International Day for Biological Diversity Symposium Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mercury Levels of Seafood Commonly Consumed in Taiwan
373 Journal of Food and Drug Analysis, Vol. 14, No. 4, 2006, Pages 373-378 藥物食品分析 第十四卷 第四期 Mercury Levels of Seafood Commonly Consumed in Taiwan Y. C. CHEN1,2 AND M. H. CHEN2* 1. Department of Food Nutrition, Chung Hwa College of Medical Technology, Jen-Te Hsiang, Tainan 717, Taiwan, R.O.C. 2. Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung City 80424, Taiwan, R.O.C. (Received: February 14, 2006; Accepted: June 26, 2006) ABSTRACT In this study, the mercury level in 25 commonly consumed seafood species was identified and used to evaluate the mercury intake for Taiwan population. Total mercury concentrations were determined by using furnace-gold amalgation mercury analyzer. The results indicated that mercury concentrations of the 25 seafood species ranged from 0.002 to 0.198 mg/kg wet wt. and varied significantly across species (p < 0.05). All mercury concentrations of the 25 seafood species were below the safety standards, 0.5 mg/kg, set by TWDOH, EC and FAO/WHO. Mercury intake from seafood consumption for female and male adults in Taiwan was estimated to be 21 and 30 μg/week, respectively, which was well below the PTWI. Among the seafood items tested, fish was the major source of total mercury intake for Taiwan population (74-83%). The marine fish contributed the most, followed by shellfish and freshwater fish. The highest mercury level was found in tuna. The mercury intake could be within the PTWI if general popu- lation weighted 65 kg consumed daily 90 g of seafood with mercury concentration as 0.17 mg/kg. -
SURVIVAL STRATEGIES in the Film,Cephalopods: Aliens of the Deep, You See the Tiny Flamboyant Cuttlefish Walking Along the PART 1 Seafloor
GRADES 3-5 REPRODUCIBLE MASTER SURVIVAL STRATEGIES In the film,Cephalopods: Aliens of the Deep, you see the tiny Flamboyant Cuttlefish walking along the PART 1 seafloor. You see the Bigfin Reef Squid showing off its ability to change colors several times a second. You even see the Mimic Octopus digging into the sand while copying the skin patterning of a sea snake. These are cephalopods. Their name comes from the Greek word “ceph,” meaning head, and “pod,” meaning foot. Their heads are attached to their tentacles, which they sometimes use like feet but mostly use as arms to capture their prey. ©Marta Sostres, Saint Thomas Productions ©Marta Sostres, Saint Thomas Productions ©Marta Sostres, nWave ©Saint Thomas Productions, Coconut Octopus Flamboyant Cuttlefish Bigfin Reef Squid ©Marta Sostres, Saint Thomas Productions ©Marta Sostres, ©Bertrand Loyer, Saint Thomas Productions ©Bertrand Loyer, nWave ©Saint Thomas Productions, Mimic Octopus Australian Giant Cuttlefish Black-eyed Squid Test yourself on what you learned about the cephalopods shown here by marking these statements with a T or an F for True or False. _____ 1. The Mimic Octopus gets its name from its ability to make _____ 6. The Flamboyant Cuttlefish walks on the seabed and has sounds like other sea creatures. few predators. _____ 2. Cephalopods have millions of skin cells called _____ 7. The Australian Giant Cuttlefish is the largest cuttlefish in chromatophores that allow them to change the color and the world, growing up to half a meter long and texture of their skin to protect themselves from predators. weighing more than 10 kilograms. -
Petrology and Geochemistry of Boninite Series Volcanic Rocks, Chichi-Jima, Bonin Islands, Japan
PETROLOGY AND GEOCHEMISTRY OF BONINITE SERIES VOLCANIC ROCKS, CHICHI-JIMA, BONIN ISLANDS, JAPAN P.F. Dobson Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 S. Maruyama Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan J.G. Blank Center for the Study of Life in the Universe, SETI Institute, 515 N. Whisman Road, Mountain View, California 94043 J.G. Liou Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305 Abstract An Eocene submarine boninite series volcanic center is exposed on the island of Chichi-jima, Bonin Islands, Japan. Five rock types, boninite, bronzite andesite, dacite, quartz dacite, and rhyolite, were distinguished within the boninite volcanic sequence on the basis of petrographic and geochemical observations. Boninite lavas contain high magnesium, nickel, and chromium contents indicative of primitive melts, but have high silica contents relative to other mantle- derived magmas. All boninite series lavas contain very low incompatible element concentrations, and concentrations of high-field strength elements in primitive boninite lavas are less than half of those found in depleted mid-ocean ridge basalts. Abundances of large-ion lithophile elements are relatively high in boninite series lavas, similar to the enrichments observed in many island arc lavas. Trends for both major and trace element data suggest that the more evolved lavas of the boninite magma series were derived primarily through high-level fractional crystallization of boninite. Textural features, such as resorption and glomeroporphyrocrysts, and reverse chemical zonations suggest that magma mixing contributed to the development of the quartz dacite lavas. Introduction A well exposed sequence of Eocene boninite series volcanic rocks are found on Chichi-jima (Figure 1), the type locality for boninites (Peterson, 1891). -
