University of Southern Queensland

Total Page:16

File Type:pdf, Size:1020Kb

University of Southern Queensland UNIVERSITY OF SOUTHERN QUEENSLAND SITE SUITABILITY ASSESSMENT OF SPOTTED GUM (Corymbia citriodora subspecies Variegata) FOREST PLANTATION IN SOUTH EAST QUEENSLAND FOR CARBON SEQUESTRATION A Dissertation Submitted by: Precila Gonzales-Salcedo MSc (Environmental Science), BSc (Forestry) For the award of DOCTOR OF PHILOSOPHY 2014 ABSTRACT The inevitable development brought about by human intervention in the global natural ecosystem has led to a continuous increase in greenhouse gas (GHG) emissions into the atmosphere (IPCC 2013), thereby warming the earth. Forest and other vegetation landscapes have the potential to mitigate this warming by serving as the sinks or storages of carbon dioxide. However, land suitability for carbon sink enterprises must be identified to effect a more productive, profitable and efficient sequestration. Additionally, the impact of soil salinity in the suitability of potential forestation sites and carbon sequestration capacity of forest plantation in saline affected areas is not well understood. This research addressed the problem of site suitability by applying the most appropriate process based model particularly the 3-PG (Physiological Principle in Predicting Growth) to enhance the accuracy of estimated biomass for spotted gum. Salinity was incorporated through the mortality impact of varying salt concentrations in the spotted gum. As carbon sequestration endeavour via forestation was deemed risky in marginal areas such as those with salinity problems, the net present value (NPV) of spotted gum forest plantation was incorporated to determine its financial benefits. Site suitability of this forestation endeavour in southeast Queensland was determined and visualised using the geographical information system (GIS). Mathematical models for spotted gum mortality and soil salinity were developed and integrated with the 3-PG model. Parameterisation of the model using specific climatic and bio-physical parameters for spotted gum was conducted prior to the simulation. These provided confidence in the biomass simulation and projection of carbon sequestered until the end of the rotation period. The estimated total biomass (aboveground and belowground biomass) were converted to carbon and tabulated. The tabulated results were converted into maps using GIS techniques and the Net Present Value of spotted gum was calculated based from its potential for timber, carbon and salinity amelioration. The utilisation of spatial mapping tools, specifically GIS, generated potential suitable sites for carbon sequestration activities in the SEQ region. The study generated maps to identify potential locations suitable for Carbon Farming Initiative (CFI) eligible carbon sequestration projects. The site suitability index (SSI) map showed suitable sites in the northern part of the study area located at SEQ 1 and in the southern part at SEQ 2 and SEQ 8. The SSI map also indicated locations for potential investment in forestation projects. It also suggested that success of the carbon sequestration activities cannot be guaranteed in high rainfall areas where salinity could pose a challenge. If spotted gum plantations are established in southeast Queensland and only the conventional timber is accounted as the source of revenue, then the financial benefits are limited to high rainfall areas with a mean annual increment (MAI) of more than 18 m3 ha-1 yr-1. However, under high saline conditions the viability is questionable. When established under high saline affected areas with carbon and salt amelioration incorporated, then carbon sequestration may become profitable. However, this may only be applicable in a scenario where the carbon price was increased and a conventional timber is added with carbon and soil amelioration i benefits. Though suitable sites are limited where this activity is profitable, the potential of spotted gum for soil amelioration under saline affected areas is significant even for an extended long period of time. ii CERTIFICATION OF DISSERTATION I certify that the ideas, investigations, analysis, results, discussions and conclusions reported in this dissertation are solely my own work, except where otherwise acknowledged. I also certify that this is an original work and has not been previously used to earn academic degrees or awards. ____________________________________ _____________________ Signature of Candidate Date Precila Gonzales-Salcedo ENDORSEMENT ____________________________________ _____________________ Signature of Principal Supervisor Date Professor Kevin McDougall ____________________________________ _____________________ Signature of Co-Supervisor Date Dr. Tek Narayan Maraseni iii ACKNOWLEDGEMENTS I would like to express my sincere gratitude to my supervisors