Lab Packet .Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Lab Packet .Pdf NAME ___________________________________________________ LAB SECTION _______ LAB TIME ___________________ SEAT NUMBER ________ ADDRESS ______________________________________ ______________________________________ ______________________________________ PHONE NUMBER ________________________ VERTEBRATE DEVELOPMENT, BIOL 4410 LABORATORY HANDOUTS FALL 2016 (revised 2/2/16) INSTRUCTOR - DR. STEPHEN C. KEMPF DEPARTMENT OF BIOLOGICAL SCIENCES AUBURN UNIVERSITY 1 TABLE OF CONTENTS LECTURE, LAB READING, SLIDE #s, AND EXAM SCHEDULE ------------------------ 3 COURSE POLICIES -------------------------------------------------------------------------------- 10 LABORATORY REQUIREMENTS/INFORMATION --------------------------------------- 11 LAB NOTEBOOK REQUIREMENTS ----------------------------------------------------------- 12 LAB NOTEBOOK – FREQUENTLY ASKED QUESTIONS ------------------------------- 14 POSSIBLY USEFUL STUDY HINTS ----------------------------------------------------------- 16 LAB EXAM AND QUIZ SAMPLE QUESTIONS --------------------------------------------- 17 HANDOUT 1A, LABORATORY ORIENTATION ------------------------------------------- 20 HANDOUT 1B, USE OF THE COMPOUND MICROSCOPE ------------------------------- 23 HANDOUT 2A, ROUTINE METHODS --------------------------------------------------------- 29 HANDOUT 2B, MITOSIS, MEIOSIS, AND GAMETOGENESIS -------------------------- 35 HANDOUT 2C, BASIC MICROSCOPY METHODS ----------------------------------------- 37 LABORATORY ID LISTS – OVERVIEW ----------------------------------------------------- 42 HANDOUT 3A, REPRODUCTIVE ORGANS: SPERMATOGENESIS ------------------- 43 HANDOUT 3B, REPRODUCTIVE ORGANS: OOGENESIS ------------------------------- 44 HANDOUT 4A, STARFISH DEVELOPMENT ----------------------------------------------- 45 HANDOUT 4B, EARLY FROG DEVELOPMENT -------------------------------------------- 46 HANDOUT 5, 4 - 7 MM FROG TADPOLE ----------------------------------------------------- 48 HANDOUT 6, 10 MM FROG TADPOLE -------------------------------------------------------- 51 HANDOUT 7A, CRANIAL NERVES AND GANGLIA -------------------------------------- 54 HANDOUT 7B, 18 AND 24 HOUR CHICK ----------------------------------------------------- 58 HANDOUT 8, 33 HOUR CHICK ------------------------------------------------------------------ 60 HANDOUT 9, 48 HOUR CHICK ------------------------------------------------------------------ 62 HANDOUT 10, 72 HOUR CHICK ----------------------------------------------------------------- 65 HANDOUT 11, 96 HOUR CHICK ----------------------------------------------------------------- 72 HANDOUT 12, 6 MM PIG -------------------------------------------------------------------------- 78 HANDOUT 13, 10 MM PIG ------------------------------------------------------------------------- 83 HANDOUT 14, TOOTH DEVELOPMENT ------------------------------------------------------- 90 2 VERTEBRATE DEVELOPMENT - BIOL 4410 LECTURE and LAB FALL 2016 - LECTURE AND LAB TOPICS, STUDY ASSIGNMENTS C - Carlson (6th edition), S - Schoenwolfe (7th edition), D - Digital Lab Manual (If you have a different edition of the text, the required page numbers may be different.) ________________________________________________________________________ ------------------------------------------------------------------------------------------------------------ Aug 17 W Class orientation, drops and adds, lab switches Introduction, Developmental biology as a science Gametogenesis I: Gametes, where do they come from. C: pp. 1-56, pp. 57-74 W/Th NO LAB TODAY! ________________________________________________________________________ ------------------------------------------------------------------------------------------------------------ Aug 19 F Finish Introduction, Developmental biology as a science Gametogenesis I: Gametes, where do they come from. C: pp. 1-56, pp. 57-74 ________________________________________________________________________ ------------------------------------------------------------------------------------------------------------ Aug 22 M Gametogenesis I: Gametes, where do they come from C: pp. 57-74 M/T ATTENDANCE AT THIS LAB IS REQUIRED!!!! Lab: Equipment assignments. Use of microscope. D: Introductory materials, Approaches