<<

178

European Journal of -18-0197 levels. suggesting thattheliverandgutplaykeyrolesindeterminingfastingpostabsorptivecirculatingglucagon axis. Thisarticlesummarisesthephysiologicalregulationofglucagonsecretioninhumansandconsidersnewfindings mediated byincreasedcirculatingaminoacidsconstituteacompleteendocrinefeedbacksystem:theliver–alpha induced hepaticglucagonresistance(andreducedaminoacidturnover)andcompensatorysecretion ‘pancreacentric’ and‘glucocentric’understandingofhyperglucagonaemialedtothehypothesisthatsteatosis- strongly correlateswithobesity, liverfatcontentandcirculatingaminoacids,hasmadeusquestionthecommon cells. Furthermore,ourobservationthatfastinghyperglucagonaemiaisunrelatedtothediabeticstate,but may alsobesecretedfromextrapancreatictissues–mostlikelyproglucagon-producingenteroendocrine polypeptide promoteshyperglucagonaemiaandthatglucagon,hithertoconsideredapancreas-specifichormone, the roleofgut-derivedfactorsindiabetichyperglucagonaemiaandshownthatglucose-dependentinsulinotropic factors aspotentialmediatorsofdiabetichyperglucagonaemia.Inaseriesclinicalexperiments,wehaveelucidated isoglycaemic intravenousglucoseadministrationinthesepatients,wehavebeenfocusingonthegutandgut-derived oral glucoseinpatientswithtype2diabetesisexchangedbynormalsuppressionofplasmaglucagonlevelsfollowing suppressive effects ofglucoseandinsulin.Sinceweobservedthatthewell-knownhyperglucagonaemicresponseto Hyperglucagonaemia isusuallyvieweduponasaconsequenceofpancreaticalphacellinsensitivitytotheglucagon- component ofdiabetesandisfoundtocontributesubstantiallythehyperglycaemicstatediabetes. Hyperglucagonaemia (inthefastingaswellinpostprandialstate)isconsideredacorepathophysiological Abstract European SocietyforEndocrinologyMeetingatBarcelona,Spain. This articleisbasedonthepresentationfor of Copenhagen,Denmark 3 2 1 Filip K Knop A gutfeelingaboutglucagon EJE PRIZE2018 Novo NordiskFoundationCenterforBasicMetabolicResearch,FacultyofHealthandMedicalSciences,University Department ofClinicalMedicine,FacultyHealthandMedicalSciences,UniversityCopenhagen,Denmark, Clinical MetabolicPhysiology, StenoDiabetesCenterCopenhagen,GentofteHospital,UniversityofHellerup, Denmark, https://doi.org/ www.ej Review Review journals andisamemberof numerousprofessionalsocietiesand committees as a referee for several international authored 270 scientific peer-reviewed publications. He serves particularly interested in the integrative role of the gut in human (patho)physiology and has of Copenhagen, Denmark. Prof. Knop has been involved in research since 1999. He is Clinical MetabolicPhysiologyatStenoDiabetesCenterCopenhagen, GentofteHospital,University Filip KKnop,MDPhD Invited Author’s profile e-online.org 10.1530/EJE 1 , 2 , 3 -18-0197 6 ,

is aconsultantendocrinologist,ProfessorofEndocrinology andHeadof © 2018EuropeanSociety ofEndocrinology F KKnop European JournalofEndocrinology Printed inGreatBritain andthegut Published byBioscientifica Ltd. PrizeLecture2018atthe . Downloaded fromBioscientifica.com at10/02/202109:25:40AM (2018) Endocrinology European Journal of [email protected] Email to FKKnop should beaddressed Correspondence 178

178 :6 , R267–R280

R267 –R280 via freeaccess European Journal of Endocrinology www.eje-online.org . corresponding toaminoacidpositions inthe160aminoacid GLP-1 andGLP-2.Numbersindicate aminoacidpositions intervening peptide2(IP2)and totheglucagon-likepeptides: which isfurtherprocessedinto oxyntomodulinandGRPP, (MPGF)), whereasPC1/3processesproglucagonintoglicentin, intervening peptide1 (IP1) and a majorproglucagonfragment fragments (glicentin-relatedpancreaticpolypeptide(GRPP), glucagon andthreepresumablybiologicallyinactive the enteroendocrineLcells.PC2processesproglucagoninto PC2 beingrestrictedtothepancreaticalphacellsandPC1/3 which hithertohavebeenbelievedtobetissue-specificwith the presenceandactivityofenzymesPC1/3PC2, The posttranslationalprocessingofproglucagonisbasedon convertase 2(PC2)andprohormone1/3(PC1/3). Differential processingofproglucagonbyprohormone Figure 1 origin isbasedonpancreas-specificexpressionofPC2 ( glucagonotropic glucagon-likepeptide2(GLP-2)( like peptide1(GLP-1)andtheintestinotrophic the -loweringandsatiety-inducingglucagon- by PC1/3leadingtoseveralactivepeptidesincluding of proglucagoninenteroendocrineLcellsisundertaken glucagon byprohormoneconvertase2(PC2),processing cells inwhichproglucagonisprocessedto29aminoacid intestinal epithelium( also producedinenteroendocrineLcellsfoundthe findings outlinedinthepresentpaper, proglucagon is in theisletsofLangerhans( a -specific secreted from alpha cells encoded bytheglucagongene( glucagon, derivedfromtheprecursorproglucagon For almost a century, the 29 amino acid hormone Introduction Fig. 1 Review ). Thus,thenotionofglucagon’s pancreas-specific 4 ). Incontrasttopancreaticalpha 2 , 3 ). Ofimportanceforthe F KKnop 1 ), hasbeenconsidered 5 ) adrenaline andnoradrenaline( system and elevated levels of in the sympathetic nervous during stressandcoldexposure( supply isneededtosustainphysiologicalfunctions,e.g. are elicited during situations where increased energy factors addition tohypoglycaemia,otherstimulatory concentrations fallbelownormalfastinglevels( glucagon concentrations increase when glucose and ithasbeenknownfordecadesthatcirculating coordinationofglucagonsecretion, strict regulatory ( system and muscles, when needed the central nervous and energy-richglucosetobodilytissues,particularly fundamental roleinsecuringsupplyofeasilyaccessible effects onhepaticglucoseproductionand,thus,playsa maintains glucosehomeostasisviaitsstimulatory itself. rather thanpancreas-specificexpressionofproglucagon cells contributes importantly to diabetic hyperglycaemia that hypersecretionofglucagon frompancreaticalpha ( who typicallyarecharacterised byhyperglucagonaemia concentrations arewellknown inpatientswithdiabetes, perturbations intheregulationofplasmaglucagon producing pancreaticalphacells( outlined