Professor Kevin McDougall and Dr. Tek Narayan Maraseni for their supervision and guidance. This study was funded by the Department of Education, Employment and Workplace Relations (DEEWR) and my gratitude also goes to them for the reality of implementing this research endeavour. My gratitude also goes to Dr. David Lee who provided the data-sets for Warrill View that made possible for the validation and parameterisation of this work. I would also like to thank Drs Peter Sands, Joe Landsberg and Richard Waring who gave their invaluable advice, comments and assistance for 3-PG validation process and use. I thank Dr Anders Siggins of CSIRO who provided the 3-PGpjs v 2.5 code. I also wish to express my gratitude to the staff and supervisor of Facility and Maintenance Department of the University of Southern Queensland for assisting me in the data collection. My sincere gratitude also goes to the staff of the Soils Laboratory, Faculty of Engineering and Surveying for allowing me to work overnight in the laboratory and for providing the needed equipment. I would also like to express my gratitude to my beloved mother, Leonila Villa, who is the source of my inspiration. Gratitude is also due my brothers and sisters for their untiring support. I wish to also thank my children Neil, Prizzia, Joy and Pia for their love, support, encouragement, help and their perseverance with me throughout the conduct of this study. I also thank my friends, church mates and pastors for their support, encouragement and prayers. Most of all I wish to dedicate this work to my creator God almighty, who made all things possible and for his grace and mercy. Gratitude and praise to Jesus Christ who gave me the strength and wisdom and to the Holy Spirit who are always with me encouraging me to persevere and finish this work. iv PUBLICATION AND SEMINAR PRESENTATIONS During the study a paper was published out of the result of this study: a) Salcedo, P., Maraseni, T.N. & McDougall, K. 2012. Carbon sequestration potential of spotted gum (Corymbia citriodora subspecies Variegata) in South East Queensland, Australia. International Journal of Environmental Studies. DOI. 10.1080/00207233.2012.715833. Similarly, this research won first prize (2010) and second prize (2012) in two different postgraduate seminars attended by international postgraduate students: a) ACSC Postgraduate Seminar. 2010. Australian Centre for Sustainable Catchments, University of Southern Queensland, Australia. b) ACSC Postgraduate Seminar. 2012. Australian Centre for Sustainable Catchments, University of Southern Queensland, Australia. v ABBREVIATIONS AND ACRONYMS 3-PG Physiological Principle Predicting Growth Model ACCU Australian Carbon Credit Unit ACSC Australian Centre for Sustainable Catchments AGB Above-Ground Biomass AGO Australian Greenhouse Office ANN Artificial Neural Networks APAR Absorbed Photosynthetically Active Radiation AR Afforestation and Reforestation ASDD Australian Spatial Data Directory BGB Below-Ground Biomass BOM Bureau of Meteorology CaBala Carbon Balance CO 2 Carbon Dioxide CO2-e Carbon Dioxide Equivalents CAI Current Annual Increment CAMFor Carbon Accounting Model for Forestry CCV Corymbia citriodora subspecies Variegata CDM Clean Development Mechanism CER Certified Emission Reduction CFI Carbon Farming Initiative CPM Carbon Price Mechanism CRA Comprehensive Regional Assessment DAFF Department of Agriculture, Fisheries and Forestry DAP Direct Action Plan DBH Diameter at Breast Height DERM Department of Environment, Resources and Management DNR Department of Natural Resources EC Electrical Conductance ERU Emission Reduction Unit EU-ETS European Union-Emission Trading System FR Fertility Rating FullCAM Full Carbon Accounting Model GHG Greenhouse Gas GIS Geographical Information System GPP Gross Primary Production Ha Hectare IBRA Interim Biogeographic Regionalisation for Australia IET International Emission Trading IPCC AR5 Intergovernmental Panel for Climate Change Fifth Assessment Report JI Joint Initiative KP Kyoto Protocol LAI Leaf Area Index LMA Leaf Mass per Area LULUCF Land Use, Land Use Change and Forestry MAI Mean Annual Increment MCDA Multi-Criteria Decision Analysis vi MSY Maximum Sustained Yield NCAT National Carbon Accounting Toolbox NLWRA National Land and Water Resources Audit NPP Net Primary Productivity NPV Net Present Value PBM Process Based Model REDD+ Reducing Emissions from Deforestation, Forest Degradation, Sustainable Forest Management and Conservation RFA Regional Forest Agreement SEQ South East Queensland SI Site Index SLA Specific Leaf Area SOM Soil Organic Matter tDM Ton of Dry Matter UNFCCC United Nations Framework Conventions on Climate Change WLC Weighted Linear Combination vii TABLE OF CONTENTS ABSTRACT .....................................................................................................