to learning Routine methods of Microtechnique Microscopy: Use of the Microscope ________________________________________________________________________ ------------------------------------------------------------------------------------------------------------ Aug 24 W Gametogenesis II: Spermatogenesis C: pp. 75-93 W/Th ATTENDANCE AT THIS LAB IS REQUIRED!!!! Lab: Histological sections, a 2-dimensional view of 3-dimensions. Reproductive organs. Tray #1 & 2. D: Developmental Events and Mechanisms, General Background Information, Gametogenesis, Fertilization M: pp. 1-15, 74-77, 126-129 ________________________________________________________________________ ------------------------------------------------------------------------------------------------------------ Aug 26 F Gametogenesis II: Spermatogenesis . C: pp. 75-93 ________________________________________________________________________ ------------------------------------------------------------------------------------------------------------ 3 Aug 29 M Gametogenesis II: Finish Spermatogenesis. Start Oogenesis C: pp. 75-93 C: pp. 94-120 M/T Lab: Starfish development. Tray #3. Quiz 1 D: Starfish Development, Descriptive Text M: pp. 50-56 FIRST LAB QUIZ TODAY! ________________________________________________________________________ ------------------------------------------------------------------------------------------------------------ Aug 31 W Gametogenesis III: Oogenesis C: pp. 94-120 W/T h Lab: Early frog development. Tray #4. Quiz 2 D: Amphibian Development, Early Frog Development, Descriptive Text M: pp. 78, 81-96 ________________________________________________________________________ ------------------------------------------------------------------------------------------------------------ Sept 2 F Gametogenesis III: Oogenesis C: pp. 94-120 ________________________________________________________________________ ------------------------------------------------------------------------------------------------------------ Sept 5 M LABOR DAY HOLIDAY 15th day of classes tomorrow ________________________________________________________________________ ------------------------------------------------------------------------------------------------------------ Sept 7 W Finish Fertilization, C: pp. 121-142 W/Th Lab: 4mm Frog tadpole. Tray #5 Quiz 3 D: Amphibian Development, 4mm Frog Tadpole, Descriptive Text for Wholemount and Transverse sections M: 97-105 ________________________________________________________________________ ------------------------------------------------------------------------------------------------------------ Sept 9 F Fertilization C: pp. 121-142 ________________________________________________________________________ ------------------------------------------------------------------------------------------------------------ Sept 12 M Cleavage. C: pp. 143-150, 151 - 188 M/T Lab: Frog development, 4-7 mm, Tray #5. Quiz 4 D: Amphibian Development, 7mm Frog Tadpole, Descriptive Text for Wholemount and Transverse sections M: pp. 97-105, 106-116 ________________________________________________________________________ ------------------------------------------------------------------------------------------------------------ 4 Sept 14 W Cleavage. C: pp. 143-150, 151 - 188 . W/Th Lab: Frog development, 4-7 mm, Tray #5. Quiz 5 D: Amphibian Development, 7mm Frog Tadpole, Descriptive Text for Wholemount and Transverse sections M: pp. 97-105, 106-116 ________________________________________________________________________ ------------------------------------------------------------------------------------------------------------ Sept 16 F Cleavage. C: pp. 143-150, 151 - 188 ________________________________________________________________________ ------------------------------------------------------------------------------------------------------------ Sept 19 M Gastrulation. C: pp. 189-226 M/T Lab: Frog development, 10mm. Tray #7. Quiz 6 D: Developmental Events and Mechanisms, Cleavage D: Amphibian Development, 10mm Frog Tadpole, Descriptive Text for Wholemount and Transverse sections M: pp. 117-123 ________________________________________________________________________ ------------------------------------------------------------------------------------------------------------ Sept 