon Honorable Chuck McGrady N.C. House of Representatives N.C. House of Representatives 300 N. Salisbury Street, Room 416B 300 N. Salisbury Street, Room 304 Raleigh, NC 27603-5925 Raleigh, NC 27603-5925 Senator Trudy Wade N.C. Senate 300 N. Salisbury Street, Room 521 Raleigh, NC 27603-5925 Dear Honorables: I am submitting this report to the Environmental Review Committee in fulfillment of the requirements of Section 4.33 of Session Law 2015-286 (H765). As directed, this report includes a review of methods and criteria used by the NC Wildlife Resources Commission on the State protected animal list as defined in G.S. 113-331 and compares them to federal and state agencies in the region. This report also reviews North Carolina policies specific to introduced species along with determining recommendations for improvements to these policies among state and federally listed species as well as nonlisted animals. If you have questions or need additional information, please contact me by phone at (919) 707-0151 or via email at [email protected]. Sincerely, Gordon Myers Executive Director North Carolina Wildlife Resources Commission Report on Study Conducted Pursuant to S.L. 2015-286 To the Environmental Review Commission March 1, 2016 Section 4.33 of Session Law 2015-286 (H765) directed the N.C. Wildlife Resources Commission (WRC) to “review the methods and criteria by which it adds, removes, or changes the status of animals on the state protected animal list as defined in G.S.
    [Show full text]
  • Roundtail Chub (Gila Robusta Robusta): a Technical Conservation Assessment
    Roundtail Chub (Gila robusta robusta): A Technical Conservation Assessment Prepared for the USDA Forest Service, Rocky Mountain Region, Species Conservation Project May 3, 2005 David E. Rees, Jonathan A. Ptacek, and William J. Miller Miller Ecological Consultants, Inc. 1113 Stoney Hill Drive, Suite A Fort Collins, Colorado 80525-1275 Peer Review Administered by American Fisheries Society Rees, D.E., J.A. Ptacek, and W.J. Miller. (2005, May 3). Roundtail Chub (Gila robusta robusta): a technical conservation assessment. [Online]. USDA Forest Service, Rocky Mountain Region. Available: http:// www.fs.fed.us/r2/projects/scp/assessments/roundtailchub.pdf [date of access]. ACKNOWLEDGMENTS We would like to thank those people who promoted, assisted, and supported this species assessment for the Region 2 USDA Forest Service. Ryan Carr and Kellie Richardson conducted preliminary literature reviews and were valuable in the determination of important or usable literature. Laura Hillger provided assistance with report preparation and dissemination. Numerous individuals from Region 2 national forests were willing to discuss the status and management of this species. Thanks go to Greg Eaglin (Medicine Bow National Forest), Dave Gerhardt (San Juan National Forest), Kathy Foster (Routt National Forest), Clay Spease and Chris James (Grand Mesa, Uncompahgre, and Gunnison National Forest), Christine Hirsch (White River National Forest), as well as Gary Patton and Joy Bartlett from the Regional Office. Dan Brauh, Lory Martin, Tom Nesler, Kevin Rogers, and Allen Zincush, all of the Colorado Division of Wildlife, provided information on species distribution, management, and current regulations. AUTHORS’ BIOGRAPHIES David E. Rees studied fishery biology, aquatic ecology, and ecotoxicology at Colorado State University where he received his B.S.
    [Show full text]
  • Population Status of Humpback Chub, Gila Cypha, and Catch
    Population Status of Humpback Chub, Gila cypha, and Catch Indices and Population Structure of Sympatric Roundtail Chub, Gila robusta, in Black Rocks, Colorado River, Colorado, 1998- 2012 Picture 1. Humpback chub on grid board (2012). Photo credit: T. Francis, USFWS. Upper Colorado River Endangered Fish Recovery Program Project Number 131 (22a3) Final Report April, 2016 Travis A. Francis U.S. Fish and Wildlife Service Colorado River Fishery Project 445 West Gunnison Avenue, Suite 140 Grand Junction, Colorado 81501 -and- Dr. Kevin R. Bestgen Dr. Gary C. White Colorado State University Larval Fish Laboratory Fort Collins, Colorado 80523 i Suggested Citation: Francis, T.A., K.R. Bestgen, and G.C. White. 2016. Population status of humpback chub, Gila cypha, and catch indices and population structure of sympatric roundtail chub, Gila robusta, in Black Rocks, Colorado River, Colorado, 1998-2012. Larval Fish Laboratory Contribution 199. Final Report from the U.S. Fish and Wildlife Service to the Upper Colorado River Endangered Fish Recovery Program, Project Number 131. Grand Junction, Colorado. ii Table of Contents ACKNOWLEDGEMENTS ......................................................................................................................... vi EXECUTIVE SUMMARY .......................................................................................................................... vii INTRODUCTION .....................................................................................................................................
