EPB41L1 Antibody (R31390)

Total Page:16

File Type:pdf, Size:1020Kb

Load more

EPB41L1 Antibody (R31390) Catalog No. Formulation Size R31390 0.5mg/ml if reconstituted with 0.2ml sterile DI water 100 ug Bulk quote request Availability 1-3 business days Species Reactivity Human, Mouse, Rat Format Antigen affinity purified Clonality Polyclonal (rabbit origin) Isotype Rabbit IgG Purity Antigen affinity Buffer Lyophilized from 1X PBS with 2.5% BSA and 0.025% sodium azide/thimerosal UniProt Q9H4G0 Applications Western blot : 0.5-1ug/ml Limitations This EPB41L1 antibody is available for research use only. Western blot testing of EPB41L1 antibody and Lane 1: rat brain; 2: mouse brain lysate. Predicted/observed size ~99KD Description Erythrocyte membrane protein band 4.1 like 1 is a protein that in humans is encoded by the EPB41L1 gene. It is found that a heterozygous missense mutation in the gene causes nonsyndromic intellectual disability. This gene may function to confer stability and plasticity to neuronal membrane via multiple interactions, including the spectrin-actin-based cytoskeleton, integral membrane channels and membrane-associated guanylate kinases. EPB41L1 has been shown to interact with ITPR1, Dopamine receptor D2, Dopamine receptor D3, CENTG1 and Nuclear mitotic apparatus protein 1. Application Notes The stated application concentrations are suggested starting amounts. Titration of the EPB41L1 antibody may be required due to differences in protocols and secondary/substrate sensitivity. Immunogen An amino acid sequence from the C-terminus of human Erythrocyte membrane protein band 4.1 like 1 (QDQERDTVFLKDNHLAIERK) was used as the immunogen for this EPB41L1 antibody. Storage After reconstitution, the EPB41L1 antibody can be stored for up to one month at 4oC. For long-term, aliquot and store at -20oC. Avoid repeated freezing and thawing. Ordering: Phone:858.663.9055 | Fax:1.267.821.0800 | Email:[email protected] Copyright © NSJ Bioreagents. All rights reserved.
Recommended publications
  • 1 Evidence for Gliadin Antibodies As Causative Agents in Schizophrenia

    1 Evidence for Gliadin Antibodies As Causative Agents in Schizophrenia

    1 Evidence for gliadin antibodies as causative agents in schizophrenia. C.J.Carter PolygenicPathways, 20 Upper Maze Hill, Saint-Leonard’s on Sea, East Sussex, TN37 0LG [email protected] Tel: 0044 (0)1424 422201 I have no fax Abstract Antibodies to gliadin, a component of gluten, have frequently been reported in schizophrenia patients, and in some cases remission has been noted following the instigation of a gluten free diet. Gliadin is a highly immunogenic protein, and B cell epitopes along its entire immunogenic length are homologous to the products of numerous proteins relevant to schizophrenia (p = 0.012 to 3e-25). These include members of the DISC1 interactome, of glutamate, dopamine and neuregulin signalling networks, and of pathways involved in plasticity, dendritic growth or myelination. Antibodies to gliadin are likely to cross react with these key proteins, as has already been observed with synapsin 1 and calreticulin. Gliadin may thus be a causative agent in schizophrenia, under certain genetic and immunological conditions, producing its effects via antibody mediated knockdown of multiple proteins relevant to the disease process. Because of such homology, an autoimmune response may be sustained by the human antigens that resemble gliadin itself, a scenario supported by many reports of immune activation both in the brain and in lymphocytes in schizophrenia. Gluten free diets and removal of such antibodies may be of therapeutic benefit in certain cases of schizophrenia. 2 Introduction A number of studies from China, Norway, and the USA have reported the presence of gliadin antibodies in schizophrenia 1-5. Gliadin is a component of gluten, intolerance to which is implicated in coeliac disease 6.
  • Targeting PH Domain Proteins for Cancer Therapy