Bigfin Reef Squid Demonstrate Capacity for Conditional Discrimination and Projected Future Carbon Dioxide Levels Have No Effect
Bigfin reef squid demonstrate capacity for conditional discrimination and projected future carbon dioxide levels have no effect on learning capabilities Blake L. Spady1,2 and Sue-Ann Watson1,3 1 Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, Australia 2 College of Science and Engineering, James Cook University, Townsville, QLD, Australia 3 Biodiversity and Geosciences Program, Museum of Tropical Queensland, Queensland Museum, Townsville, QLD, Australia ABSTRACT Anthropogenic carbon dioxide (CO2) emissions are being absorbed by the oceans, a process known as ocean acidification, and risks adversely affecting a variety of behaviours in a range of marine species, including inhibited learning in some fishes. However, the effects of elevated CO2 on learning in advanced invertebrates such as cephalopods are unknown. Any impacts to the learning abilities of cephalopods could have far-reaching consequences for their populations and the communities they inhabit. Cephalopods have some of the most advanced cognitive abilities among invertebrates and are one of the few invertebrate taxa in which conditional discrimination has been demonstrated, though the trait has not been demonstrated in any species of squid. Here, we tested for the first time the capacity for conditional discrimination in a squid species (Sepioteuthis lessoniana). Furthermore, we investigated the effects of projected future CO2 levels (1,084 µatm) on conditional discrimination and learning more generally. A three-task experiment within a two-choice arena was used to test learning and conditional discrimination. Learning was measured by improvements in task completion in repeated trials over time Submitted 4 May 2020 fi Accepted 13 August 2020 and the number of trials required to pass each task. -
Geographic Drivers of Diversification in Loliginid Squids with an Emphasis on the Western Atlantic Species
bioRxiv preprint doi: https://doi.org/10.1101/2020.07.20.211896; this version posted July 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Original Article Geographic drivers of diversification in loliginid squids with an emphasis on the western Atlantic species Gabrielle Genty1*, Carlos J Pardo-De la Hoz1,2*, Paola Montoya1,3, Elena A. Ritschard1,4* 1Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá D.C, Colombia. 2Department of Biology, Duke University, Durham, North Carolina, 27708, United States of America 3Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, D.C., Colombia 4Department of Neuroscience and Developmental Biology, University of Vienna, Austria * These authors contributed equally to this work. Correspondence author: Gabrielle Genty, [email protected] Acknowledgements We would like to thank Daniel Cadena and Andrew J. Crawford for their suggestions and guidance during the early stages of this investigation. bioRxiv preprint doi: https://doi.org/10.1101/2020.07.20.211896; this version posted July 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 2 ABSTRACT Aim: Identifying the mechanisms driving divergence in marine organisms is challenging as opportunities for allopatric isolation are less conspicuous than in terrestrial ecosystems. -
Natural Park System in Japan
Natural Park Systems in Japan CONTENTS 1. Natural Park Systems --------------------------------------------------------------------------- 1 1.1 Purposes of Natural Parks ------------------------------------------------------------------ 1 1.2 History of Natural Parks --------------------------------------------------------------------- 1 1.3 Characteristics of Natural Parks ----------------------------------------------------------- 2 1.4 Park Plans --------------------------------------------------------------------------------------- 2 1.5 Controls / Regulation of Activities --------------------------------------------------------- 3 2. Present State of Natural Parks in Japan ---------------------------------------------------- 4 2.1 Designation ------------------------------------------------------------------------------------- 4 2.2 Distribution of National Parks -------------------------------------------------------------- 5 2.3 Distribution of Marine Parks ---------------------------------------------------------------- 6 2.4 Visitors and Utilization ------------------------------------------------------------------------ 7 3. Conservation and Management -------------------------------------------------------------- 7 3.1 Measures for Conservation ----------------------------------------------------------------- 7 3.1.1 Landscape Protection Agreement ----------------------------------------------------- 7 3.1.2 Beautification Activities------------------------------------------------------------------- 8 3.1.3 Green Worker Program -
The Bigfin Reef Squid)