Recommended publications
  • Trees for Farm Forestry: 22 Promising Species
    Forestry and Forest Products Natural Heritage Trust Helping Communities Helping Australia TREES FOR FARM FORESTRY: 22 PROMISING SPECIES Forestry and Forest Products TREES FOR FARM FORESTRY: Natural Heritage 22 PROMISING SPECIES Trust Helping Communities Helping Australia A report for the RIRDC/ Land & Water Australia/ FWPRDC Joint Venture Agroforestry Program Revised and Edited by Bronwyn Clarke, Ian McLeod and Tim Vercoe March 2009 i © 2008 Rural Industries Research and Development Corporation. All rights reserved. ISBN 1 74151 821 0 ISSN 1440-6845 Trees for Farm Forestry: 22 promising species Publication No. 09/015 Project No. CSF-56A The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication.
    [Show full text]
  • Brisbane Native Plants by Suburb
    INDEX - BRISBANE SUBURBS SPECIES LIST Acacia Ridge. ...........15 Chelmer ...................14 Hamilton. .................10 Mayne. .................25 Pullenvale............... 22 Toowong ....................46 Albion .......................25 Chermside West .11 Hawthorne................. 7 McDowall. ..............6 Torwood .....................47 Alderley ....................45 Clayfield ..................14 Heathwood.... 34. Meeandah.............. 2 Queensport ............32 Trinder Park ...............32 Algester.................... 15 Coopers Plains........32 Hemmant. .................32 Merthyr .................7 Annerley ...................32 Coorparoo ................3 Hendra. .................10 Middle Park .........19 Rainworth. ..............47 Underwood. ................41 Anstead ....................17 Corinda. ..................14 Herston ....................5 Milton ...................46 Ransome. ................32 Upper Brookfield .......23 Archerfield ...............32 Highgate Hill. ........43 Mitchelton ...........45 Red Hill.................... 43 Upper Mt gravatt. .......15 Ascot. .......................36 Darra .......................33 Hill End ..................45 Moggill. .................20 Richlands ................34 Ashgrove. ................26 Deagon ....................2 Holland Park........... 3 Moorooka. ............32 River Hills................ 19 Virginia ........................31 Aspley ......................31 Doboy ......................2 Morningside. .........3 Robertson ................42 Auchenflower
    [Show full text]
  • Guava (Eucalyptus) Rust Puccinia Psidii
    INDUSTRY BIOSECURITY PLAN FOR THE NURSERY & GARDEN INDUSTRY Threat Specific Contingency Plan Guava (eucalyptus) rust Puccinia psidii Plant Health Australia March 2009 Disclaimer The scientific and technical content of this document is current to the date published and all efforts were made to obtain relevant and published information on the pest. New information will be included as it becomes available, or when the document is reviewed. The material contained in this publication is produced for general information only. It is not intended as professional advice on any particular matter. No person should act or fail to act on the basis of any material contained in this publication without first obtaining specific, independent professional advice. Plant Health Australia and all persons acting for Plant Health Australia in preparing this publication, expressly disclaim all and any liability to any persons in respect of anything done by any such person in reliance, whether in whole or in part, on this publication. The views expressed in this publication are not necessarily those of Plant Health Australia. Further information For further information regarding this contingency plan, contact Plant Health Australia through the details below. Address: Suite 5, FECCA House 4 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 Email: [email protected] Website: www.planthealthaustralia.com.au PHA & NGIA | Contingency Plan – Guava rust (Puccinia psidii) 1 Purpose and background of this contingency plan .............................................................
    [Show full text]
  • Developing Species for Woody Biomass Crops in Lower Rainfall Southern Australia Australia F FLORASEARCH 3A
    Developing Species for Woody Biomass Crops in Lower Rainfall Southern Australia Australia F FLORASEARCH 3A Developing Species for Woody Biomass Crops in Lower Rainfall Southern Australia FloraSearch 3a by Trevor J. Hobbs, Michael Bennell and John Bartle (eds) August 2009 RIRDC Publication No 09/043 RIRDC Project No UWA-98A © 2009 Rural Industries Research and Development Corporation. All rights reserved. ISBN 1 74151 846 6 ISSN 1440-6845 Developing Species for Woody Biomass Crops in Lower Rainfall Southern Australia - FloraSearch 3a Publication No. 09/043 Project No. UWA-98A The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors. The Commonwealth of Australia does not necessarily endorse the views in this publication.
