Lymphoma Remission and Relapse in a Low-Grade CD70 Ligation

Total Page:16

File Type:pdf, Size:1020Kb

Lymphoma Remission and Relapse in a Low-Grade CD70 Ligation Downloaded from http://www.jimmunol.org/ by guest on September 28, 2021 is online at: average * The Journal of Immunology , 14 of which you can access for free at: 2005; 175:6940-6947; ; from submission to initial decision 4 weeks from acceptance to publication J Immunol doi: 10.4049/jimmunol.175.10.6940 http://www.jimmunol.org/content/175/10/6940 Proliferation Response of Leukemic Cells to CD70 Ligation Oscillates with Recurrent Remission and Relapse in a Low-Grade Lymphoma Yael Kaufmann, Ninette Amariglio, Esther Rosenthal, Yasmine Jacob Hirsch, Amira Many and Gideon Rechavi cites 34 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2005/11/03/175.10.6940.DC1 This article http://www.jimmunol.org/content/175/10/6940.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* • Why • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 28, 2021. The Journal of Immunology Proliferation Response of Leukemic Cells to CD70 Ligation Oscillates with Recurrent Remission and Relapse in a Low-Grade Lymphoma1 Yael Kaufmann,2*‡ Ninette Amariglio,*† Esther Rosenthal,* Yasmine Jacob Hirsch,† Amira Many,* and Gideon Rechavi3*†‡ Interactions of the TNF-related cell surface ligand CD70 with its receptor CD27 provide a costimulatory signal in B and T cell activation. Functional CD70-CD27 interactions could contribute to lymphoma and leukemia progression. This possibility was studied using DNA microarrays on a unique case of low-grade lymphoma/leukemia characterized by recurrent cycles of acute leukemic phase alternating with spontaneous remission. Upon induction of the acute phase expression of CD70 and CD27 in the leukemic cells increased 38- and 25-fold, respectively. Coexpression of membrane CD70 and CD27 on the Downloaded from leukemic (CD5؉CD19؉) cells was maximal 2–3 days following initiation of the attack. Soluble CD27 in the patient’s serum was elevated during remission and further increased in the attack. Functional tests showed that neither anti-CD70 nor anti-CD27 Abs affect the rate of apoptosis. However, the anti-CD70 Ab specifically enhanced proliferation of the remission phase leukemic cells, whereas proliferation of the acute-phase counterparts that express higher level of membrane CD70 was unaffected. Hence, in this lymphoma/leukemia, membrane CD70 is presented on the leukemic cells in a responsive state during the remission and a nonresponsive state during the attack. Presumably, CD70 in its responsive state provides a http://www.jimmunol.org/ costimulatory receptor for initiating the next acute phase while its nonresponsive state enables the remission. The Journal of Immunology, 2005, 175: 6940–6947. nteractions between TNFR family members and their ligands tor ligand pair have mainly addressed the ability of CD27 to control lymphocyte death, survival, proliferation, and dif- regulate the immune response. CD27 signaling appears to play I ferentiation (1, 2). CD27 and its ligand CD70 are members a costimulatory role promoting T cell expansion and differen- of the TNFR family and TNF superfamily, respectively. Tightly tiation (7, 12–15), as well as enhancement of NK cell activity regulated expression of CD70 and CD27 on normal lympho- (16). CD70 has been generally envisaged as a passive element by guest on September 28, 2021 cytes ensures the transient availability of these costimulatory merely required for specific CD27 engagement. Yet, reverse signals. CD70 is induced transiently upon activation of B cells signaling of CD70 was reported. Thus, anti-CD70 mAbs were (3) and T cells (4). CD27 is absent from immature and mature observed to induce proliferation in a subset of B cell chronic B cells but is found