    Targeting PH Domain Proteins for Cancer Therapy

    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 12-2018 Targeting PH domain proteins for cancer therapy Zhi Tan Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Bioinformatics Commons, Medicinal Chemistry and Pharmaceutics Commons, Neoplasms Commons, and the Pharmacology Commons Recommended Citation Tan, Zhi, "Targeting PH domain proteins for cancer therapy" (2018). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 910. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/910 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. TARGETING PH DOMAIN PROTEINS FOR CANCER THERAPY by Zhi Tan Approval page APPROVED: _____________________________________________ Advisory Professor, Shuxing Zhang, Ph.D. _____________________________________________
  • Supplementary Materials

    Supplementary Materials

    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
  • UNIVERSITY of CALIFORNIA Los Angeles Molecular and Genetic

    UNIVERSITY of CALIFORNIA Los Angeles Molecular and Genetic

    UNIVERSITY OF CALIFORNIA Los Angeles Molecular and Genetic Study of Human Liposarcoma A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Molecular and Medical Pharmacology by Kathleen Barzan Smith 2012 ABSTRACT OF THE DISSERTATION Molecular and Genetic Study of Human Liposarcoma by Kathleen Barzan Smith Doctor of Philosophy in Molecular and Medical Pharmacology University of California, Los Angeles, 2012 Professor Frederick C. Eilber, Co-chair Professor Hong Wu, Co-chair Sarcomas are cancers of connective tissue, such as bone, nerves, and muscle. Liposarcoma, a neoplasm arising within adipose tissue, is the most common soft tissue sarcoma. Although most commonly found in the retroperitoneum or thighs, liposarcomas can arise throughout the body and are often large when found. Current treatment is limited to surgery and radiation, with chemotherapy doing little to improve prognosis in advanced cases. D ue to the large size of tumors and t heir proximity to organs and healthy tissue, complete surgical removal is difficult and recurrence rates remain high. Liposarcoma can be divided into three histological subtypes: pleomorphic, myxoid/round cell, and /well- dedifferentiated. Here we demonstrate the generation of three novel dedifferentiated liposarcoma xenograft models from freshly resected patient tissue. These xenograft models and their derived cultured cells successfully recapitulate the morphological and gene expression profiles of their patient tumors throughout serial passage in mice. Interestingly, the patients whose tumors could engraft and be serially passaged had significantly shorter survival than patients whose tumors did not engraft. These ii tumors carried gene expression signatures with more aggressive and less differentiated features.
  • Supplementary Table 1. Mutated Genes That Contain Protein Domains Identified Through Mutation Enrichment Analysis

    Supplementary Table 1. Mutated Genes That Contain Protein Domains Identified Through Mutation Enrichment Analysis