    [Show full text]
  • Defining and Mapping Rare Vegetation Communities: Improving Techniques to Assist Land-Use Planning and Conservation
    Defining and mapping rare vegetation communities: improving techniques to assist land-use planning and conservation Stephen A. J. Bell BSc. (Hons) A thesis submitted for the degree of Doctor of Philosophy School of Environmental and Life Sciences The University of Newcastle February 2013 Declaration Statement of Originality This thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying subject to the provisions of the Copyright Act 1968. Statement of Collaboration I hereby certify that the concepts embodied in Chapter 2 of this thesis have been done in collaboration with a fellow researcher at this university. I have included as part of the thesis in Chapter 2 a statement clearly outlining the extent of collaboration with whom and under what auspices. Stephen A. J. Bell Preface “The vegetated landscape …. on first appearance presents a bewildering display of living matter, a higgledy-piggledy mass of trunks, leaves, branches, shrubs and grasses seemingly without form. The more observant may notice that the higgledy-piggledy mass varies from one place to another, that in some places there are trees as tall as large buildings while in other places there are no trees at all …. By the application of a systematic approach to viewing vegetation the bewildering display of plant life can take on new meaning thus altering one’s perception of what is being seen .… Suddenly the jumble of plant life reveals structures and beauties probably hitherto unseen”.
    [Show full text]
  • Natural Durability of Five Eucalypt Species Suitable for Low Rainfall Areas
    Natural Durability of Five Eucalypt Species Suitable for Low Rainfall Areas Sugar gum, spotted gum, red ironbark, yellow gum and swamp yate A report for the RIRDC/Land & Water Australia/FWPRDC/MDBC Joint Venture Agroforestry Program by Kevin McCarthy and Laurie Cookson October 2008 RIRDC Publication No 08/162 RIRDC Project No CSF-61A © 2008 Rural Industries Research and Development Corporation. All rights reserved. ISBN 1 74151 751 6 ISSN 1440-6845 Natural durability of five eucalypt species suitable for low rainfall areas: Sugar gum, spotted gum, red ironbark, yellow gum and swamp yate Publication No. 08/162 Project No. CSF-61A The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors.
    [Show full text]
  • AFJ672 Dickinson Printproof.Pmd
    122 Shoot blight on provenances of spotted gum Early plantation growth and tolerance to ramularia shoot blight of provenances of three spotted gum taxa on a range of sites in Queensland G.R. Dickinson1,2, D.J. Lee3 and J.R. Huth3 1Queensland Department of Primary Industries, AFFS–Forestry Research, c/o Walkamin Post Office, Queensland 4872, Australia 2Email: [email protected] 3Queensland Department of Primary Industries, AFFS–Forestry Research, Locked Bag 16, Fraser Rd, Gympie, Queensland 4570, Australia Revised manuscript received 17 October 2003 Summary Introduction Early height growth and field tolerance to Quambalaria pitereka, The hardwood plantation industry is undergoing rapid expansion the casual agent of ramularia shoot blight, were assessed for eleven in southern Queensland and northern New South Wales, with the provenances of Corymbia citriodora ssp. variegata, nine area planted each year increasing from about 2500 ha in 1995 to provenances of C. citriodora ssp. citriodora and eight provenances nearly 10 000 ha in 2000 (National Forest Inventory 2000). Most of C. henryi, within existing trials involving 22 diverse sites in of these plantations have been established with the primary goal Queensland. Not all taxa and provenances were present at all sites. of producing high-value solid-wood products including sawlogs, The age at assessment varied, but was primarily between 10 and poles and veneer (DPI–Forestry 1996; Bruskin 1999). As the 21 mo. Assessments indicated that ramularia shoot blight at a timbers of the spotted gums have excellent properties, with high specific site was closely associated with local climatic conditions, density, strength and durability, they are a major component of with mean annual rainfall being a useful indicator of the potential these plantations, with Corymbia citriodora ssp.