    [Show full text]
  • Early Development of the Devils River Minnow, Dionda Diaboli (Cyprinidae)
    THE SOUTHWESTERN NATURALIST 52(3):378–385 SEPTEMBER 2007 EARLY DEVELOPMENT OF THE DEVILS RIVER MINNOW, DIONDA DIABOLI (CYPRINIDAE) JULIE HULBERT,TIMOTHY H. BONNER,* JOE N. FRIES,GARY P. GARRETT, AND DAVID R. PENDERGRASS Department of Biology, Texas State University, 601 University Drive, San Marcos, TX 78666 (JH, THB, DRP) National Fish Hatchery and Technology Center, 500 McCarty Lane, San Marcos, TX 78666 (JNF) Texas Parks and Wildlife Department, 5103 Junction Highway, Ingram, TX 78025 (GPG) *Correspondent: [email protected] ABSTRACT—The Devils River minnow (Dionda diaboli) coexists with at least 2 congeners and several other cyprinids throughout its range in southern Texas and northern Mexico. Larval and juvenile descriptions are needed to monitor D. diaboli larvae and juveniles as part of recovery efforts for this species of conservation concern. The purpose of this study was to describe and quantify characteristics of early life stages of D. diaboli from hatching to 128 d post hatch to facilitate larval and juvenile identification. Descriptive characters include mid-lateral band of melanophores by Day 8 (.5.1 mm SL; .5.4 mm TL), mid-lateral band of melanophores separate from a rounded caudal spot and lateral snout-to-eye melanophores by Day 16 (.5.8 mm SL; .6.3 mm TL), initial coiling of intestine by Day 32 (.6.2 mm SL; .7.2 mm TL), wedge-shaped caudal spot by Day 64 (.8.7 mm SL; .10.0 mm TL), and melanophores around scale margins and mid-lateral double dashes along lateral line by Day 128 (.13.5 mm SL; .16.0 mm TL).
    [Show full text]
  • B4683 NRTR.Pdf
    NATURAL RESOURCES TECHNICAL REPORT Replace Bridge No. 20 on SR-1152 over South Deep Creek Yadkin County, North Carolina TIP B-4683 Federal Aid Project No. BRZ-1152(12) WBS Element No. 38466.1.FD2 THE NORTH CAROLINA DEPARTMENT OF TRANSPORTATION Project Development and Environmental Analysis Unit Natural Environment Section June 2015 TABLE OF CONTENTS 1.0 INTRODUCTION...................................................................................................... 1 2.0 METHODOLOGY AND QUALIFICATIONS ...................................................... 1 3.0 PHYSICAL RESOURCES ....................................................................................... 2 3.1 Soils ...................................................................................................................................... 2 3.2 Water Resources ................................................................................................................. 2 4.0 BIOTIC RESOURCES .............................................................................................. 3 4.1 Terrestrial Communities .................................................................................................... 3 4.1.1 Maintained/Disturbed ..................................................................................................... 3 4.1.2 Mesic Mixed Hardwood Forest (Piedmont Subtype) ..................................................... 3 4.1.3 Piedmont Alluvial Forest ..............................................................................................
    [Show full text]
  • Dionda Diaboli), 6 with Implications for Its Conservation…………………………………
    ECOLOGICAL PROFILES FOR SELECTED STREAM-DWELLING TEXAS FRESHWATER FISHES IV A Final Report To The Texas Water Development Board Prepared by: Robert J. Edwards Department of Biology University of Texas-Pan American Edinburg, TX 78541 TWDB Contract Number: 95-483-107 30 August 2003 TABLE OF CONTENTS Table of Contents ………………………………………….…………………….. 2 Introduction 3 Scientific Publications Resulting From This TWDB Contract………...………. 3 Discovery of a New Population of Devils River Minnow (Dionda diaboli), 6 With Implications for its Conservation…………………………………. Acknowledgements………………………………………………………..………. 14 Literature Cited……………….………………………………………….……….. 14 2 Introduction A major goal of the Water Development Board's mission are its research, monitoring, and assessment programs designed to minimize the effects of water development projects on the affected native aquatic fauna and to maintain the quality and availability of instream habitats for the use of dependent aquatic resources. The instream flows necessary for the successful survival, growth and reproduction of affected aquatic life are a major concern. Unfortunately, instream flow data with respect to the ecological requirements of Texas riverine fishes are largely unknown. While some information can be found in the published literature, a substantial but unknown quantity of information is also present in various agencies and research museums around the state. In order to minimize the disruptions to the native fauna, quantitative and qualitative information concerning life histories, survival,
    [Show full text]