    Supplementary Table 1. Mutated genes that contain protein domains identified through mutation enrichment analysis A. Breast cancers InterPro ID Mutated genes (number of mutations) IPR000219 ARHGEF4(2), ECT2(1), FARP1(1), FLJ20184(1), MCF2L2(1), NET1(1), OBSCN(5), RASGRF2(2), TRAD(1), VAV3(1) IPR000225 APC2(2), JUP(1), KPNA5(2), SPAG6(1) IPR000357 ARFGEF2(2), CMYA4(1), DRIM(2), JUP(1), KPNA5(2), PIK3R4(1), SPAG6(1) IPR000533 AKAP9(2), C10orf39(1), C20orf23(1), CUTL1(1), HOOK1(1), HOOK3(1), KTN1(2), LRRFIP1(3), MYH1(3), MYH9(2), NEF3(1), NF2(1), RSN(1), TAX1BP1(1), TPM4(1) IPR000694 ADAM12(3), ADAMTS19(1), APC2(2), APXL(1), ARID1B(1), BAT2(2), BAT3(1), BCAR1(1), BCL11A(2), BCORL1(1), C14orf155(3), C1orf2(1), C1QB(1), C6orf31(1), C7orf11(1), CD2(1), CENTD3(3), CHD5(3), CIC(3), CMYA1(2), COL11A1(3), COL19A1(2), COL7A1(3), DAZAP1(1), DBN1(3), DVL3(1), EIF5(1), FAM44A(1), FAM47B(1), FHOD1(1), FLJ20584(1), G3BP2(2), GAB1(2), GGA3(1), GLI1(3), GPNMB(2), GRIN2D(3), HCN3(1), HOXA3(2), HOXA4(1), IRS4(1), KCNA5(1), KCNC2(1), LIP8(1), LOC374955(1), MAGEE1(2), MICAL1(2), MICAL‐L1(1), MLLT2(1), MMP15(1), N4BP2(1), NCOA6(2), NHS(1), NUP214(3), ODZ1(3), PER1(2), PER2(1), PHC1(1), PLXNB1(1), PPM1E(2), RAI17(2), RAPH1(2), RBAF600(2), SCARF2(1), SEMA4G(1), SLC16A2(1), SORBS1(1), SPEN(2), SPG4(1), TBX1(1), TCF1(2), TCF7L1(1), TESK1(1), THG‐1(1), TP53(18), TRIF(1), ZBTB3(2), ZNF318(2) IPR000909 CENTB1(2), PLCB1(1), PLCG1(1) IPR000998 AEGP(3), EGFL6(2), PRSS7(1) IPR001140 ABCB10(2), ABCB6(1), ABCB8(2) IPR001164 ARFGAP3(1), CENTB1(2), CENTD3(3), CENTG1(2) IPR001589
  • Gene Expression in the Mouse Eye: an Online Resource for Genetics Using 103 Strains of Mice

    Gene Expression in the Mouse Eye: an Online Resource for Genetics Using 103 Strains of Mice

    Molecular Vision 2009; 15:1730-1763 <http://www.molvis.org/molvis/v15/a185> © 2009 Molecular Vision Received 3 September 2008 | Accepted 25 August 2009 | Published 31 August 2009 Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice Eldon E. Geisert,1 Lu Lu,2 Natalie E. Freeman-Anderson,1 Justin P. Templeton,1 Mohamed Nassr,1 Xusheng Wang,2 Weikuan Gu,3 Yan Jiao,3 Robert W. Williams2 (First two authors contributed equally to this work) 1Department of Ophthalmology and Center for Vision Research, Memphis, TN; 2Department of Anatomy and Neurobiology and Center for Integrative and Translational Genomics, Memphis, TN; 3Department of Orthopedics, University of Tennessee Health Science Center, Memphis, TN Purpose: Individual differences in patterns of gene expression account for much of the diversity of ocular phenotypes and variation in disease risk. We examined the causes of expression differences, and in their linkage to sequence variants, functional differences, and ocular pathophysiology. Methods: mRNAs from young adult eyes were hybridized to oligomer microarrays (Affymetrix M430v2). Data were embedded in GeneNetwork with millions of single nucleotide polymorphisms, custom array annotation, and information on complementary cellular, functional, and behavioral traits. The data include male and female samples from 28 common strains, 68 BXD recombinant inbred lines, as well as several mutants and knockouts. Results: We provide a fully integrated resource to map, graph, analyze, and test causes and correlations of differences in gene expression in the eye. Covariance in mRNA expression can be used to infer gene function, extract signatures for different cells or tissues, to define molecular networks, and to map quantitative trait loci that produce expression differences.
  • The DNA Sequence and Comparative Analysis of Human Chromosome 20