aboveconvergesatthelevelofglucagon- system controllingcirculating glucagonconcentrations glucagon-induced endogenousglucoseproduction. signs ofenergyabundanceandminimisedneedfor ( glucagon concentrationsinaglucose-dependentmanner GLP-1 inhibitsalphacellsecretionandreducescirculating the insulinotropic and satiety-promoting gut hormone cells, respectively( and somatostatinfromneighbouringbetadelta itself andbyglucose-stimulatedsecretionofinsulin glucose onalphacellsismediateddirectlyby concentrations ofglucagon( administration ofglucoseisknowntoreducecirculating with diabetes.Hyperglycaemiaelicitedbyintravenous(iv) glucagon secretioninhealthyindividualsandpatients ( insulinotropic polypeptide(GIP)( administration oftheguthormonesglucose-dependent cause hypoglycaemia ( most aminoacids,whichwithoutglucagonreleasewould secretion,e.g.proteinmealsandadministration of stimulated by non-carbohydrate nutritional stimulators of Glucagon andthegut 6 6 25 16 ). Thiscriticalroleofglucagonobviouslyrequiresa ). Andformorethanfourdecades, ithasbeenargued , , Glucagon isrecognisedasahormonethatprimarily It is the general belief that the complex regulatory It is the general belief that the complex regulatory 17 26 , , 18 27 ), respectively, hasbeenshowntostimulate ). These glucagon-suppressive factors are all 19 , 20 10 Downloaded fromBioscientifica.com at10/02/202109:25:40AM , , 21 11 6 , 8 ). Furthermore, exogenous ). This inhibitory effectof ). Thisinhibitory , 22 9 12 ). Glucagonreleaseisalso , 7 ) andincludeactivity 23 , 13 178 , , 24 6 14 :6 ). Importantly, ). Furthermore, , 15 ) andGLP-2 R268 6 ). In via freeaccess European Journal of Endocrinology hyperglucagonaemia constitutes acentraldeterminant stating thatthecombination ofinsulindeficiencyand and Orci toproposetheir‘bihormonal hypothesis’ hyperglycaemia of ( essential roleforglucagoninthedevelopmentof 43 concentrations inthecontextofhyperglycaemia( rich mealresultinginundesirablyhighplasmaglucagon tolerance test (OGTT) or after ingestion of a carbohydrate- appropriately orevenincreaseduringanoralglucose are typicallyelevatedinthefastingstateandfailtodecrease In patientswithtype2diabetes,glucagonconcentrations Hyperglucagonaemia indiabetes conceptions ofglucagonbiology. of thetraditional‘pancreacentric’and‘glucocentric’ hyperglucagonaemia will be discussedinthe context the liverinregulationofglucagonsecretionand recent findingsinvolvingthegastrointestinaltractand pathophysiological phenomenonwillbeoutlined,and stimulating pancreaticglucagonsecretion( and, possibly, contribution of glucagonotropic gut factors occurs on the basis of gut-derived glucagon secretion ( 39 discovered liver–alphacellaxis( occurs duetosteatosis-induceddisruptionofthenewly evidence tosuggest( of hyperglucagonaemia ( of whichwehavedelineatedthecausalityandaetiology findings havespurredarangeofclinicalstudiesonthebasis explaining fastinghyperglucagonaemia ( glucagonsecretion resistance andcompensatory associated steatosisintheliverleadstohepaticglucagon than the diabetic state ( hyperglucagonaemia is moretightly related toobesity ( after nutrientingestioninpatientswithtype2diabetes determinants ofthehyperglucagonaemiaobserved pointing tothegutand/orgut-derivedfactorsasmajor hypoinsulinaemia pathognomonicfordiabetes( insulin, respectively, combinedwithabsoluteorrelative alpha cellstothesuppressiveeffectsofglucoseand and areusuallyexplainedbyresistanceofpancreatic hyperglucagonaemia remainincompletelyunderstood ( 30 28 Review ). Pioneering studies by Gerich , ), andafewyearslater, thatfasting weobserved ). However, the mechanisms underlying diabetic In thepresentpaper, hyperglucagonaemiaasa In 2007,wereportedthefirsthumanfindings 40 ) and( 2 ) thatpostprandial hyperglucagonaemia 1 ) thatfastinghyperglucagonaemia 11 31 , ) and suggested that obesity- 34 , 32 36 F KKnop , , 33 37 t al. et 44 , , 34 38 ) leading Unger pointed to an , ) and provided 18 35 ). 32 , 36 ). These 29 , 37 ). , 41 42 38 ) , , hyperglucagonaemia ( alpha cellsecretionisthoughttocontributediabetic and ensuingreducedinsulin-mediatedinhibitionof ( the development of hyperglucagonaemia in diabetes insulin, respectively, constitutesacriticalfactorfor to theglucagon-suppressiveeffectsofglucoseand earlier, thecurrentdogma states that alpha cell resistance diabetic hyperglucagonaemia are not clear. As alluded Despite theseendeavours,themechanismsunderlying characterising patientswith type2diabetes. important roleinthepostprandial hyperglucagonaemia stimulation ofthegastrointestinal tractmayplayan gastrointestinal tractorfactors originatingfromglucose insulin secretionaspreviouslythoughtandthatthe insulin ‘blindness’ofthealphacellsorcompromised diabetic hyperglucagonaemiawasnotglucoseand/or ( -blocking capabilitieshavebeendeveloped( lowering drugswithglucagon-loweringorglucagon has beenpursuedasatherapeutictarget,andglucose- with diabetes( and postprandialhyperglycaemiacharacterisingpatients ( stimulate endogenousglucoseproductionintheliver been establishedthatelevatedglucagonconcentrations for diabetic hyperglycaemia ( glucose curve from the oralglucose challenge ( glucose curve glucose infusion(IIGI)administeredtocopytheplasma concentrations afteranisoglycaemicintravenous with anormalsuppressionofcirculating glucagon glucose administration(OGTT),but,surprisingly, react indeed exhibitahyperglucagonaemicresponsetooral human datashowingthatpatientswithtype2diabetes activity ( to diminished or defect suppression of alphacell secretory pancreatic problemofincreasedglucagonsecretiondue generally, diabetichyperglucagonaemiaisconsidereda type 2 diabetic postprandial hyperglucagonaemia. Thus, control subjects) ( of patients with type 2 diabetes (compared to healthy insomecohorts inhibiting guthormoneGLP-1observed concentrations ofthebetacell-stimulatingandalphacell- ( of glucagon(e.g.gammaaminobutyricacidandamylin been suggestedtoinhibitpancreaticalphacellsecretion paracrine influenceofotherbetacellproducts,whichhave beta cellfunctionindiabetesmayinvolveareduced Glucagon andthegut 29 30 45 51 , ), and, thus, contribute significantly to the fasting ). Thisstronglysuggestedthatthegenesisoftype2 , As alludedearlier, in2007,wereportedthefirst 49 52 ). Furthermore,compromisedbetacellfunction )). Additionally, reducedpostprandialplasma 6 ). 