on memory B cells (5, 6), T cells (7), and lymphocytic leukemia (CLL) (17) and stimulate NK and ␥␦ T NK cells (8). Differentiation to effector T cells is associated to cell-mediated redirected killing (18), suggesting that CD70 loss of CD27 (9). Cell surface CD27 can be proteolytically might be a signaling molecule. Recently Arens et al. (19) 4 cleaved to produce a 32-kDa soluble CD27 (sCD27) molecule, showed that CD70 has reverse signaling properties in murine B which can be detected in the serum and urine (10). Elevated cells, initiating a signaling cascade that regulates expansion and serum sCD27 levels are seen in a number of infectious and differentiation. In contrast to the tightly regulated expression of autoimmune disease states and are believed to be a marker of T CD70 on normal cells, constitutive expression of CD70 is found cell activation. Also, various types of B cell malignancies ex- on several human leukemias and lymphomas (17, 20, 21). The press the CD27 molecule and elevated serum levels of sCD27. finding that cross-linking of CD70 on malignant B cells aug- There appeared to be a correlation between tumor load and ments proliferation (17) raised the possibility that CD70 might sCD27 levels (11). Studies on the biological role of this recep- contribute to progression of these B cell malignancies. We have reported previously a case of CD5-positive B cell *Institute of Hematology and †Pediatric Hematology-Oncology, Safra Children’s lymphoma, diagnosed as atypical CLL/SLL, which is charac- ‡ Hospital, Chaim Sheba Medical Center, Tel-Hashomer, Israel; and Sackler School of terized by recurrent acute waves of active disease (22, 23). The Medicine Tel-Aviv University, Tel-Aviv, Israel patient experienced within 8 years 27 cycles of leukemic waves Received for publication March 9, 2005. Accepted for publication August 9, 2005. followed by spontaneous partial remissions. The first week of The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance the wave characterized by fever, generalized lymphadenopathy, with 18 U.S.C. Section 1734 solely to indicate this fact. and increasing number of clonal IgM␬-positive leukemic cells 1 This work was supported by the Carol and Leonora Fingerhut Fund for Cancer usually Ͼ60,000 cells/mm3. After a few days, the symptoms of Research, Tel-Aviv University. the acute illness disappeared. Following 2–3 wk, most of the 2 Address correspondence and reprint requests to Dr. Yael Kaufmann, Institute of transformed leukemic cells disappeared, and the white blood Hematology, Chaim Sheba Medical Center, Tel-Hashomer 52621, Israel. E-mail ad- dress: [email protected] cell count returned to almost a normal level. Nonetheless, 10– 3 G.R. holds the Djerassi Chair in Oncology at Tel Aviv University. 60% of the peripheral lymphocytes were monoclonal B cells. 4 Abbreviations used in this paper: sCD27, soluble CD27; CLL, B cell chronic lym- The remission periods lasted 2–7 mo (22). Transient bouts of phocytic leukemia; RTQ-PCR, real-time quantitative PCR; CM, conditioned medium. serum TNF-␣ and IL-10 preceded the acute phases, which were Copyright © 2005 by The American Association of Immunologists, Inc. 0022-1767/05/$02.00 The Journal of Immunology 6941 characterized by coexistence of CD40Lϩ T lymphocytes and Flow cytometry lymphoma cells in the bone marrow (23). During remissions, ϩ For comparison of cell surface marker expression, cells that had been residual IgM␬ leukemic cells exhibited resting phenotype, low cryopreserved during different disease phases were thawed, processed, proliferative response to CD40L, and delayed apoptosis in cul- and analyzed simultaneously. A total of 4 ϫ 105 PBMCs was incubated ture. In contrast, the acute phase counterparts were phenotypi- in 0.4 ml of RPMI 1640 containing 10% FCS for 20 min at 20°C with