  • Information on the NCWRC's Scientific Council of Fishes Rare
    A Summary of the 2010 Reevaluation of Status Listings for Jeopardized Freshwater Fishes in North Carolina Submitted by Bryn H. Tracy North Carolina Division of Water Resources North Carolina Department of Environment and Natural Resources Raleigh, NC On behalf of the NCWRC’s Scientific Council of Fishes November 01, 2014 Bigeye Jumprock, Scartomyzon (Moxostoma) ariommum, State Threatened Photograph by Noel Burkhead and Robert Jenkins, courtesy of the Virginia Division of Game and Inland Fisheries and the Southeastern Fishes Council (http://www.sefishescouncil.org/). Table of Contents Page Introduction......................................................................................................................................... 3 2010 Reevaluation of Status Listings for Jeopardized Freshwater Fishes In North Carolina ........... 4 Summaries from the 2010 Reevaluation of Status Listings for Jeopardized Freshwater Fishes in North Carolina .......................................................................................................................... 12 Recent Activities of NCWRC’s Scientific Council of Fishes .................................................. 13 North Carolina’s Imperiled Fish Fauna, Part I, Ohio Lamprey .............................................. 14 North Carolina’s Imperiled Fish Fauna, Part II, “Atlantic” Highfin Carpsucker ...................... 17 North Carolina’s Imperiled Fish Fauna, Part III, Tennessee Darter ...................................... 20 North Carolina’s Imperiled Fish Fauna, Part
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Aquatic Fish Report
    Aquatic Fish Report Acipenser fulvescens Lake St urgeon Class: Actinopterygii Order: Acipenseriformes Family: Acipenseridae Priority Score: 27 out of 100 Population Trend: Unknown Gobal Rank: G3G4 — Vulnerable (uncertain rank) State Rank: S2 — Imperiled in Arkansas Distribution Occurrence Records Ecoregions where the species occurs: Ozark Highlands Boston Mountains Ouachita Mountains Arkansas Valley South Central Plains Mississippi Alluvial Plain Mississippi Valley Loess Plains Acipenser fulvescens Lake Sturgeon 362 Aquatic Fish Report Ecobasins Mississippi River Alluvial Plain - Arkansas River Mississippi River Alluvial Plain - St. Francis River Mississippi River Alluvial Plain - White River Mississippi River Alluvial Plain (Lake Chicot) - Mississippi River Habitats Weight Natural Littoral: - Large Suitable Natural Pool: - Medium - Large Optimal Natural Shoal: - Medium - Large Obligate Problems Faced Threat: Biological alteration Source: Commercial harvest Threat: Biological alteration Source: Exotic species Threat: Biological alteration Source: Incidental take Threat: Habitat destruction Source: Channel alteration Threat: Hydrological alteration Source: Dam Data Gaps/Research Needs Continue to track incidental catches. Conservation Actions Importance Category Restore fish passage in dammed rivers. High Habitat Restoration/Improvement Restrict commercial harvest (Mississippi River High Population Management closed to harvest). Monitoring Strategies Monitor population distribution and abundance in large river faunal surveys in cooperation
    [Show full text]
  • Louisiana's Animal Species of Greatest Conservation Need (SGCN)
    Louisiana's Animal Species of Greatest Conservation Need (SGCN) ‐ Rare, Threatened, and Endangered Animals ‐ 2020 MOLLUSKS Common Name Scientific Name G‐Rank S‐Rank Federal Status State Status Mucket Actinonaias ligamentina G5 S1 Rayed Creekshell Anodontoides radiatus G3 S2 Western Fanshell Cyprogenia aberti G2G3Q SH Butterfly Ellipsaria lineolata G4G5 S1 Elephant‐ear Elliptio crassidens G5 S3 Spike Elliptio dilatata G5 S2S3 Texas Pigtoe Fusconaia askewi G2G3 S3 Ebonyshell Fusconaia ebena G4G5 S3 Round Pearlshell Glebula rotundata G4G5 S4 Pink Mucket Lampsilis abrupta G2 S1 Endangered Endangered Plain Pocketbook Lampsilis cardium G5 S1 Southern Pocketbook Lampsilis ornata G5 S3 Sandbank Pocketbook Lampsilis satura G2 S2 Fatmucket Lampsilis siliquoidea G5 S2 White Heelsplitter Lasmigona complanata G5 S1 Black Sandshell Ligumia recta G4G5 S1 Louisiana Pearlshell Margaritifera hembeli G1 S1 Threatened Threatened Southern Hickorynut Obovaria jacksoniana G2 S1S2 Hickorynut Obovaria olivaria G4 S1 Alabama Hickorynut Obovaria unicolor G3 S1 Mississippi Pigtoe Pleurobema beadleianum G3 S2 Louisiana Pigtoe Pleurobema riddellii G1G2 S1S2 Pyramid Pigtoe Pleurobema rubrum G2G3 S2 Texas Heelsplitter Potamilus amphichaenus G1G2 SH Fat Pocketbook Potamilus capax G2 S1 Endangered Endangered Inflated Heelsplitter Potamilus inflatus G1G2Q S1 Threatened Threatened Ouachita Kidneyshell Ptychobranchus occidentalis G3G4 S1 Rabbitsfoot Quadrula cylindrica G3G4 S1 Threatened Threatened Monkeyface Quadrula metanevra G4 S1 Southern Creekmussel Strophitus subvexus
    [Show full text]