46 , 53 47 ) could,hypothetically, contributeto ). Accordingly, hyperglucagonaemia 29 Downloaded fromBioscientifica.com at10/02/202109:25:40AM , 50 28 ). Likewise,compromised ). Over the decades, it has 178 www.eje-online.org :6 R269 i. 2 Fig. 48 via freeaccess ). ) European Journal of Endocrinology www.eje-online.org suppression ofcirculatingglucagon concentrationsafterIIGI administration, but,surprisingly, aseemingly normal patients withahyperglucagonaemic responsetooralglucose revealed adifferential glucagon responseinthediabetic type 2diabetes(T2D)andmatched healthycontrols(CTRL)(A) intravenous glucoseinfusion(IIGI)performedinpatientswith Oral glucosetolerancetest(OGTT)andisoglycaemic Figure 2 Review F KKnop et al baseline-subtracted areaunder curve.AdaptedfromKnop glucose challenge(BandC).NS, non-significant;bsAUC, administered tocopytheplasma glucosecurvefromtheoral also investigatedpatientswithchronicpancreatitisand be expectedtoresultingreatersuppressionofglucagon anything, thelargerinsulinresponsetooralglucosewould effectintype2diabetes( incretin hormonesGIPandGLP-1( during IIGIduetothestronginsulinotropiceffectsof responses duringOGTTaremarkedlyhigherthanthose alpha cellseemtoexplainthisphenomenonasinsulin with type 2 diabetes. Neither did insulin resistance of the glucagon responsesafteroralglucoseingestioninpatients of the alpha cell plays a majorrole in the exaggerated seemed unlikelythatimpairmentofglucosesensing Due to the isoglycaemic conditions in these studies, it of type 2 diabetic postprandial hyperglucagonaemia. ( as in healthy subjects during IIGI was reproduced by us 2 diabetesisaggravatedbyOGTT, butsuppressedsimilarly in2007thathyperglucagonaemiatype Our observation The OGTT/IIGIphenomenon glucose stimuli as observed intype2 diabetes ( glucose stimuliasobserved showed similarpatternsofglucagonresponsestothetwo in C--negativepatientswithtype1diabetesand glucagon responses,Hare insulin signallingasanexplanationoftheparadoxical In ordertoeliminatepotentialdifferencesinintra-islet than beingaspecificpathogenetictraitoftype2diabetes. to occurasaconsequenceofthediabeticstaterather OGTT andIIGI,respectively, suggestingthephenomenon ( diabetes (maturity-onsetoftheyoungtype3) ( diabetestochronicpancreatitis patients withsecondary OGTT andIIGIinotherformsofdiabetesfoundthat phenomenon, weinvestigatedglucagonresponsesto IIGI, respectively, occurasatype2diabetes-specific differences inglucagonresponsestoOGTTand hyperglucagonaemia' and'Gut-derivedglucagon'). 'Potential gutfactorscontributingtopostabsorptive in postprandialglucagonsecretion(seesectionson that thegastrointestinaltractplaysanimportantrole Taken together, ourfindingsin2007stronglysuggested responses compared to IIGI; but the opposite occurred. Glucagon andthegut 54 58 54 ) andothers( ) alsoexhibitedtheparadoxicalglucagonresponsesto ) andpatientswithhepatocytenuclearfactor1a . ( In ordertoestablishwhethertheparadoxical 30 ). 55 , 56 ) andmadeusreconsiderthegenesis Downloaded fromBioscientifica.com at10/02/202109:25:40AM et al . performedOGTTandIIGI 30 30 178 ) (despiteareduced , 54 :6 , 57 )). Thus,if 59 R270 ). We via freeaccess European Journal of Endocrinology It is well acknowledged that reduced incretin effect limits fatty liverdiseaseandpsoriasis patients)( normal glucosetolerance, patients withnon-alcoholic type 2diabetes(e.g.obeseinsulin-resistant subjectswith 66 insubjectswithprediabetes ( as ithasbeenobserved be anearlyconsequenceofdisturbedglucosemetabolism of diabetes( in type2diabetes( glucose, whereastheincretineffectisseverelyreduced for 50–70%oftheinsulinsecretedinresponsetooral in healthysubjects.Theincretineffectisresponsible comparing insulinresponsestoOGTTandIIGI and GLP-1( by stimulationofinsulinotropicguthormones,i.e.GIP potentiation ofglucose-inducedinsulinsecretionelicited As alludedearlier, theincretineffectdescribes glucagon secretion Implications ofgastrointestinal-stimulated still obscure. of gastrointestinallymediatedglucagonsecretionwere However, theunderlyingmechanismsandderivedeffects in healthysubjectswhenlargerglucoseloadsareused. phenomenon indiabeticpatientsthatcanalsobeevoked mediated glucagonsecretionseemedtobeaconsistent loads areingested( in non-diabeticcontrolsubjectswhenlargerglucose in glucagonsecretionbetweenOGTTandIIGIispresent Interestingly, thesestudiesalsoshowedthatthedifference or constitutesamorepotentglucagonotropicsignal( that greaterstimulationofthegastrointestinaltractelicits when largeroralglucoseloadswereemployedsuggesting responses toOGTTandIIGI,respectively, intensified diabetes and showed that the paradoxical glucagon suppressed circulating glucagonlevels. with differenttypesofdiabetesandthatIIGIinallcases constituted acommonphenomenonamongpatients findings suggestedthatpost-OGTThyperglucagonaemia i.e. independentlyofglucosetolerance)( was suppressednormallybyivglucoseinallgroups, increased glucagonresponsestooralglucose(glucagon diabetic glucosetoleranceinthesepatients–drivenby glucose toleranceoverimpairedtoovert oral andivglucose,respectively, increasesfromnormal and showedthatthedifferenceinglucagonresponseto endocrineinsufficiency different degreesofsecondary Review ) andinotherconditionswith highriskofdeveloping We then went back to study patients with type 2 54 54 , , 58 57 , ). Theincretineffectismeasuredby 64 30 61 ). Reducedincretineffectseemsto , 54 , , 62 55 ). Thus,gastrointestinally , 57 F KKnop , 63 ) andother forms 31 , 38 60 , ). These 67 , 61 68 65 ). ). , The incretineffectmostlikelyconstitutesanimportant an OGTTiscausedbytheoralrouteofadministration. percentage ofanindividual’s glucosedisposal