cally activated, underwent rapid apoptosis, and proliferated CD19 PerCP, CD5 APC, CD27 R-PE, and CD70 FITC, washed in PBS, and analyzed on dual laser FACSCalibur flow cytometer from BD Bio- extensively in response to membrane-anchored CD40L sciences. Discrimination of leukemic cells from the normal hematopoietic (23, 24). cells was done by gating on cells expressing CD19 and CD5. CD70 and The existence of a clonal leukemic cell population throughout CD27 expression on the leukemic cells was scored within the gated ϩ ϩ the course of the disease (22) provides a unique opportunity to CD19 CD5 cells. The following mAbs were used for four-color FACS analysis: R-PE-labeled CD27 clone M-T271 and FITC-labeled CD70 characterize molecular changes in the neoplastic cells associ- (clone Ki-24) (BD Biosciences Pharmingen), allophycocyanin-labeled ated with recurrent activation and regression of the disease. CD5 (clone L17F12), and PerCP-labeled CD19 (BD Biosciences). Microarray analysis of the leukemic cells done in this study Tests of apoptosis and cell proliferation showed consistent pattern of gene expression characterizing different stages of the disease. Because interactions between The patient’s PBMCs or CD19ϩ purified leukemic cells were cultured at 6 CD70 and CD27 provide costimulatory signal in B cell activa- 2 ϫ 10 /ml in RPMI 1640 supplemented by L-glutamine, 10% FCS, and 50 ␮g/ml gentamicin sulfate (conditioned medium (CM)), at 37°C in 5% CO . tion, we examined their involvement in progression of this “cy- 2 Spontaneous apoptosis of the leukemic cells in culture was examined by clic” lymphoma/leukemia. Indeed, CD70 and CD27 were Annexin VFITC staining. A total of 4 ϫ 105 leukemic cells was cultured in among the genes whose expression transiently increased simul- 96-well flat-bottom plates in CM in presence or in absence of 1–9 ␮g/ml Downloaded from taneously with initiation of the acute phase.
Recommended publications
  • PRODUCT SPECIFICATION Prest Antigen GJB5
    PrEST Antigen GJB5 Product Datasheet PrEST Antigen PRODUCT SPECIFICATION Product Name PrEST Antigen GJB5 Product Number APrEST78107 Gene Description gap junction protein, beta 5, 31.1kDa Alternative Gene CX31.1 Names Corresponding Anti-GJB5 (HPA038146) Antibodies Description Recombinant protein fragment of Human GJB5 Amino Acid Sequence Recombinant Protein Epitope Signature Tag (PrEST) antigen sequence: KRCHECLAARKAQAMCTGHHPHGTTSSCKQDDLLSGDLIFLGSDSHPPLL PDRPRDHVKK Fusion Tag N-terminal His6ABP (ABP = Albumin Binding Protein derived from Streptococcal Protein G) Expression Host E. coli Purification IMAC purification Predicted MW 24 kDa including tags Usage Suitable as control in WB and preadsorption assays using indicated corresponding antibodies. Purity >80% by SDS-PAGE and Coomassie blue staining Buffer PBS and 1M Urea, pH 7.4. Unit Size 100 µl Concentration Lot dependent Storage Upon delivery store at -20°C. Avoid repeated freeze/thaw cycles. Notes Gently mix before use. Optimal concentrations and conditions for each application should be determined by the user. Product of Sweden. For research use only. Not intended for pharmaceutical development, diagnostic, therapeutic or any in vivo use. No products from Atlas Antibodies may be resold, modified for resale or used to manufacture commercial products without prior written approval from Atlas Antibodies AB. Warranty: The products supplied by Atlas Antibodies are warranted to meet stated product specifications and to conform to label descriptions when used and stored properly. Unless otherwise stated, this warranty is limited to one year from date of sales for products used, handled and stored according to Atlas Antibodies AB's instructions. Atlas Antibodies AB's sole liability is limited to replacement of the product or refund of the purchase price.