    [Show full text]
  • <I>Myrtaceae</I>, a Cache of Fungal Biodiversity
    Persoonia 23, 2009: 55–85 www.persoonia.org RESEARCH ARTICLE doi:10.3767/003158509X474752 Myrtaceae, a cache of fungal biodiversity R. Cheewangkoon1, J.Z. Groenewald2, B.A. Summerell3, K.D. Hyde4, C. To-anun1, P.W. Crous2 Key words Abstract Twenty-six species of microfungi are treated, the majority of which are associated with leaf spots of Corymbia, Eucalyptus and Syzygium spp. (Myrtaceae). The treated species include three new genera, Bagadiella, Corymbia Foliocryphia and Pseudoramichloridium, 20 new species and one new combination. Novelties on Eucalyptus include: Eucalyptus Antennariella placitae, Bagadiella lunata, Cladoriella rubrigena, C. paleospora, Cyphellophora eucalypti, Elsinoë microfungi eucalypticola, Foliocryphia eucalypti, Leptoxyphium madagascariense, Neofabraea eucalypti, Polyscytalum algar- Syzygium vense, Quambalaria simpsonii, Selenophoma australiensis, Sphaceloma tectificae, Strelitziana australiensis and taxonomy Zeloasperisporium eucalyptorum. Stylaspergillus synanamorphs are reported for two species of Parasympodiella, P. eucalypti sp. nov. and P. elongata, while Blastacervulus eucalypti, Minimedusa obcoronata and Sydowia eu- calypti are described from culture. Furthermore, Penidiella corymbia and Pseudoramichloridium henryi are newly described on Corymbia, Pseudocercospora palleobrunnea on Syzygium and Rachicladosporium americanum on leaf litter. To facilitate species identification, as well as determine phylogenetic relationships, DNA sequence data were generated from the internal transcribed spacers (ITS1, 5.8S
    [Show full text]
  • Myrtaceae, a Cache of Fungal Biodiversity
    Persoonia 23, 2009: 55–85 www.persoonia.org RESEARCH ARTICLE doi:10.3767/003158509X474752 Myrtaceae, a cache of fungal biodiversity R. Cheewangkoon1, J.Z. Groenewald2, B.A. Summerell3, K.D. Hyde4, C. To-anun1, P.W. Crous2 Key words Abstract Twenty-six species of microfungi are treated, the majority of which are associated with leaf spots of Corymbia, Eucalyptus and Syzygium spp. (Myrtaceae). The treated species include three new genera, Bagadiella, Corymbia Foliocryphia and Pseudoramichloridium, 20 new species and one new combination. Novelties on Eucalyptus include: Eucalyptus Antennariella placitae, Bagadiella lunata, Cladoriella rubrigena, C. paleospora, Cyphellophora eucalypti, Elsinoë microfungi eucalypticola, Foliocryphia eucalypti, Leptoxyphium madagascariense, Neofabraea eucalypti, Polyscytalum algar- Syzygium vense, Quambalaria simpsonii, Selenophoma australiensis, Sphaceloma tectificae, Strelitziana australiensis and taxonomy Zeloasperisporium eucalyptorum. Stylaspergillus synanamorphs are reported for two species of Parasympodiella, P. eucalypti sp. nov. and P. elongata, while Blastacervulus eucalypti, Minimedusa obcoronata and Sydowia eu- calypti are described from culture. Furthermore, Penidiella corymbia and Pseudoramichloridium henryi are newly described on Corymbia, Pseudocercospora palleobrunnea on Syzygium and Rachicladosporium americanum on leaf litter. To facilitate species identification, as well as determine phylogenetic relationships, DNA sequence data were generated from the internal transcribed spacers (ITS1, 5.8S
    [Show full text]
  • Puccinia Psidii in Queensland, Australia: Disease Symptoms, Distribution and Impact
    Plant Pathology (2013) Doi: 10.1111/ppa.12173 Puccinia psidii in Queensland, Australia: disease symptoms, distribution and impact G. S. Peggab*, F. R. Giblinb, A. R. McTaggartc, G. P. Guymerd, H. Taylore, K. B. Irelande, R. G. Shivasf and S. Perrye aDepartment of Agriculture, Fisheries and Forestry, Horticulture and Forestry Science, Agri-Science Queensland, GPO Box 267, Brisbane, Qld 4001; bForest Industries Research Centre, University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Qld 4558; cQueensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, GPO Box 267, Brisbane, Qld 4001; dDepartment of Science, Information Technology, Innovation and the Arts, Queensland Herbarium, Brisbane Botanic Gardens Mt Coot-tha, Mt Coot-tha Road, Toowong, Qld 