during to the glucose ingested orally. GIGD explains what fromtheOGTTcurve to mimictheplasmaglucosecurve the amount of glucose needed to be infused intravenously of glucoseingested(throughthegastrointestinaltract)and with IIGI by relating the difference between the amount factors onglucosedisposalfollowingOGTTcompared in 2010( term ‘gastrointestinallymediatedglucosedisposal’(GIGD) differentially affectglucosedisposal,weintroducedthe disposal duringOGTTvsIIGI. any sizewill,inevent,contributetoimproveglucose reduced incretineffect.Nevertheless,aneffectof the contextofinsulinresistanceoftenaccompanyinga disposal hasbeendifficulttodisentangle–especiallyin postprandial insulinsecretion,butitseffectonglucose ( exhibit aseverelyreducedGIGDintherangeof~10–30% 56 In healthysubjects,GIGDtypicallyamountsto~60%( factors arealsotakenintoaccountwhencalculatingGIGD. glucose concentrationsand/oratthepresentunknown glucose uptake,differencesinportalandvenousblood intheintestinalmucosa,first-passhepatic afferent nerves including differencesinglucagonsecretion,activationof glucose concentrationsdifferentlyduringOGTTandIIGI, contributor toGIGD,butotherfactorsaffectingplasma compromised inthetype 2 diabeticpatientsandto stimuli). Interestingly, GIGDwasfoundtobesignificantly exhibited similarglucagon suppression tobothglucose glucagon concentrations normally (healthycontrols response to75 incretin effect,butexhibitedahyperglucagonaemic patients withtype2diabeteswereshowntohaveanormal pathognomonic fordiabetes. may contributetopostabsorptivehyperglycaemia that gastrointestinallymediatedglucagonsecretion stimulating hepaticglucoseproduction.Thissuggested circulating glucagonconcentrations)mostlikelyby glucose disposalduringOGTTvsIIGI(whichsuppressed elicited bytheoralglucoseadministrationdeteriorated to Interestingly, meanGIGDcameoutnegative(amounting GIGD in the context of abrogated incretin effect ( with type1diabetesandwere,thus,abletodescribe performed OGTTandIIGIinC-peptide-negativepatients Glucagon andthegut 31 , − , 6%) suggestingthatthehyperglucagonaemicresponse In ordertobetterunderstandhoworalandivglucose In aKoreanstudy, leanandwell-controlled Asian 65 56 , , 67 59 57 , ). GIGDdescribestheimpactofgastrointestinal , 68 58 g OGTT, whereasIIGIsupressedcirculating , , 69 64 , ). Asmentionedearlier, Hare 70 ), whereaspatientswithdiabetes Downloaded fromBioscientifica.com at10/02/202109:25:40AM 178 www.eje-online.org :6 R271 t al et 59 31 via freeaccess ). , . European Journal of Endocrinology www.eje-online.org the OGTT-induced hyperglucagonaemia in diabetic glucagonostatic effectofGLP-1 couldcontributetoexplain 1, and we speculated that reduced secretion or attenuated candidate was the glucagonostatic incretin hormone GLP- glucagon-modulating gut-derived factors.Anobvious in patientswithdiabetes,wedirectedourattention to the paradoxicalglucagonresponsestoOGTTandIIGI insulin (duetotheincretineffect)didnotseemexplain As glucose (due to the isoglycaemic conditions) and postabsorptive hyperglucagonaemia Potential gutfactorscontributingto further investigation. hyperglucagonaemia arenotcompletelyclearandwarrant and pathophysiologicimplicationsofpostabsorptive seems tobeaconsistentphenomenon,buttheeffects of nutrientstimulationthegastrointestinaltract together, hyperglucagonaemiaarsingasaconsequence complicate theinterpretationoftheseresults.Taken mechanisms elicitedbyglucagonreceptorantagonism specificity of LY2409021 andpossiblecompensatory glucose excursions ( test, respectively, havelittleornoeffectonpostabsorptive hyperglucagonaemic responsestoOGTTandmixedmeal antagonist LY2409021 suggest that the datafromstudiesusingthe glucose levels,preliminary IIGI translateintomeaningfuleffectsoncirculating that thedifferentialglucagonresponsestoOGTTand production) duringOGTT. Despitetheseindications concentrations (knowntodiminishendogenousglucose incretin effect) and, presumably, higher portal glucose during IIGI even with higher levels of insulin (due to the glucose productionwashigherduringOGTTthan fashion, and,importantly, weshowedthatendogenous whereas IIGIsuppressedglucagonlevelsinanormal duringOGTT,high glucagonresponseswereobserved As expected from ourpreviousstudies, inappropriately diabetic controlsusingglucosetracermethodology( IIGI in patients with type 2 diabetes and matched non- and endogenous glucose production during OGTTand excursions, Lund IIGI (suppression)influencepostabsorptiveglucose glucagon secretionduringOGTT(hypersecretion)and handling intype2diabetes. glucagon secretioncontributestotheimpairedglucose This stronglysuggeststhatgastrointestinal-stimulated correlate significantly withOGTTglucagonresponses( Review In ordertofurtherevaluatewhetherdifferencesin et al. 72 investigatedglucosedisappearance , 73 ). However, potential lack of F KKnop 71 56 ). ). from ourownorotherstudiesindicatedincreasedOGTT- with GLP-1 in equimolar amounts ( GLP-2andGIP. AsGLP-2issecretedtogether equation, weturnedtothetwoglucagonotropicgut control subjects( patients andfoundittobesimilarasinmatchedhealthy the glucagonostaticpotencyofGLP-1intype2diabetic responses toOGTTindiabeticpatients.We thenevaluated OGTT didnotseemtoexplaintheexaggeratedglucagon GLP-1 responses( and meta-analysisofthedatadisclosednodifferencesin patients withtype2diabetesandhealthycontrolsubjects review of studies comparing GLP-1 responses between ( subjects suppressingglucagonnormallyduringOGTT hyperglucagonaemic patientswithdiabetesandhealthy no differenceinGLP-1responsestoOGTTbetween ‘hypo-GLP-1-aemia’ intype2diabetes( patients vshealthycontrols.Despitethegeneralnotionof been undertaken with inconsistent and conflicting results humans (referencedindetail byLund several studies in totally pancreatectomised animals and the gastricmucosaofrabbits anddogs( a ‘glycogenolyticsubstance’ couldbeextractedfrom agobySutherland&deDuvewhoshowedthat 70 years Extrapancreatic glucagon secretionwassuggested Gut-derived glucagon be