    The DNA Sequence and Comparative Analysis of Human Chromosome 20

    articles The DNA sequence and comparative analysis of human chromosome 20 P. Deloukas, L. H. Matthews, J. Ashurst, J. Burton, J. G. R. Gilbert, M. Jones, G. Stavrides, J. P. Almeida, A. K. Babbage, C. L. Bagguley, J. Bailey, K. F. Barlow, K. N. Bates, L. M. Beard, D. M. Beare, O. P. Beasley, C. P. Bird, S. E. Blakey, A. M. Bridgeman, A. J. Brown, D. Buck, W. Burrill, A. P. Butler, C. Carder, N. P. Carter, J. C. Chapman, M. Clamp, G. Clark, L. N. Clark, S. Y. Clark, C. M. Clee, S. Clegg, V. E. Cobley, R. E. Collier, R. Connor, N. R. Corby, A. Coulson, G. J. Coville, R. Deadman, P. Dhami, M. Dunn, A. G. Ellington, J. A. Frankland, A. Fraser, L. French, P. Garner, D. V. Grafham, C. Grif®ths, M. N. D. Grif®ths, R. Gwilliam, R. E. Hall, S. Hammond, J. L. Harley, P. D. Heath, S. Ho, J. L. Holden, P. J. Howden, E. Huckle, A. R. Hunt, S. E. Hunt, K. Jekosch, C. M. Johnson, D. Johnson, M. P. Kay, A. M. Kimberley, A. King, A. Knights, G. K. Laird, S. Lawlor, M. H. Lehvaslaiho, M. Leversha, C. Lloyd, D. M. Lloyd, J. D. Lovell, V. L. Marsh, S. L. Martin, L. J. McConnachie, K. McLay, A. A. McMurray, S. Milne, D. Mistry, M. J. F. Moore, J. C. Mullikin, T. Nickerson, K. Oliver, A. Parker, R. Patel, T. A. V. Pearce, A. I. Peck, B. J. C. T. Phillimore, S. R. Prathalingam, R. W. Plumb, H. Ramsay, C. M.
  • Identification of the Rac Gtpase Activating Protein Rho GAP 22 As a New Akt Substrate Defines a Novel Mechanism for Insulin Regulation of Cell Motility

    Identification of the Rac Gtpase Activating Protein Rho GAP 22 As a New Akt Substrate Defines a Novel Mechanism for Insulin Regulation of Cell Motility

    Identification of the Rac GTPase Activating Protein Rho GAP 22 as a New Akt Substrate Defines a Novel Mechanism for Insulin Regulation of Cell Motility Alexander Francis Rowland Submitted for the degree of Doctor of Philosophy Garvan Institute of Medical Research & Faculty of Medicine University of New South Wales ABSTRACT Insulin exerts many of its metabolic actions via the canonical PI3K/Akt pathway leading to phosphorylation and 14-3-3 binding of key metabolic targets. Recognising this, the goal of my thesis was to identify novel actions of insulin. To accomplish this I have conducted a screen to identify insulin-responsive 14-3-3 binding phosphoproteins and in so doing have identified a GTPase Activating Protein (GAP) for Rac1 called Rho GAP 22. Insulin increased 14-3-3 binding to Rho GAP 22 by 4 fold and this effect was PI3Kinase and Akt dependent. Using semi-quantitative mass spectrometry we identified two putative 14-3-3 binding sites (Ser16 and Ser397) within Rho GAP 22 and insulin increased phosphorylation at both of these sites. Mutagenesis studies revealed a complex interplay in phosphorylation at these two sites. Mutating Ser16 to Ala almost completely abolished 14-3-3 binding to Rho GAP 22 in vivo but not in vitro. Phosphorylation of Ser16 both in vitro and in vivo was Akt-dependent and inhibition of Akt prevented 14-3-3 binding to Ser16 in vitro. A truncated Rho GAP 22 protein lacking the N-terminal PH domain and Ser16 interacted with 14-3-3 in vivo and this interaction was Akt dependent. The Ser397 site in Rho GAP 22 is located close to the GAP domain and so it is likely that phosphorylation at this site regulates GAP activity.
  • Supplementary Material (ESI) for Molecular Biosystems This Journal Is © the Royal Society of Chemistry 2013

    Supplementary Material (ESI) for Molecular Biosystems This Journal Is © the Royal Society of Chemistry 2013

    Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is © The Royal Society of Chemistry 2013 Supplementary material for Network Analysis of Genomic Alteration Profiles Reveals Co-altered Functional Modules and Driver Genes in Glioblastoma Yunyan Gu1*, Hongwei Wang1, Yao Qin1, Yujing Zhang1, Wenyuan Zhao1, Lishuang Qi1, Yuannv Zhang1, Chenguang Wang1, Zheng Guo1,2* 1 College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150086, China 2 Bioinformatics Center, Fujian Medical University, Fuzhou, 350004, China * Corresponding author Email: [email protected] or [email protected] Phone: (86 451) 8661-5933 Fax: (86 451) 8666-9617 Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is © The Royal Society of Chemistry 2013 Table of Contents A. Supplementary Methods (pg 3-4) B. Supplementary Figures (pg 5-11) C. Supplementary Tables (pg 12-19) 2 Electronic Supplementary Material (ESI) for Molecular BioSystems This journal is © The Royal Society of Chemistry 2013 A. Supplementary Methods The pseudo codes for searching co-altered module pair Input: (1) G(V, E), where G is the connected sub-network, V is the set of genes and E is the set of edges in the network; (2) Alteration profiles; Output: R=(M1, M2, …, MN), N module pairs, Mi(G1, G2), i=1…N, will to be discovered and returned. N is also the number of all seed pairs. S is the co-alteration score of the module pair. 1: R=φ. S= 0. N’=1. 2: M(G1, G2) is the module pair that we will discover. 3: repeat 4: Taking each pair of altered genes as a seed pair, also a module pair M(G1, G2), G1={i}, G2={j}.
  • The Consensus Coding Sequences of Human Breast and Colorectal Cancers Tobias Sjöblom,1* Siân Jones,1* Laura D

    The Consensus Coding Sequences of Human Breast and Colorectal Cancers Tobias Sjöblom,1* Siân Jones,1* Laura D

    The Consensus Coding Sequences of Human Breast and Colorectal Cancers Tobias Sjöblom,1* Siân Jones,1* Laura D. Wood,1* D. Williams Parsons,1* Jimmy Lin,1 Thomas Barber,1 Diana Mandelker,1 Rebecca J. Leary,1 Janine Ptak,1 Natalie Silliman,1 Steve Szabo,1 Phillip Buckhaults,2 Christopher Farrell,2 Paul Meeh,2 Sanford D. Markowitz,3 Joseph Willis,4 Dawn Dawson,4 James K. V. Willson,5 Adi F. Gazdar,6 James Hartigan,7 Leo Wu,8 Changsheng Liu,8 Giovanni Parmigiani,9 Ben Ho Park,10 Kurtis E. Bachman,11 Nickolas Papadopoulos,1 Bert Vogelstein,1† Kenneth W. Kinzler,1† Victor E. Velculescu1† 1Ludwig Center and Howard Hughes Medical Institute, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21231, USA. 2Department of Pathology and Microbiology, Center for Colon Cancer Research, and South Carolina Cancer Center, Division of Basic Research, University of South Carolina School of Medicine, Columbia, SC 29229, USA. 3Department of Medicine, Ireland Cancer Center, and Howard Hughes Medical Institute, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH 44106, USA. 4Department of Pathology and Ireland Cancer Center, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH 44106, USA. 5Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. 6Hamon Center for Therapeutic Oncology Research and Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA. 7Agencourt Bioscience Corporation, Beverly, MA 01915, USA. 8SoftGenetics LLC, State College, PA 16803, USA. 9Departments of Oncology, Biostatistics, and Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA.
  • ( 12 ) United States Patent ( 10 ) Patent No .: US 10,787,712 B2 Sjoblom Et Al