    [Show full text]
  • Anthropoid Primate–Specific Retroviral Element THE1B Controls Expression of CRH in Placenta and Alters Gestation Length
    SHORT REPORTS Anthropoid primate±specific retroviral element THE1B controls expression of CRH in placenta and alters gestation length 1 1 1 2 Caitlin E. Dunn-FletcherID *, Lisa M. Muglia , Mihaela Pavlicev , Gernot Wolf , Ming- An Sun2, Yueh-Chiang Hu3, Elizabeth Huffman1, Shivani Tumukuntala1, Katri Thiele1, Amrita Mukherjee1, Sandra Zoubovsky1, Xuzhe Zhang1, Kayleigh A. Swaggart1, Katherine Y. Bezold Lamm1, Helen Jones4, Todd S. Macfarlan2, Louis J. Muglia1* a1111111111 1 Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati a1111111111 Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, a1111111111 Cincinnati, Ohio, United States of America, 2 The Eunice Kennedy Shriver National Institute of Child Health a1111111111 and Human Development, The National Institutes of Health, Bethesda, Maryland, United States of America, 3 Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of a1111111111 Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America, 4 Division of Pediatric Surgery, Cincinnati Children's Hospital Medical Center, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America * [email protected] (CED); [email protected] (LJM) OPEN ACCESS Citation: Dunn-Fletcher CE, Muglia LM, Pavlicev M, Wolf G, Sun M-A, Hu Y-C, et al. (2018) Anthropoid Abstract primate±specific retroviral element THE1B controls expression of CRH in placenta and alters gestation Pregnancy and parturition are intricately regulated to ensure successful reproductive out- length. PLoS Biol 16(9): e2006337. https://doi.org/ comes. However, the factors that control gestational length in humans and other anthropoid 10.1371/journal.pbio.2006337 primates remain poorly defined.
    [Show full text]
  • An Order Estimation Based Approach to Identify Response Genes
    AN ORDER ESTIMATION BASED APPROACH TO IDENTIFY RESPONSE GENES FOR MICRO ARRAY TIME COURSE DATA A Thesis Presented to The Faculty of Graduate Studies of The University of Guelph by ZHIHENG LU In partial fulfilment of requirements for the degree of Doctor of Philosophy September, 2008 © Zhiheng Lu, 2008 Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-47605-5 Our file Notre reference ISBN: 978-0-494-47605-5 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par Plntemet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non­ sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation.
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • Seq2pathway Vignette
    seq2pathway Vignette Bin Wang, Xinan Holly Yang, Arjun Kinstlick May 19, 2021 Contents 1 Abstract 1 2 Package Installation 2 3 runseq2pathway 2 4 Two main functions 3 4.1 seq2gene . .3 4.1.1 seq2gene flowchart . .3 4.1.2 runseq2gene inputs/parameters . .5 4.1.3 runseq2gene outputs . .8 4.2 gene2pathway . 10 4.2.1 gene2pathway flowchart . 11 4.2.2 gene2pathway test inputs/parameters . 11 4.2.3 gene2pathway test outputs . 12 5 Examples 13 5.1 ChIP-seq data analysis . 13 5.1.1 Map ChIP-seq enriched peaks to genes using runseq2gene .................... 13 5.1.2 Discover enriched GO terms using gene2pathway_test with gene scores . 15 5.1.3 Discover enriched GO terms using Fisher's Exact test without gene scores . 17 5.1.4 Add description for genes . 20 5.2 RNA-seq data analysis . 20 6 R environment session 23 1 Abstract Seq2pathway is a novel computational tool to analyze functional gene-sets (including signaling pathways) using variable next-generation sequencing data[1]. Integral to this tool are the \seq2gene" and \gene2pathway" components in series that infer a quantitative pathway-level profile for each sample. The seq2gene function assigns phenotype-associated significance of genomic regions to gene-level scores, where the significance could be p-values of SNPs or point mutations, protein-binding affinity, or transcriptional expression level. The seq2gene function has the feasibility to assign non-exon regions to a range of neighboring genes besides the nearest one, thus facilitating the study of functional non-coding elements[2]. Then the gene2pathway summarizes gene-level measurements to pathway-level scores, comparing the quantity of significance for gene members within a pathway with those outside a pathway.