21 W FIRST LECTURE EXAM (through Monday's lecture) W/Th Lab: Frog development, 10mm. Tray #7. Quiz 7 D: Developmental Events and Mechanisms, Cleavage D: Amphibian Development, 10mm Frog Tadpole, Descriptive Text for Wholemount and Transverse sections M: pp. 117-123 ________________________________________________________________________ ------------------------------------------------------------------------------------------------------------ Sept 23 F Gastrulation. C: pp. 189-226 ________________________________________________________________________ ------------------------------------------------------------------------------------------------------------ Sept 26 M Gastrulation. C: pp. 189-226 M/T Lab: Chicken development, 18 hr, 24 hr. (4 somite) Tray #8. Quiz 8 D: Developmental Events and Mechanisms, Gastrulation D: Avian Development, Major Events in Early Avian Development Descriptive Text D: Avian Development, 18 hr and 24 hr chick embryo Descriptive Text for 18 hr and 24 hr
Recommended publications
  • Te2, Part Iii
    TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS
    [Show full text]
  • Star Fish Early Development Amphioxus Gastrulation
    Faculty of Biological Science and Technology Zoology and Botanical department Practical embryology Amphibian development (4 mm larvae; sagittal sections) By: Shirin Kashfi Ph.D in Animal Development [email protected] tail bud stage At the time of neurulation termination, a part which is known as tail bud develops in the end of embryo body The entire body elongate and shorten in dorso-ventral direction in some extend First muscular responses to external stimuli develop, so this stage refer as muscular response stage too Tail bud is elongated and contains neural tube, notochord and unsegmented mesoderm as well as dorsal and ventral tail fin Five primary brain vesicles are developed (telencephalon, diencephalon, mesencephalon, metencephalon and myelencephalon) Retina (neural retina and retinal pigmented epithelium) and lens placode are formed Auditory vesicle in associated with hind brain and olfactory placode in associated with forebrain (telencephalon) are developed Heart rudiment is developed below to pharynx from mesoderm Foregut, midgut and hindgut are formed. In foregut oral cavity are expanded ventrally and laterally, pharynx and liver diverticulum can be recognizable Pronephric kidney is developed from intermediate mesoderm Somites are formed stage 18, 96 hpf, 4 mm in all sections please consider anterior, posterior, dorsal and ventral directions surface ectoderm yolky endoderm yolky endoderm can be seen in these sections gradually head region is appeared From: embryo/amphibian development/Book - The Frog Its Reproduction
    [Show full text]
  • Download PDF Version
    FIG. 4–1 Dorsal aspect of the 10-somite embryo. 24 IV the fourth week of life somite and neural tube period I. EMBRYO PROPER caudal openings of the tube are called neuropores. The rostral neuropore closes between 18 and 20 somites. The caudal neuro- A. EXTERNAL APPEARANCE pore closes at 25 somites. Figs. 4–1, 4–2 1. The specimens measure approximately 1 to 3.5 mm in length Brain and have 1 to 29 pairs of somites. Three brain subdivisions are present in the cranial portion of the 2. The head and tail folds move the attachment of the amnion tube and are named, from cranial to caudal, the prosencephalon, to the ventral side of the head and tail regions, respectively. mesencephalon and rhombencephalon. The boundary between the The lateral body folds move the amnion attachment to the pros- and mesencephalon is demarcated by a ventral bend, called ventrolateral surface in the midportion of the embryo. the cephalic flexure. An external groove and a prominent swelling 3. The head region is elevated above the yolk sac by the large on the medial surface of the neural plate may also demarcate the pericardial sac, the midportion lies upon the yolk sac and the boundary. The boundary between the mes- and rhombencephalon caudal region is curved toward the yolk sac. is distinguished by a groove on the medial and lateral surfaces of 4. The embryo possesses somites, which are apparent through the neural plate or tube. the ectoderm. 5. The neural tube develops from the neural plate and remains Prosencephalon open at each end for 2 to 4 days.