    ( 12 ) United States Patent ( 10 ) Patent No .: US 10,787,712 B2 Sjoblom Et Al

    USO10787712B2 ( 12 ) United States Patent ( 10 ) Patent No .: US 10,787,712 B2 Sjoblom et al . ( 45 ) Date of Patent : * Sep . 29 , 2020 ( 54 ) CONSENSUS CODING SEQUENCES OF ( 56 ) References Cited HUMAN BREAST AND COLORECTAL CANCERS U.S. PATENT DOCUMENTS 5,605,799 A 2/1997 White et al . ( 71 ) Applicant: The Johns Hopkins University , 8,741,573 B2 * 6/2014 Sjoblom C12Q 1/6886 Baltimore , MD (US ) 435 / 6.14 2001/0021502 Al 9/2001 Swift et al . ( 72 ) Inventors: Tobias Sjoblom , Uppsala ( SE ) ; Sian 2007/0017666 Al 1/2007 Song Jones , Baltimore , MD (US ); D. 2010/0316995 Al 12/2010 Sjoblom et al . Williams Parsons , Bellaire, TX ( US ) ; FOREIGN PATENT DOCUMENTS Laura D. Wood , Baltimore, MD ( US ) ; Jimmy Cheng - Ho Lin , Baltimore , MD EP 785216 7/1997 EP 2543739 1/2013 ( US ) ; Thomas Barber , Nobelsville , TN WO WO 199213103 8/1992 ( US ) ; Diana Mandelker , Baltimore , WO WO 200042436 7/2000 MD ( US ) ; Bert Vogelstein , Baltimore , WO WO 2001042504 6/2001 MD ( US ) ; Kenneth W. Kinzler , WO WO 2004082458 9/2004 Baltimore , MD (US ); Victor E. WO WO 2005113824 12/2005 Velculescu, Dayton , MD ( US ) WO WO 2014110408 7/2014 ( 73 ) Assignee : The Johns Hopkins University , OTHER PUBLICATIONS Baltimore , MD (US ) Allen et al . , “ + A2 : D33The role of molecular markers in the adjuvant Subject to any disclaimer , the term of this treatment of colorectal cancer ,” European Journal of Cancer . Supple ( * ) Notice : ment, Pergamon , Oxfor, GB , vol . 3 , No. 3 , Oct. 1 , 2005 . patent is extended or adjusted under 35 Arai et al ., “ The inv ( 11 ) ( p15222) chromosome translocation of de U.S.C.
  • Abnormal Expression of EPB41L1 in Colon Adenocarcinoma and Effect

    Abnormal Expression of EPB41L1 in Colon Adenocarcinoma and Effect

    Abnormal Expression of EPB41L1 in Colon Adenocarcinoma and Effect on Prognosis jiaojiao Liu Zhengzhou University https://orcid.org/0000-0002-8149-5281 Taotao Liang Zhengzhou University Cong Ding Zhengzhou University Zhenyu Ji Zhengzhou University Ting Wang Zhengzhou University Xin Liu ( [email protected] ) Zhengzhou University Qiaozhen Kang Zhengzhou University Primary research Keywords: EPB41L1, Colon adenocarcinoma, Prognosis, Bioinformatics analysis, Biomarker. Posted Date: April 12th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-358130/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/19 Abstract Background: Colon adenocarcinoma (COAD) is the most common pathological type of colorectal cancer (CRC) and further study of the molecular mechanism will help to improve the quality of life of patients with COAD. Erythrocyte membrane protein band 4.1 like 1(EPB41L1), a gene encoding protein 4.1N, has been reported to be closely associated with tumorigenesis and progression. However, the role of EPB41L1 in COAD is largely unknown and remains to be fully studied. Methods: In this study, we analyzed the mRNA expression of EPB41L1 in COAD through the Oncomine and GEO databases. Then, the relative expressions of EPB41L1 across the sub-groups of COAD were performed by the UALCAN data portal. Next, we investigated the prognostic value of EPB41L1 in COAD patients by using the UALCAN and HPA online databases. Further, the mutation of EPB41L1 in COAD was analyzed by c-Bioportal. The co-expression genes of EPB41L1 in COAD were displayed from the LinkedOmics database, and function enrichment analysis was analyzed by DAVID.