    [Show full text]
  • Deficiency in Class III PI3-Kinase Confers Postnatal Lethality with IBD
    ARTICLE DOI: 10.1038/s41467-018-05105-8 OPEN Deficiency in class III PI3-kinase confers postnatal lethality with IBD-like features in zebrafish Shaoyang Zhao1,2,3, Jianhong Xia2,3, Xiuhua Wu2,3, Leilei Zhang2,3, Pengtao Wang2,3, Haiyun Wang2,3, Heying Li2, Xiaoshan Wang 2, Yan Chen 2, Jean Agnetti2, Yinxiong Li 2, Duanqing Pei2,3 & Xiaodong Shu2,3 The class III PI3-kinase (PIK3C3) is an enzyme responsible for the generation of phospha- tidylinositol 3-phosphate (PI3P), a critical component of vesicular membrane. Here, we report 1234567890():,; that PIK3C3 deficiency in zebrafish results in intestinal injury and inflammation. In pik3c3 mutants, gut tube forms but fails to be maintained. Gene expression analysis reveals that barrier-function-related inflammatory bowel disease (IBD) susceptibility genes (e-cadherin, hnf4a, ttc7a) are suppressed, while inflammatory response genes are stimulated in the mutants. Histological analysis shows neutrophil infiltration into mutant intestinal epithelium and the clearance of gut microbiota. Yet, gut microorganisms appear dispensable as mutants cultured under germ-free condition have similar intestinal defects. Mechanistically, we show that PIK3C3 deficiency suppresses the formation of PI3P and disrupts the polarized dis- tribution of cell-junction proteins in intestinal epithelial cells. These results not only reveal a role of PIK3C3 in gut homeostasis, but also provide a zebrafish IBD model. 1 School of Life Sciences, University of Science and Technology of China, 230027 Hefei, Anhui, China. 2 CAS Key Laboratory of Regenerative Biology, Guangzhou Institute of Biomedicine and Health-Guangzhou Medical University Joint School of Biological Sciences, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 510530 Guangzhou, China.
    [Show full text]
  • The Expression of Human Endogenous Retroviruses Is Modulated by the Tat Protein of HIV‐1
    The Expression of Human Endogenous Retroviruses is modulated by the Tat protein of HIV‐1 by Marta Jeannette Gonzalez‐Hernandez A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Immunology) in The University of Michigan 2012 Doctoral Committee Professor David M. Markovitz, Chair Professor Gary Huffnagle Professor Michael J. Imperiale Associate Professor David J. Miller Assistant Professor Akira Ono Assistant Professor Christiane E. Wobus © Marta Jeannette Gonzalez‐Hernandez 2012 For my family and friends, the most fantastic teachers I have ever had. ii Acknowledgements First, and foremost, I would like to thank David Markovitz for his patience and his scientific and mentoring endeavor. My time in the laboratory has been an honor and a pleasure. Special thanks are also due to all the members of the Markovitz laboratory, past and present. It has been a privilege, and a lot of fun, to work near such excellent scientists and friends. You all have a special place in my heart. I would like to thank all the members of my thesis committee for all the valuable advice, help and jokes whenever needed. Our collaborators from the Bioinformatics Core, particularly James Cavalcoli, Fan Meng, Manhong Dai, Maureen Sartor and Gil Omenn gave generous support, technical expertise and scientific insight to a very important part of this project. Thank you. Thanks also go to Mariana Kaplan’s and Akira Ono’s laboratory for help with experimental designs and for being especially generous with time and reagents. iii Table of Contents Dedication ............................................................................................................................ ii Acknowledgements ............................................................................................................. iii List of Figures ...................................................................................................................