    [Show full text]
  • Embryology of Branchial Region
    TRANSCRIPTIONS OF NARRATIONS FOR EMBRYOLOGY OF THE BRANCHIAL REGION Branchial Arch Development, slide 2 This is a very familiar picture - a median sagittal section of a four week embryo. I have actually done one thing correctly, I have eliminated the oropharyngeal membrane, which does disappear sometime during the fourth week of development. The cloacal membrane, as you know, doesn't disappear until the seventh week, and therefore it is still intact here, but unlabeled. But, I've labeled a couple of things not mentioned before. First of all, the most cranial part of the foregut, that is, the part that is cranial to the chest region, is called the pharynx. The part of the foregut in the chest region is called the esophagus; you probably knew that. And then, leading to the pharynx from the outside, is an ectodermal inpocketing, which is called the stomodeum. That originally led to the oropharyngeal membrane, but now that the oropharyngeal membrane is ruptured, the stomodeum is a pathway between the amniotic cavity and the lumen of the foregut. The stomodeum is going to become your oral cavity. Branchial Arch Development, slide 3 This is an actual picture of a four-week embryo. It's about 5mm crown-rump length. The stomodeum is labeled - that is the future oral cavity that leads to the pharynx through the ruptured oropharyngeal membrane. And I've also indicated these ridges separated by grooves that lie caudal to the stomodeum and cranial to the heart, which are called branchial arches. Now, if this is a four- week old embryo, clearly these things have developed during the fourth week, and I've never mentioned them before.
    [Show full text]
  • Development of the Urogenital System of the Dog
    DEVELOPMENT OF THE UROGENITAL SYSTEM OF THE DOG MAJID AHMED AL-RADHAWI LICENCE, Higher Teachers' Training College, Baghdad, Iraq, 1954 A. THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Zoology KANSAS STATE COLLEGE OF AGRICULTURE AND APPLIED SCIENCE 1958 LD C-2- TABLE OF CONTENTS INTRODUCTION AND HEVIEW OF LITERATURE 1 MATERIALS AND METHODS 3 OBSERVATIONS 5 Group I, Embryos from 8-16 Somites 5 Group II, Embryos from 17-26 Somites 10 Group III, Embryos from 27-29 Somites 12 Group 17, Embryos from 34-41 Somites 15 Group V , Embryos from 41-53 Somites 18 Subgroup A, Embryos from 41-<7 Somites 18 Subgroup B, Embryos from 4-7-53 Somites 20 Group VI, Embryos Showing Indifferent Gonad 22 Group VII, Embryos with Differentiatle Gonad 24 Subgroup A, Embryos with Seoondarily Divertioulated Pelvis ... 25 Subgroup B, Embryos with the Anlagen of the Uriniferous Tubules . 26 Subgroup C, Embryos with Advanced Gonad 27 DISCUSSION AND GENERAL CONSIDERATION 27 Formation of the Kidney .... 27 The Pronephros 31 The Mesonephros 35 The Metanephros 38 The Ureter 39 The Urogenital Sinus 4.0 The Mullerian Duot 40 The Gonad 41 1 iii TABLE OF CONTENTS The Genital Ridge Stage 41 The Indifferent Stage , 41 The Determining Stage, The Testes . 42 The Ovary 42 SUMMARI , 42 ACKNOWLEDGMENTS 46 LITERATURE CITED 47 APJENDEC 51 j INTRODUCTION AND REVIEW OF LITERATURE Nephrogenesis has been adequately described in only a few mammals, Buchanan and Fraser (1918), Fraser (1920), and MoCrady (1938) studied nephrogenesis in marsupials. Keibel (1903) reported on studies on Echidna Van der Strioht (1913) on the batj Torrey (1943) on the rat; and Bonnet (1888) and Davles and Davies (1950) on the sheep.