4066; eDepartment of Agriculture, Fisheries and Forestry, Plant Biosecurity and Product Integrity, Biosecurity Queensland, GPO Box 267, Brisbane, Qld 4001; and fDepartment of Agriculture, Fisheries and Forestry, Plant Pathology Herbarium, Biosecurity Queensland, GPO Box 267, Brisbane, Qld 4001, Australia Puccinia psidii has long been considered a significant threat to Australian plant industries and ecosystems. In April 2010, P. psidii was detected for the first time in Australia on the central coast of New South Wales (NSW). The fungus spread rapidly along the east coast and in December 2010 was found in Queensland (Qld) followed by Victo- ria a year later. Puccinia psidii was initially restricted to the southeastern part of Qld but spread as far north as Mossman. In Qld, 48 species of Myrtaceae are considered highly or extremely susceptible to the disease. The impact of P. psidii on individual trees and shrubs has ranged from minor leaf spots, foliage, stem and branch dieback to reduced fecundity.
    [Show full text]
  • Reciprocal and Advanced Generation Hybrids Between Corymbia Citriodora and C
    Reciprocal and advanced generation hybrids between Corymbia citriodora and C. torelliana: forestry breeding and the risk of gene flow Geoffrey Dickinson, Helen Wallace, David Lee To cite this version: Geoffrey Dickinson, Helen Wallace, David Lee. Reciprocal and advanced generation hybrids between Corymbia citriodora and C. torelliana: forestry breeding and the risk of gene flow. Annals of Forest Sci- ence, Springer Nature (since 2011)/EDP Science (until 2010), 2012, 70 (1), pp.1-10. 10.1007/s13595- 012-0231-2. hal-01201452 HAL Id: hal-01201452 https://hal.archives-ouvertes.fr/hal-01201452 Submitted on 17 Sep 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Annals of Forest Science (2013) 70:1–10 DOI 10.1007/s13595-012-0231-2 ORIGINAL PAPER Reciprocal and advanced generation hybrids between Corymbia citriodora and C. torelliana: forestry breeding and the risk of gene flow Geoffrey R. Dickinson & Helen M. Wallace & David J. Lee Received: 16 April 2012 /Accepted: 27 July 2012 /Published online: 17 August 2012 # INRA / Springer-Verlag France 2012 Abstract the style and reduced numbers of ovules penetrated by & Context Corymbia F1 hybrids have high potential for pollen tubes.
    [Show full text]
  • Impact of Insects on Eucalypt Plantations in the Murray Valley Publication No
    Impact of Insects on Eucalypt Plantations in the Murray Valley A report for the RIRDC/L&WA/FWPRDC/MDBC Joint Venture Agroforestry Program by Rob Floyd and Grant Farrell June 2007 RIRDC Publication No 07/085 RIRDC Project No CSE-72A © 2007 Rural Industries Research and Development Corporation. All rights reserved. ISBN 1 74151 482 7 ISSN 1440-6845 Impact of insects on eucalypt plantations in the Murray Valley Publication No. 07/085 Project No. CSE-72A The information contained in this publication is intended for general use to assist public knowledge and discussion and to help improve the development of sustainable regions. You must not rely on any information contained in this publication without taking specialist advice relevant to your particular circumstances. While reasonable care has been taken in preparing this publication to ensure that information is true and correct, the Commonwealth of Australia gives no assurance as to the accuracy of any information in this publication. The Commonwealth of Australia, the Rural Industries Research and Development Corporation (RIRDC), the authors or contributors expressly disclaim, to the maximum extent permitted by law, all responsibility and liability to any person, arising directly or indirectly from any act or omission, or for any consequences of any such act or omission, made in reliance on the contents of this publication, whether or not caused by any negligence on the part of the Commonwealth of Australia, RIRDC, the authors or contributors.. The Commonwealth of Australia does not necessarily endorse the views in this publication. This publication is copyright. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved.
    [Show full text]