    [Show full text]
  • 1 ICR-Geneset Gene List
    ICR-geneset Gene List. IMAGE ID UniGene Locus Name Cluster 20115 Hs.62185 SLC9A6 solute carrier family 9 (sodium/hydrogen exchanger), isoform 6 21738 21899 Hs.78353 SRPK2 SFRS protein kinase 2 21908 Hs.79133 CDH8 cadherin 8, type 2 22040 Hs.151738 MMP9 matrix metalloproteinase 9 (gelatinase B, 92kD gelatinase, 92kD type IV collagenase) 22411 Hs.183 FY Duffy blood group 22731 Hs.1787 PHRET1 PH domain containing protein in retina 1 22859 Hs.356487 ESTs 22883 Hs.150926 FPGT fucose-1-phosphate guanylyltransferase 22918 Hs.346868 EBNA1BP2 EBNA1 binding protein 2 23012 Hs.158205 BLZF1 basic leucine zipper nuclear factor 1 (JEM-1) 23073 Hs.284244 FGF2 fibroblast growth factor 2 (basic) 23173 Hs.151051 MAPK10 mitogen-activated protein kinase 10 23185 Hs.289114 TNC tenascin C (hexabrachion) 23282 Hs.8024 IK IK cytokine, down-regulator of HLA II 23353 23431 Hs.50421 RB1CC1 RB1-inducible coiled-coil 1 23514 23548 Hs.71848 Human clone 23548 mRNA sequence 23629 Hs.135587 Human clone 23629 mRNA sequence 23658 Hs.265855 SETMAR SET domain and mariner transposase fusion gene 23676 Hs.100841 Homo sapiens clone 23676 mRNA sequence 23772 Hs.78788 LZTR1 leucine-zipper-like transcriptional regulator, 1 23776 Hs.75438 QDPR quinoid dihydropteridine reductase 23804 Hs.343586 ZFP36 zinc finger protein 36, C3H type, homolog (mouse) 23831 Hs.155247 ALDOC aldolase C, fructose-bisphosphate 23878 Hs.99902 OPCML opioid binding protein/cell adhesion molecule-like 23903 Hs.12526 Homo sapiens clone 23903 mRNA sequence 23932 Hs.368063 Human clone 23932 mRNA sequence 24004
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Download The
    PROBING THE INTERACTION OF ASPERGILLUS FUMIGATUS CONIDIA AND HUMAN AIRWAY EPITHELIAL CELLS BY TRANSCRIPTIONAL PROFILING IN BOTH SPECIES by POL GOMEZ B.Sc., The University of British Columbia, 2002 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Experimental Medicine) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) January 2010 © Pol Gomez, 2010 ABSTRACT The cells of the airway epithelium play critical roles in host defense to inhaled irritants, and in asthma pathogenesis. These cells are constantly exposed to environmental factors, including the conidia of the ubiquitous mould Aspergillus fumigatus, which are small enough to reach the alveoli. A. fumigatus is associated with a spectrum of diseases ranging from asthma and allergic bronchopulmonary aspergillosis to aspergilloma and invasive aspergillosis. Airway epithelial cells have been shown to internalize A. fumigatus conidia in vitro, but the implications of this process for pathogenesis remain unclear. We have developed a cell culture model for this interaction using the human bronchial epithelium cell line 16HBE and a transgenic A. fumigatus strain expressing green fluorescent protein (GFP). Immunofluorescent staining and nystatin protection assays indicated that cells internalized upwards of 50% of bound conidia. Using fluorescence-activated cell sorting (FACS), cells directly interacting with conidia and cells not associated with any conidia were sorted into separate samples, with an overall accuracy of 75%. Genome-wide transcriptional profiling using microarrays revealed significant responses of 16HBE cells and conidia to each other. Significant changes in gene expression were identified between cells and conidia incubated alone versus together, as well as between GFP positive and negative sorted cells.