    [Show full text]
  • 2/2/2011 1 Development of Development of Endodermal
    2/2/2011 ZOO 401- Embryology-Dr. Salah A. Martin DEVELOPMENT OF THE DIGESTIVE SYSTEM ◦ Primitive Gut Tube ◦ Proctodeum and Stomodeum ◦ Stomach Development of Endodermal Organs ◦ Duodenum ◦ Pancreas ◦ Liver and Biliary Apparatus ◦ Spleen ◦ Midgut Wednesday, February 02, 2011 DEVELOPMENT OF THE DIGESTIVE SYSTEM 2 Wednesday, February 02, 2011 Development of Ectodermal Organs 1 ZOO 401- Embryology-Dr. Salah A. Martin ZOO 401- Embryology-Dr. Salah A. Martin Primitive Gut Tube Proctodeum and Stomodeum The primitive gut tube is derived from the dorsal part of the yolk sac , which is incorporated into the body of The proctodeum (anal pit) is the primordial the embryo during folding of the embryo during the fourth week. anus , and the stomodeum is the primordial The primitive gut tube is divided into three sections. mouth . The epithelium of and the parenchyma of In both of these areas ectoderm is in direct glands associated with the digestive tract (e.g., liver and pancreas) are derived from endoderm . contact with endoderm without intervening The muscular walls of the digestive tract (lamina mesoderm, eventually leading to degeneration propria, muscularis mucosae, submucosa, muscularis of both tissue layers. Foregut, Esophagus. externa, adventitia and/or serosa) are derived from splanchnic mesoderm . The tracheoesophageal septum divides the During the solid stage of development the endoderm foregut into the esophagus and of the gut tube proliferates until the gut is a solid tube. trachea. information. A process of recanalization restores the lumen. Wednesday, February 02, 2011 Primitive Gut Tube 3 Wednesday, February 02, 2011 Proctodeum and Stomodeum 4 ZOO 401- Embryology-Dr. Salah A.
    [Show full text]
  • Terminologia Embryologica
    Terminologia Embryologica МЕЖДУНАРОДНЫЕ ТЕРМИНЫ ПО ЭМБРИОЛОГИИ ЧЕЛОВЕКА С ОФИЦИАЛЬНЫМ СПИСКОМ РУССКИХ ЭКВИВАЛЕНТОВ FEDERATIVE INTERNATIONAL PROGRAMME ON ANATOMICAL TERMINOLOGIES (FIPAT) РОССИЙСКАЯ ЭМБРИОЛОГИЧЕСКАЯ НОМЕНКЛАТУРНАЯ КОМИССИЯ Под редакцией акад. РАН Л.Л. Колесникова, проф. Н.Н. Шевлюка, проф. Л.М. Ерофеевой 2014 VI СОДЕРЖАНИЕ 44 Facies Лицо Face 46 Systema digestorium Пищеварительная система Alimentary system 47 Cavitas oris Ротовая полость Oral cavity 51 Pharynx Глотка Pharynx 52 Canalis digestorius; Canalis Пищеварительный канал Alimentary canal oesophagogastrointestinalis 52 Oesophagus Пищевод Oesophagus▲ 53 Gaster Желудок Stomach 54 Duodenum Двенадцатиперстная кишка Duodenum 55 Ansa umbilicalis intestini Пупочная кишечная петля Midgut loop; Umbilical intestinal loop 56 Jejunum et Ileum Тощая и подвздошная кишка Jejunum and Ileum 56 Intestinum crassum Толстая кишка Large intestine 58 Canalis analis Анальный канал Anal canal 58 Urenteron; Pars postcloacalis Постклоакальная часть кишки Postcloacal gut; intestini Tailgut; Endgut 59 Hepar Печень Liver 60 Ductus choledochus; Ductus Жёлчный проток Bile duct biliaris 61 Vesica biliaris et ductus Жёлчный пузырь и пузырный про- Gallbladder and cystic cysticus ток duct 61 Pancreas Поджелудочная железа Pancreas 63 Systema respiratorium Дыхательная система Respiratory system 63 Nasus Нос Nose 64 Pharynx Глотка, зев Pharynx 64 Formatio arboris respiratoriae Формирование дыхательной Formation of системы (бронхиального дерева) respiratory tree 67 Systema urinarium Мочевая система Urinary
    [Show full text]
  • Embryonic Development of the Chicken External Cloaca and Phallus
    Scanning Electron Microscopy Volume 1986 Number 2 Article 35 5-23-1986 Embryonic Development of the Chicken External Cloaca and Phallus M. R. Bakst U. S. Department of Agriculture Follow this and additional works at: https://digitalcommons.usu.edu/electron Part of the Biology Commons Recommended Citation Bakst, M. R. (1986) "Embryonic Development of the Chicken External Cloaca and Phallus," Scanning Electron Microscopy: Vol. 1986 : No. 2 , Article 35. Available at: https://digitalcommons.usu.edu/electron/vol1986/iss2/35 This Article is brought to you for free and open access by the Western Dairy Center at DigitalCommons@USU. It has been accepted for inclusion in Scanning Electron Microscopy by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. SCANNING ELECTRON MICROSCOPY /1986/11 (Pages 653-659) SEM Inc., AMF O'Hare (Chicago), IL 60666-0507 USA