aresultofglucagonsecretiondirectlyfromthegut. thought thatOGTT-induced hyperglucagonaemia could in type2diabetes.However, wecould not escapethe hyperglucagonaemic responsetoorallyingestedglucose GIP may play apredominantrole in theinappropriate IIGI) ( decreased circulating glucagon concentrationsduring effect onplasmaglucagonlevels(asexpected,GLP-1 were glucagon responsesduringIIGI,whereasGLP-2hadlittle and respectively) able toshowthatGIPinfusionsignificantlyincreased infusions, GIP +GLP-1GLP2 (with concomitantsaline,GIP, GLP-1,GLP-2and we designed a study involving an OGTT and five IIGIs worsened postprandialhyperglycaemia( glucagon responses in type 2 diabetes and, consequently, exogenous GIPadministrationincreasedpostprandial OGTT responses.Interestingly, Chia an underlyingmechanismofthehyperglucagonaemic increased secretionofGLP-2and/orGIPconstituted induced responsesofGIP( Glucagon andthegut 30 , 54 18 , ). Onthebasisoftheseresults,wesuggestedthat 58 , 59 , 63 27 53 , 71 ). With GLP-1eliminatedfromthe ). Thus,reducedGLP-1responseto ). We alsoperformedasystematic Downloaded fromBioscientifica.com at10/02/202109:25:40AM 75 ), wefounditunlikelythat 5 et al. ) and no clear signals 178 :6 74 t al et hadshownthat 77 76 ), we observed ), weobserved ). Sincethen, ). Therefore, . ( 41 )) have R272 via freeaccess European Journal of Endocrinology presumably biological inactive fragments intervening presumably biologicalinactive fragmentsintervening idea thatprocessing of proglucagon to glucagon (and the specific notionofglucagon secretionisrelatedtothe of adulthumans( not reconfirmedinmucosal biopsiesfromthestomach the foetalhumanstomach( resembling glucagon-positivecellswereidentified in of extrapancreaticglucagon( ventricle and the ileum could constitute places of origin had suggestedthatthemucosainantrumof extrapancreatic glucagonsecretion?’. physiological and/orpathophysiologicalimplications of glucagon secretionregulated?’and‘Whatmaybethe and how is it brought about?’, ‘How is extrapancreatic the localisation(s)ofextrapancreaticglucagonsecretion a numberofexcitingquestionsaroseincluding‘Whatis new pieceofevidencegut-derivedglucagonsecretion, in man–mostlikelyoriginatingfromthegut.With this emphasised theexistenceofextrapancreaticglucagon pancreatectomised patients,thesefindingsstrongly and pancreaticpolypeptide)wereabsentinourtotally 62 applying 75 extent duringIIGIasexpectedfrompreviousstudies levels inresponsetobothglucosestimuli,butagreater ( undetectable levelsintotallypancreatectomisedpatients whereas IIGIdecreasedcirculating glucagontoalmost circulating glucagonconcentrations inresponsetoOGTT, proteomics, wewereabletoshowadramaticincreasein forms ofglucagon( eliminating, cross-reactivitywithelongatedortruncated N-terminal antiglucagonantibodies,andthus,intheory sandwich ELISA utilising a combination of C and control subjects( pancreatectomised patients and 10 matched healthy human plasma( detection oflow-abundantpeptides,suchasglucagon,in proteomicsallow within massspectrometry-based dramatically ( sensitivity aswellspecificityofglucagonassays Importantly, newanalyticalendeavourshaveimproved or presence of extrapancreatic glucagon impossible. ( accuracy ofmanycurrentandpreviousglucagonassays glucagon, duetoimportantshortcomingsandlow in measuringthe29aminoacidproglucagonproduct, (most likelyduetospeciesdifferencesanddifficulties Fig. 3 78 Review ). Asotherpancreas-relatedproducts(e.g.C-peptide )) making decisive statements about the absence Studies indepancreatiseddogsfromthe1970s Lund ). Thehealthysubjectssuppressedplasmaglucagon et al g OGTTandIIGIinhealthysubjects( . performed75 79 80 ), and, furthermore, technical advances ). 79 84 ). Applyingarecentlydeveloped 79 ). Asalludedearlier, thepancreas- ), and mass spectrometry-based ), andmassspectrometry-based g OGTTandIIGI in 10totally 83 81 ), whilethisfindingwas F KKnop , 82 ). Later, alphacell- 61 , ( subjects (CTRL).Asterisks(*)indicatesignificantdifferences pancreatectomised patients(PX)andnon-diabeticcontrol intravenous glucoseinfusion(IIGI)intotally oral glucosetolerancetest(OGTT)andisoglycaemic Plasma responsesofglucose(A)andglucagon(B)during75 Figure 3 and immunohistochemical PC2-positive enteroendocrine controls andwereabletoshow ( hyperglucagonaemic responses) andmatchedhealthy with type2diabetes(exhibiting grosslypostprandial hypothesis, wesampledjejunal biopsiesfrompatients and IIGI,respectively( explain theparadoxicalglucagonresponsestoOGTT following luminalnutrientstimulationand,therefore, L cell products and 29 amino acid ‘pancreatic’ glucagon peptide 2( GLP-1, GLP-2,glicentin,oxyntomodulinandintervening thought toprocessproglucagonexclusivelybyPC1/3 to that PC2 expression in enteroendocrine L cells, which are restricted tothepancreas( peptide 1andmajorproglucagonfragment)byPC2 is Glucagon andthegut P

<

0.05). AdaptedfromLund 5 ), wouldresultinco-secretionof‘traditional’ Downloaded fromBioscientifica.com at10/02/202109:25:40AM 86 85 et al ). Inordertoexplorethis ). In2009,itwashypothesised 1 ) thepresenceofPC2mRNA . ( 41 ). 