Southern Illinois University Carbondale OpenSIUC Honors Theses University Honors Program 5-11-2013 Phylogeography of Sepioteuthis lessoniana (the bigfin eefr squid) and Uroteuthis duvauceli (the Indian squid). Alexis M. Bergman Southern Illinois University Carbondale, [email protected] Follow this and additional works at: http://opensiuc.lib.siu.edu/uhp_theses Recommended Citation Bergman, Alexis M., "Phylogeography of Sepioteuthis lessoniana (the bigfin er ef squid) and Uroteuthis duvauceli (the Indian squid)." (2013). Honors Theses. Paper 353. This Dissertation/Thesis is brought to you for free and open access by the University Honors Program at OpenSIUC. It has been accepted for inclusion in Honors Theses by an authorized administrator of OpenSIUC. For more information, please contact [email protected]. Phylogeography of Sepioteuthis lessoniana (the bigfin reef squid) and Uroteuthis duvauceli (the Indian squid). Alexis Bergman A thesis submitted to the University Honors Program in partial fulfillment of the requirements for the Honors Degree Southern Illinois University April 18, 2013 2 Abstract Sepioteuthis lessoniana (the bigfin reef squid) and Uroteuthis duvauceli (the Indian squid) are two squid species found in largely overlapping regions in the Indian and Pacific Oceans. While both squids are important to fisheries throughout their ranges, very little taxonomic work has been done on either of them. Previous studies have led scientists to believe that S. lessoniana is actually a species complex (for example, there appear to be three species of “S. cf. lessoniana” in Japanese waters alone). The similarly broad geographic range of U. duvauceli suggests that this species could also harbor substantial cryptic genetic diversity. In order to evaluate genetic variation within these two species, regions of two mitochondrial genes—the large subunit ribosomal RNA gene (16S) and the cytochrome oxidase I gene (COI)—from specimens caught in regions throughout the northern Indian and western Pacific Oceans were sequenced and compared. -
Working Group on Cephalopod Fisheries and Life History
Living Resources Committee ICES CM 2002/G:02 Ref. ACFM, ACE REPORT OF THE Working Group on Cephalopod Fisheries and Life History Lisbon, Portugal 4–6 December 2002 This report is not to be quoted without prior consultation with the General Secretary. The document is a report of an expert group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer Palægade 2–4 DK–1261 Copenhagen K Denmark TABLE OF CONTENTS Section Page 1 INTRODUCTION...................................................................................................................................................... 1 1.1 Terms of Reference......................................................................................................................................... 1 1.2 Attendance ...................................................................................................................................................... 1 1.3 Opening of the Meeting and Arrangements for the Preparation of the Report ............................................... 2 2 LANDINGS AND EFFORT STATISTICS AND SURVEY DATA (TOR A)......................................................... 3 2.1 Compilation of Landing Statistics................................................................................................................... 3 2.2 General Trends............................................................................................................................................... -
UCLA Electronic Theses and Dissertations
UCLA UCLA Electronic Theses and Dissertations Title Evolution and Population Genomics of Loliginid Squids Permalink https://escholarship.org/uc/item/0zw3h4ps Author Cheng, Samantha Hue Tone Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Evolution and Population Genomics of Loliginid Squids A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Biology by Samantha Hue Tone Cheng 2015 ABSTRACT OF THE DISSERTATION Evolution and Population Genomics of Loliginid Squids by Samantha Hue Tone Cheng Doctor of Philosophy in Biology University of California, Los Angeles, 2015 Professor Paul Henry Barber, Chair Globally, rampant harvesting practices have left vital marine resources in sharp decline precipitating a dramatic loss of the biodiversity and threatening the health and viability of natural populations. To protect these crucial resources and ecosystems, a comprehensive assessment of biodiversity, as well as a rigorous understanding of the mechanisms underlying it, is urgently needed. As global finfish fisheries decline, harvest of cephalopod fisheries, squid, in particular, has exponentially increased. However, while much is known about the evolution and population dynamics of teleost fishes, much less is understood about squids. This dissertation provides a robust, in-depth examination of these mechanisms in commercially important squids using a novel approach combining genetics and genomics methods. In the first chapter, a suite of genetic markers is used to thoroughly examine the distribution and evolution of a species complex of bigfin reef squid (Sepioteuthis cf. lessoniana) throughout the global center of marine biodiversity, the Coral Triangle, and adjacent areas. -
Ogasawara Islands Japan