EMBRYONIC DEVELOPMENT OF THE CHICKEN EXTERNAL CLOACA AND PHALLUS M. R. Bakst U.S. Department of Agriculture Agricultural Research Service Avian Physiology Laboratory Beltsville, Maryland 20705 Phone: 301 344 2545 (Received for publication March 22, 1986: revised paper received May 23, 1986) Abstract Introduction The use of the scanning electron microscope In the course of investigating the mechanisms has provided new detailed information about the of erection, ejaculation, and semen dilution in the embryonic development of the chicken external chicken, it was found necessary to determine the cloaca and phallus and has cor:sequently clarified the embryonic origin of the structures in the cloaca origin of the differences between the anatomy of the which form the chicken Phallus nonprotrudens chicken and turkey phallus.
    [Show full text]
  • Imperforate Anus and Cloacal Malformations Marc A
    C H A P T E R 3 5 Imperforate Anus and Cloacal Malformations Marc A. Levitt • Alberto Peña ‘Imperforate anus’ has been a well-known condition since component but were left with a persistent urogenital antiquity.1–3 For many centuries, physicians, as well as sinus.21,23 Additionally, most rectovestibular fistulas were individuals who practiced medicine, have tried to help erroneously called ‘rectovaginal fistula’.21 A rectoblad- these children by creating an orifice in the perineum. derneck fistula in males is the only true supralevator Many patients survived, most likely because they suffered malformation and occurs in about 10%.18 As it is the only from a type of defect that is now recognized as ‘low.’ malformation in males in which the rectum is unreach- Those with a ‘high’ defect did not survive. In 1835, able through a posterior sagittal incision, it requires an Amussat was the first to suture the rectal wall to the skin abdominal approach (via laparoscopy or a laparotomy) in edges which was the first actual anoplasty.2 Stephens addition to the perineal approach. made a significant contribution by performing the first Anorectal malformations represent a wide spectrum of anatomic studies in human specimens. In 1953, he pro- defects. The terms ‘low,’ ‘intermediate,’ and ‘high’ are arbi- posed an initial sacral approach followed by an abdomi- trary and not useful in current therapeutic or prognostic noperineal operation, if needed.4 The purpose of the terminology. A therapeutic and prognostically oriented sacral stage of this procedure was to preserve the pub- classification is depicted in Box 35-1.24 orectalis sling, considered a key factor in maintaining fecal incontinence.
    [Show full text]
  • DIGESTIVE SYSTEM Generalized Insect Alimentary Tract the Digestive System Is Just a Tube Within a Surrounding Tube Called the Body
    DIGESTIVE SYSTEM Generalized insect alimentary tract The digestive system is just a tube within a surrounding tube called the body. It starts with a mouth and ends with the anus. What goes on in between depends on the insect, its life stage and what it eats. The origin of the digestive tract. At the anterior pole of the embryo an indentation forms that will be the foregut or stomodeum. At the other end a similar thing occurs and the proctodeum or hindgut is formed. Both are lined by cuticle. They both are of ectodermal origin while the midgut is of mesodermal origin and is also called the mesenteron. This different origin of the midgut from the endoderm and not the ecotoderm probably explains why it is not lined with cuticle Anterior midgut invagination. In the bottom photo note the invagination starting forming the ventral furrow lumen (VF) MIDGUT FORMATION IN THE EMBRYO PMG in the above embryo shows the posterior midgut invagination cup where the posterior invagination shown in the drawing on the right will take place. Photo of Drosophila embryo. Hindgut invagination DIGESTIVE SYSTEM The digestive tract not only aids in obtaining, processing and digesting food molecules - It is the largest endocrine tissue in both humans and insects. The digestive system is involved in: 1. Obtaining food 2. Mechanically breaking it down into smaller particles that facilitate digestive enzymes acting on them 3. Enzymatic breakdown of larger food molecules into molecules that can pass through the digestive tract (midgut) and enter the hemolymph 4. Produces molecules or MESSENGERS (eg.