    [Show full text]
  • De Novo EIF2AK1 and EIF2AK2 Variants Are Associated with Developmental Delay, Leukoencephalopathy, and Neurologic Decompensation
    bioRxiv preprint doi: https://doi.org/10.1101/757039; this version posted September 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. De novo EIF2AK1 and EIF2AK2 variants are associated with developmental delay, leukoencephalopathy, and neurologic decompensation Dongxue Mao1,2, Chloe M. Reuter3,4, Maura R.Z. Ruzhnikov5,6, Anita E. Beck7, Emily G. Farrow8,9,10, Lisa T. Emrick1,11,12,13, Jill A. Rosenfeld12, Katherine M. Mackenzie5, Laurie Robak2,12,13, Matthew T. Wheeler3,14, Lindsay C. Burrage12,13, Mahim Jain15, Pengfei Liu12, Daniel Calame11,13, Sebastien Küry17,18, Martin Sillesen19, Klaus Schmitz-Abe20, Davide Tonduti21, Luigina Spaccini22, Maria Iascone23, Casie A. Genetti20, Madeline Graf16, Alyssa Tran12, Mercedes Alejandro12, Undiagnosed Diseases Network, Brendan H. Lee12,13, Isabelle Thiffault8,9,24, Pankaj B. Agrawal#,20, Jonathan A. Bernstein#,3,25, Hugo J. Bellen#,2,12,26,27,28, Hsiao- Tuan Chao#,1,2,11,12,13,28,27,29 #Correspondence should be addressed: [email protected] (P.A.), [email protected] (J.A.B.), [email protected] (H.J.B.), [email protected] (H.T.C.) 1Department of Pediatrics, Baylor College of Medicine (BCM), Houston, TX 2Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 3Stanford Center for Undiagnosed Diseases, Stanford University, Stanford, CA 4Stanford Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine,
    [Show full text]
  • Transcriptome Sequencing and Genome-Wide Association Analyses Reveal Lysosomal Function and Actin Cytoskeleton Remodeling in Schizophrenia and Bipolar Disorder
    Molecular Psychiatry (2015) 20, 563–572 © 2015 Macmillan Publishers Limited All rights reserved 1359-4184/15 www.nature.com/mp ORIGINAL ARTICLE Transcriptome sequencing and genome-wide association analyses reveal lysosomal function and actin cytoskeleton remodeling in schizophrenia and bipolar disorder Z Zhao1,6,JXu2,6, J Chen3,6, S Kim4, M Reimers3, S-A Bacanu3,HYu1, C Liu5, J Sun1, Q Wang1, P Jia1,FXu2, Y Zhang2, KS Kendler3, Z Peng2 and X Chen3 Schizophrenia (SCZ) and bipolar disorder (BPD) are severe mental disorders with high heritability. Clinicians have long noticed the similarities of clinic symptoms between these disorders. In recent years, accumulating evidence indicates some shared genetic liabilities. However, what is shared remains elusive. In this study, we conducted whole transcriptome analysis of post-mortem brain tissues (cingulate cortex) from SCZ, BPD and control subjects, and identified differentially expressed genes in these disorders. We found 105 and 153 genes differentially expressed in SCZ and BPD, respectively. By comparing the t-test scores, we found that many of the genes differentially expressed in SCZ and BPD are concordant in their expression level (q ⩽ 0.01, 53 genes; q ⩽ 0.05, 213 genes; q ⩽ 0.1, 885 genes). Using genome-wide association data from the Psychiatric Genomics Consortium, we found that these differentially and concordantly expressed genes were enriched in association signals for both SCZ (Po10 − 7) and BPD (P = 0.029). To our knowledge, this is the first time that a substantially large number of genes show concordant expression and association for both SCZ and BPD. Pathway analyses of these genes indicated that they are involved in the lysosome, Fc gamma receptor-mediated phagocytosis, regulation of actin cytoskeleton pathways, along with several cancer pathways.
    [Show full text]