178 www.eje-online.org :6 R273 g via freeaccess European Journal of Endocrinology www.eje-online.org glucagon-secreting cellsis currently beinginvestigated. ensuing diminishedstimulation ofenteroendocrine of gastricemptying/upper gastrointestinal motilityand direct effectoraresultoflixisenatide-induced deceleration receptor agonistlixisenatide ( excursions) bysingledosingoftheshort-actingGLP-1 (concomitantly withreducedpostprandialplasmaglucose glucagon responsesthatcanbesignificantlysuppressed test intotallypancreatectomisedpatientselicitsclearcut alpha cells.Also,Juel extrapancreatic glucagon is different from pancreatic stimulus–secretion couplinginthecellsresponsiblefor pancreatectomised patients( validated sandwichELISAmentionedearlier)intotally (as assessedbytherecentlydevelopedmassspectrometry- had noimpactoncirculating glucagonconcentrations stimulator ofpancreaticglucagonsecretion,arginine, a recentstudy, Juel suppress extrapancreaticglucagonsecretion( stimulus, whereasivglucoseseemstobeable patients, itisclearthatoralglucoserepresentsastrong From Lund these cellsmaynotbeasspecificpreviouslythought. glucagon andsuggeststhatprocessingofproglucagonin small intestineasapossiblesource ofextrapancreatic current evidencepointstoenteroendocrinecellsinthe processing by PC1/3) should be kept open. Held together, glucagon byotherprocessingenzymes(e.g.unspecific possibility ofproglucagonprocessingto29aminoacid evident insmallintestinalmucosabiopsiesand,thus,the study, however, noco-stainingofglucagonandPC2was glucagon (Jorsal gastric mucosabiopsiesfoundnoornegligiblesignsof sandwichELISAonhuman mass spectrometry-validated antibody andpeptideextractionwithapplicationofa using a new highly glucagon-specific monoclonal Jorsal andcolleaguesincludingimmunohistochemistry with healthy individuals ( intestine of individuals with type 2 diabetes compared expression ofthegeneencodingPC2, significantlygreater furthermore, werecentlyobserved and obesenon-diabeticpatients,respectively( fromobesepatientswithtype2diabetes bypass surgery) mucosa biopsies(obtainedduringRoux-en-Ygastric confirmed thesefindingsinastudyinvestigatingjejunal diabetic patientsascomparedtohealthycontrols( PC2-positive cellsinthejejunalepitheliumoftype2 and theproglucagonproductGLP-1( cells, ( Review How isextrapancreaticglucagonsecretionregulated? 2 ) immunohistochemicalco-localisationofPC2 t al et et al .’s studiesintotallypancreatectomised ., unpublished observation). Inthis ., unpublishedobservation). t al et et al . haveshownthatamixedmeal . showedthatthewell-known 4 ). Recent investigations by 90 89 ). Whetherthiseffectisa F KKnop ) suggestingthatthe PCSK2 3 , inthesmall ) 50%more 88 41 87 ), and ). In ). We nutrients todistalpartsofthesmallintestinewhere rerouting who haveundergonegastricbypasssurgery mechanism maybeofparticularimportanceinpatients landing’ ofpostprandialglucoseexcursions.Such oral ingestionofcarbohydrates,ensuringa‘smooth of endogenousglucoseproductionunleashedby induced insulinsurges)andthestrongsuppression the potent glucose-lowering mechanisms (e.g. incretin- extrapancreatic glucagoncanbethoughttocounteract glucagon secretionremainsuncertain.Hypothetically, being investigated. and drugsknowntoinfluenceglucagonsecretionare somatostatin. Furthermore,theeffectsofhypoglycaemia GLP-1, GLP-2,oxyntomodulin,insulin,amylinand state-of-the-art glucagonanalyses;theseincludeGIP, secretion intotallypancreatectomisedpatientsusing range offactorsknowntoregulatepancreaticglucagon Additionally, wearecurrentlyevaluatingtheeffectsofa potentially, play animportantroleinthepostabsorptive have far-reachingpathophysiological implicationsand, ( aftergastricbypasssurgery the reducedappetiteobserved such as GLP-1 and peptide YY – a view compatible with mediated satiety signals alongside other gut hormones may alsoactasnutrientsensorsandconveyglucagon- hypoglycaemia, glucagon-secretingcellsinthegut of gut-derivedglucagontoprotectionfrompostprandial Inadditiontothepotential contribution observation). plasma glucagonconcentrations(Jorsal correlating with postoperative increments in postprandial all biopsiesretrievedpostoperativelyvspreoperatively – glucagon antibody)andextractableappeared in identified inmucosabiopsies(usingahighlyspecific increased andglucagonwasimmunohistochemically ProglucagonmRNA aftergastricbypasssurgery: observed the paradoxicalpostprandialhyperglucagonaemia glucagon secretionfromthegutcouldhelptoexplain Jorsal secretion ( are known for their suppressive effects on alpha cell massive secretionofGLP-1andinsulin,bothwhich induced improvement in glycaemic control involving which seemscounterintuitiveinthecontextofsurgery- accompanied bypostprandialhyperglucagonaemia, metabolicbenefitsaretypically patients, surgery-induced risk ofpostprandialhypoglycaemia( the amountofcarbohydrateingested,increasing in aGLP-1-mediatedovershootofinsulinrelativeto GLP-1-secreting Lcellsareabundantandoftenresult Glucagon andthegut 93 ). Perhaps more intriguingly, gut-derived glucagon may Presently, thephysiologicaleffectofextrapancreatic et al . alludedtoabovesuggestthatextrapancreatic 86 ). Interestingly, datafrom thepreliminary Downloaded fromBioscientifica.com at10/02/202109:25:40AM 178 et al 91 :6 , ., unpublished 92 ). Inthese R274 via freeaccess European Journal of Endocrinology hepatic insensitivitytoglucagon andthatthisprovides response to steatosis-induced occurs as a compensatory hyperplasia), led us hypothesise that hyperglucagonaemia in the liver results in hyperglucagonaemia (and alpha cell showing thatselectiveknockoutoftheglucagonreceptor combined withelegantstudiesbyLonguet tolerant obese and insulin-resistant subjects ( hyperglucagonaemia in completely normoglucose- On thisbasis,our findings in2012showing fasting necessarily involveperturbationsinglucosehomeostasis. and lackofglucagonsignalling,respectively, donot ( cell hyperplasiawithgrosshypersecretionofglucagon these patientsexhibitapancreaticswellingduetoalpha with disturbancesofglucosemetabolism( the glucagonreceptorareneithernecessarilyassociated patients( inabout30%of diabetic hyperglycaemiaisonlyobserved and overt erythema skin lesion, the necrolytic migratory tumours ()themostconspicuoussignisa ( about changescompletelycompatiblewiththisevidence and lackofglucagonsignalling,respectively, donotbring ( pathogenesis offastinghyperglycaemiaintype2diabetes the pivotalroleoffastinghyperglucagonaemiain of hepaticglucoseproduction,andthus,demonstrated plasma glucagonlevelscontributetoincreasedbasalrate Baron patients withtype2diabetes( became a well-established fact among the majority of grew insizeandnumbers–fastinghyperglucagonaemia appeared normal( type 2diabetes,fastingplasmaglucagonconcentrations In earlystudiesinvolvingrelativelyleanpatientswith liver-alpha cellaxis Fasting hyperglucagonaemiaandthe Further studiesareneededtoaddresstheseissues. dose andconditionexamined( of glucosesuppressesglucagonlevelsindependently secretion ofglucagonfromthegutasivadministration hyperglycaemia ( carbohydrates and its contribution to postabsorptive the hyperglucagonaemic response tooralingestionof hyperglycaemia pathognomonicfordiabetes.Thus, 33 33 45 Review ). Thus, extreme phenotypes of glucagon excess ). For instance, in patients with glucagon-producing ). Nevertheless, in humans,extreme glucagon excess t al et . providedevidencethatelevatedfasting 46 95 , ), butoverthedecades–aspatients 94 33 ) maycompletelydependon ). Andinactivatingmutationsof 30 F KKnop , 43 54 , , 55 96 , ). Furthermore, 56 , 33 58 t al et ); rather, ,