    [Show full text]
  • Evidence for a Thoracic Crop in the Workers of Some Neotropical Pheidole Species (Formicidae: Myrmicinae)
    Arthropod Structure & Development 59 (2020) 100977 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Evidence for a thoracic crop in the workers of some Neotropical Pheidole species (Formicidae: Myrmicinae) * A. Casadei-Ferreira a, , G. Fischer b, E.P. Economo b a Departamento de Zoologia, Universidade Federal do Parana, Avenida Francisco Heraclito dos Santos, s/n, Centro Politecnico, Curitiba, Mailbox 19020, CEP 81531-980, Brazil b Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa, 904-0495, Japan article info abstract Article history: The ability of ant colonies to transport, store, and distribute food resources through trophallaxis is a key Received 28 May 2020 advantage of social life. Nonetheless, how the structure of the digestive system has adapted across the Accepted 21 July 2020 ant phylogeny to facilitate these abilities is still not well understood. The crop and proventriculus, Available online xxx structures in the ant foregut (stomodeum), have received most attention for their roles in trophallaxis. However, potential roles of the esophagus have not been as well studied. Here, we report for the first Keywords: time the presence of an auxiliary thoracic crop in Pheidole aberrans and Pheidole deima using X-ray micro- Ants computed tomography and 3D segmentation. Additionally, we describe morphological modifications Dimorphism Mesosomal crop involving the endo- and exoskeleton that are associated with the presence of the thoracic crop. Our Liquid food results indicate that the presence of a thoracic crop in major workers suggests their potential role as Species group repletes or live food reservoirs, expanding the possibilities of tasks assumed by these individuals in the colony.
    [Show full text]
  • Early Vaginal Replacement in Cloacal Malformation
    Pediatric Surgery International (2019) 35:263–269 https://doi.org/10.1007/s00383-018-4407-1 ORIGINAL ARTICLE Early vaginal replacement in cloacal malformation Shilpa Sharma1 · Devendra K. Gupta1 Accepted: 18 October 2018 / Published online: 30 October 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Purpose We assessed the surgical outcome of cloacal malformation (CM) with emphasis on need and timing of vaginal replacement. Methods An ambispective study of CM was carried out including prospective cases from April 2014 to December 2017 and retrospective cases that came for routine follow-up. Early vaginal replacement was defined as that done at time of bowel pull through. Surgical procedures and associated complications were noted. The current state of urinary continence, faecal continence and renal functions was assessed. Results 18 patients with CM were studied with median age at presentation of 5 days (1 day–4 years). 18;3;2 babies underwent colostomy; vaginostomy; vesicostomy. All patients underwent posterior sagittal anorectovaginourethroplasty (PSARVUP)/ Pull through at a median age of 13 (4–46) months. Ten patients had long common channel length (> 3 cm). Six patients underwent early vaginal replacement at a median age of 14 (7–25) months with ileum; sigmoid colon; vaginal switch; hemirectum in 2;2;1;1. Three with long common channel who underwent only PSARVUP had inadequate introitus at puberty. Complications included anal mucosal prolapse, urethrovaginal fistula, perineal wound dehiscence, pyometrocolpos, blad- der injury and pelvic abscess. Persistent vesicoureteric reflux remained in 8. 5;2 patients had urinary; faecal incontinence. 2 patients of uterus didelphys are having menorrhagia.
    [Show full text]