OGASAWARA ISLANDS JAPAN The Ogasawara Islands are located in the North-Western Pacific Ocean roughly 1,000 km south of the main Japanese Archipelago. The serial property is comprised of five components within an extension of about 400 km from north to south and includes more than 30 islands, clustered within three island groups of the Ogasawara Archipelago: Mukojima, Chichijima and Hahajima, plus an additional three individual islands: Kita-iwoto and Minami-iwoto of the Kazan group and the isolated Nishinoshima Island. These islands rest along the Izu-Ogasawara Arc Trench System. The property totals 7,939 ha comprising a terrestrial area of 6,358 ha and a marine area of 1,581 ha. Today only two of the islands within the property are inhabited, Chichijima and Hahajima. The landscape is dominated by subtropical forest types and sclerophyllous shrublands surrounded by steep cliffs. There are more than 440 species of native vascular plants with exceptionally concentrated rates of endemism as high as 70% in woody plants. The islands are the habitat for more than 100 recorded native land snail species, over 90% of which are endemic to the islands. The islands serve as an outstanding example of the ongoing evolutionary processes in oceanic island ecosystems, as evidenced by the high levels of endemism; speciation through adaptive radiation; evolution of marine species into terrestrial species; and their importance for the scientific study of such processes. COUNTRY Japan NAME Ogasawara Islands NATURAL WORLD HERITAGE SERIAL SITE 2011: Inscribed on the World Heritage List under natural criterion (ix). STATEMENT OF OUTSTANDING UNIVERSAL VALUE The UNESCO World Heritage Committee issued the following Statement of Outstanding Universal Value at the time of inscription: Brief Synthesis The Ogasawara Islands are located in the North-Western Pacific Ocean roughly 1,000 km south of the main Japanese Archipelago. -
Effectiveness of Squid Atractors for Squid Egg Collector
International Journal of Sciences: Basic and Applied Research (IJSBAR) ISSN 2307-4531 (Print & Online) http://gssrr.org/index.php?journal=JournalOfBasicAndApplied --------------------------------------------------------------------------------------------------------------------------- Effectiveness of Squid Atractors for Squid Egg Collector Sudrajat Danua*, Mulyono S Baskorob, Zulkarnainb, Roza Yusfiandayanib aDepartment of Fishing Tecnology, Jakarta Fisheries University, Indonesia a,b,c,dDepartment of Fisheries Resources Utilization, Faculty of Fisheries and Marine Science, Bogor Agricultural University, Dramaga-Bogor, Indonesia aEmail: [email protected] Abstract Squid attractors are used as a place for the squid to lay its eggs which later can be hatched and cultivated to meet the world's demand for cephalophods which currently are exclusively fulfilled from stocks caught in nature. This study aims to determine the effectiveness of squid atractor made by PCV pipe materials, to determine the depth whereas the attractors gave the best results, and to measure the time needen for the eggs to hatch. Two types of squid attractor made by PVC pipe material were used, namely Attractor Type 1 (T1) with cover on the top and both sides of the right and left, and Type 2 (T2) which is given a cover only at the top. Squid attractors were set around a stationary liftnet with a distance of 5 meters. The depth around stationary liftnet are varied with 8 meters depth on the west side, 6-7 meters depth on the north and south side and 5 meters depth on the east side. The results showed that the number of clusters produced was influenced by the type of attractor and the position of setting whereas this positions were reflecting the depth of the water (df = 4, F = 14.74, p <0.05). -
The Effect of Different Salinity Towards Energy Utilization Levels and The
International Journal of Fisheries and Aquatic Studies 2020; 8(3): 450-455 E-ISSN: 2347-5129 P-ISSN: 2394-0506 (ICV-Poland) Impact Value: 5.62 The effect of different salinity towards energy (GIF) Impact Factor: 0.549 IJFAS 2020; 8(3): 450-455 utilization levels and the effectiveness of bigfin reef © 2020 IJFAS www.fisheriesjournal.com squid egg hatching (Sepioteuthis lessoniana) Received: 04-01-2020 Accepted: 06-02-2020 Noky Rizky Samudra, Sutrisno Anggoro and Pinandoyo Noky Rizky Samudra Coastal Resource Management Study Program, Faculty of Abstract Fisheries and Marine Sepioteuthis lessoniana is a member of Cephalopoda which has important economic value. Continuous Science, Diponegoro University, use of Cephalopoda resources can lead to extinction. Efforts are needed to conserve Cephalopoda Diponegoro University, Faculty resources. Factors that influence the success of the conservation of these resources are through breeding of Fisheries and Marine Science, cultivation activities. The purpose of this study was to assess the hatching of S. lessoniana eggs in Jalan Prof. Soedarto, SH various osmotic and energetic conditions. The method used was an experimental laboratory, using a Tembalang, Semarang, completely randomized design. The treatment in this study was the difference in media salinity, namely Indonesia 27 ppt, 30 ppt, 33 ppt, and 36 ppt salinity. Data was collected for media osmolarity and hemolymph, egg energetics, number of hatched and damaged eggs. The calculated parameters were the level of osmotic Sutrisno Anggoro work, the efficiency of energy utilization, hatching efficiency, and survival. The results showed that the Aquatic Resources Department, best S. lessoniana hatching occurred at 33 ppt salinity treatment with an osmotic work level approaching Faculty of Fisheries and Marine the iso-osmotic value of 2.03 ± 0.05 mOsm/lH2O so that the most efficient energy utilization was Science, Diponegoro University, Diponegoro University, Faculty 90.72% and a high hatch rate was 91%.