61 . ( , 62 31 34 ). ), ) hepatic steatosisoftenobserved afterpancreatectomy. pancreatectomy mayconstitute amajordeterminantofthe glucagon. Also,thelackofpancreatic glucagonaftertotal (i.e. theenteroendocrineLcells)resultinginformationof amino acidsseemtotargetotherproglucagon-producingcell and secretionfromthepancreas.Butwithoutapancreas, compensatory alphacellgrowthandglucagonsynthesisin which undernormalcircumstanceswouldprovide acid turnoverisreducedgivingrisetohyperaminoacidaemia, processes (e.g.ureagenesisandlipolysis).Consequently, amino abolished, whichcompromisesglucagon-dependenthepatic stimulation oftheliverbypancreaticglucagoniscompletely axis isdisruptedonthebasisoftotalpancreatectomy, hyperglucagonaemia. Lowerpanel:Whentheliver–alphacell for thedisruptionofbalance,leadingtofasting in turnstimulatesalphacellsecretionordertocompensate glucagon resistance)resultinginhyperaminoacidaemia,which amino acidturnoverisreduced(duetosteatosis-induced disrupted byfattyinfiltrationoftheliver, ureagenesisand ureagenesis. Midpanel:Whentheliver–alphacellaxisis controlling aminoacidclearanceintheliverbyaccelerating glucagon, whichinturnseemstoplayavitalrole amino acidsseemtomaintainandregulatethesecretionof its disruption.Upperpanel:Undernormalcircumstances, Proposed mechanismsunderlyingtheliver–alphacellaxisand Figure 4 Glucagon andthegut Downloaded fromBioscientifica.com at10/02/202109:25:40AM 178 www.eje-online.org :6 R275 via freeaccess European Journal of Endocrinology www.eje-online.org system involvingtheliver andthepancreas: of disruptionahitherto unrecognisedendocrine the contextofobesityand type 2diabetesarisesaresult support thenotionthatfasting hyperglucagonaemiain fat combinedwithhyperglucagonaemia( glucagon receptorantagonist-inducedbuild-upofliver Furthermore,recent reports showing observation). to lean non-steatotic subjects (Suppli in obesesubjectswithbiopsy-verifiedsteatosis compared glucagon resistanceatthelevelofaminoacidturnover datafromourgroup showing hepatic by preliminary hyperglucagonaemia ( cell axisrepresentsanimportantdeterminantoffasting suggesting thatliver-specificdisruptionoftheliver–alpha relate toliverfatcontentandcirculating aminoacids( state ( hyperglucagonaemia occursindependentlyofthediabetic (with and without type 2 diabetes) showthat fasting studies inpatientswithnon-alcoholicfattyliverdisease in obese normal glucose-tolerant subjects, our recent alpha cellsdetermineglucagonlevels( that specificaminoacidsandacidtransportersin recently beencorroboratedinrodentstudiesshowing between theliverandalphacellsofpancreashas by acceleratingureagenesis( vital roleincontrollingaminoacidclearancetheliver the secretionofglucagon,whichinturnappearstoplaya of amino acids, thus, may be to maintain and regulate fluctuating plasma glucose levels( mediators ofliver-pancreascross-talkcomparedtoever- amino acidscanbethoughttoconstitutemorerelevant from transamination of amino acids ( removing from the body the ammonia that results glucagon ( with theurine)–processescriticallycontrolledby and deamination,tofinallyproduceurea(eliminated acids throughprocessesincludingtransamination ( signal betweentheliverandalphacells( circulating aminoacidscouldconstitutethefeedback alpha cells, andthus, suggested that single or several acids, whichinturninduceproliferationofpancreatic amino acidturnoverandincreasedplasmalevelsof that inhibitionoftheglucagonreceptorleadstoreduced ( alpha cells,leadingtofastinghyperglucagonaemia( a feedbackmechanismactingatthelevelofpancreatic Fig. 4 Fig. 4 Review Similar to observations offastinghyperglucagonaemia Similar toobservations The liveriscrucialforthemetabolismofamino ). 38 ). FindingsfromSolloway ). Rather, fastinghyperglucagonaemiaseemsto 97 ). In this way, glucagon is responsible for i. 4 Fig. ). Thisnotionissupported i. 4 Fig. F KKnop et al 33 ). Thisfeedbackloop ). A normal function . ( et al 36 35 , 97 ) demonstrated 37 ., unpublished ). Therefore, 98 ). ) strongly 32 , 40 34 32 ), ), ) )

Histology showedmarkedfattyinfiltrationoftheliver. From liver wasfoundtobeenlargedandbrightyellowincolour. Death occurred60 daysafterpancreatectomy. Atautopsy, the balanced dietandtreatedadequatelywithinsulin(right). depancreatised dog(right),approximatelythesamesize,feda Photograph ofnormalliverdog(left)andthea Figure 5 Dragsted cell mass, as observed inobesehumans( cell mass,asobserved in hypersecretionofglucagon, butalsoincreasedalpha 37 cells ( stimulating glucagon secretion from pancreatic alpha ultimately resultsinhyperaminoacidaemiapotentially acid turnover( glucagon resistance( related toobesity( to be independent of the diabetic state and rather in thesepatients( proglucagon-producing cells,i.e.enteroendocrineL perhaps explainingthehyperactivityof extrapancreatic turnover and, thus, results in hyperaminoacidaemia deficiency, whichinturnreduceshepaticaminoacid associated hepatic steatosis may be a result of glucagon of clinicalcases( studies ( after pancreatectomy( dogs fromthe1930sshowingincreasedliverfatcontent disease (assuggestedfromstudiesindepancreatised role inthepathophysiologyofnon-alcoholicfattyliver concept thatglucagonmayplayahithertounrecognised development ofhepaticsteatosis( total pancreatectomyisrobustlyassociatedwiththe axis is to remove pancreatic alpha cells. Interestingly, liver–alpha cellaxis( Glucagon andthegut ), thehyperaminoacidaemic state maynotonlyresult Taken together, fastinghyperglucagonaemiaseems Fig. 4 102 et al ). Assuggestedfromstudies in rodents( ) inadditiontoafewandsporadicreports . ( 100 39 103 ). Fig. 4 , 31 40 32 Fig. 4 , , Fig. 5 104 ). Reducedaminoacidturnover ) ( , 105 Downloaded fromBioscientifica.com at10/02/202109:25:40AM 38 41 )). Thistotalpancreatectomy- ). Anotherwaytodisruptthis ) andensuingreducedamino ), steatosis-associatedhepatic ). ) ( 100 , 99 101 178 ) andsupportsthe ) andlaterrodent :6 106 ). R276 35 , 36 via freeaccess , European Journal of Endocrinology References invaluable contributionstothearticlesformingfoundationofthispiece. Wewer Albrechtsen, Jens J Holst and Tina Vilsbøll are thankedfortheir Asger Lund,MikkelChristensen,JonatanIBagger, Tina Jorsal,NicolaiJ Acknowledgements funding agencyinthepublic,commercialornot-for-profit sector. The workwiththisarticlewasnotfundedbyanyspecificgrantfrom Funding perceived asprejudicingtheimpartialityofthisreview. The authordeclaresthatthereisnoconflictofinterestcouldbe Declaration ofinterest need tobeconsidered. alphacellsecretion amino acid-mediatedcompensatory hyperglucagonaemia, hepaticglucagonresistanceand be takenintoaccountandwhenevaluatingfasting gut-dependentglucagonsecretionshould is observed, cells). Thus,whenpostabsorptivehyperglucagonaemia glucagonsecretionfromalpha (triggering compensatory acids as essential mediators of liver–alpha cell cross-talk axis (hepaticglucagonresistance)involvingamino associated disruptionoftheemergingliver–alphacell of thediabeticstateandrathertoberelatedobesity- fasting hyperglucagonaemiaseemstooccurindependently stimulation ofthegastrointestinaltract.Furthermore, or glucagonotropic factors elicited by intraluminal consequence of gut-derived glucagon secretion and/ that postabsorptivehyperglucagonaemiaoccursasa diabetic hypoinsulinaemia).Thisnewevidencesupports suppressive effectsofglucoseandinsulincombinedwith diabetes (i.e.reducedalphacellsensitivitytotheglucagon- understanding ofpostabsorptivehyperglucagonaemiain and IIGI experiments have challenged the traditional and humanphysiologyexperimentsapplyingOGTT plasma glucagonconcentrationshasaccumulated hitherto underestimatedroleindeterminingpostprandial Over thelastdecade,evidencethatgutplaysa Conclusions 3 2 1 Review Kimball CP &Murlin JR.Aqueousextracts ofpancreasIII.Some Banting FG, Best CH,Collip JB,Campbell WR &Fletcher AA. Bell GI, Sanchez-Pescador R,Laybourn PJ&Najarian RC.Exon 58 precipitation reactionsofinsulin. Medical AssociationJournal Pancreatic extractsinthetreatment ofdiabetesmellitus. Nature duplication anddivergenceinthehumanpreproglucagongene. 337–346. 1983 304 368–371. 1922 (https://doi.org/10.1038/304368a0) 12 Journal ofBiologicalChemistry Journal 141–146. F KKnop Canadian 1923 5

Glucagon andthegut 10 18 17 16 15 14 13 12 11 7 6 4 9 8 Rocha DM, Faloona GR&Unger RH.Glucagon-stimulatingactivity Holst JJ, Schwartz TW, Knuhtsen S,Jensen SL&Nielsen OV. Seitz HJ, Krone W, Wilke H &Tarnowski W. Rapidriseinplasma Sandoval DA &D’Alessio DA.Physiologyofproglucagon Jorsal T, Rhee NA,Pedersen J,Wahlgren CD, Mortensen B,Jepsen SL, Lund A, Vilsbøll T, Bagger JI,Holst JJ&Knop FK. Theseparateand Christensen M, Knop FK,Vilsbøll T, Aaboe K,Holst JJ,Madsbad S Meier JJ, Nauck MA,Pott A,Heinze K,Goetze O,Bulut K, Christensen M, Calanna S,Sparre-Ulrich AH,Kristensen PL, Christensen MB, Calanna S,Holst JJ,Vilsbøll T &Knop FK. Meier JJ, Gallwitz B,Siepmann N,Holst JJ,Deacon CF, Schmidt WE Christensen M, Vedtofte L, Holst JJ,Vilsbøll T &Knop FK.Glucose- Palmer JP, Benson JW, Walter RM &Ensinck JW. Arginine-stimulated Gerich JE, Karam JH&Forsham PH.Stimulationofglucagon 479) Metabolism 1986 isolated, perfusedpigpancreas. controloftheendocrinesecretionfrom Autonomic nervous org/10.1007/BF00582100) Archiv: ofPhysiology European Journal glucagon inducedbyacutecoldexposureinmanandrat. physrev.00013.2014) Physiological Reviews : roleofglucagonandGLP-1inhealthdisease. (https://doi.org/10.1210/endo-119-4-1467) small intestinebutnotpancreas. products oftheglucagongene,aresecretedseparatelyfrompig Nielsen OV. Glucagon-likepeptidesGLP-1andGLP-2,predicted Ø 2018 and Lcellsinhealthytype2diabeticindividuals. Jelsing J, Dalbøge LS,Vilmann P, Hassan H (https://doi.org/10.1152/ajpendo.00665.2010) of Physiology:EndocrinologyandMetabolism GLP-2, onglucagonsecretionintype 2diabetes. combined impactoftheintestinalhormones, GIP, GLP-1, and doi.org/10.1016/j.regpep.2010.05.004) with type1diabetes. insulinotropic polypeptide,stimulatesglucagonreleaseinpatients & Krarup T. Glucagon-likepeptide-2,butnotglucose-dependent 44–54. inhibits gastricacidsecretioninhumans. stimulates glucagonsecretion,enhanceslipidabsorption,and Schmidt WE, Gallwitz B&Holst JJ.Glucagon-likepeptide2 2015 glucagon responsestohypoglycemiaintype1diabetes. et al Rosenkilde MM, Faber J,Purrello F, vanHall G,Holst JJ,Vilsbøll T org/10.1210/jc.2013-3644) Endocrinology andMetabolism stabilizing effectsinpatientswithtype2diabetes. Glucose-dependent insulinotropicpolypeptide:bloodglucose s00125-003-1103-y) euglycaemia. stimulates glucagonsecretioninhealthyhumansubjectsat polypeptide(GIP) dose-dependently & Nauck MA.Gastricinhibitory Diabetes dependent regulatorofglucagonandinsulinsecretioninhumans. dependent insulinotropicpolypeptide:abifunctionalglucose- org/10.1172/JCI108502) ofClinicalInvestigation Journal acute phaseofinsulinandglucagonsecretionindiabeticsubjects. 2346–2351. of 20aminoacidsindogs. secretion byepinephrineinman. rskov C, Holst JJ,Knuhtsen S,Baldissera FGA,Poulsen SS& . Glucose-dependentinsulinotropicpolypeptideaugments 17 61 64 (https://doi.org/10.1053/j.gastro.2005.10.004) 2011 71–84. 284–294. 72–78. 1973 (https://doi.org/10.1172/JCI107046) Diabetologia 60 (https://doi.org/10.1016/0165-1838(86)90045-7) (https://doi.org/10.2337/db14-0440) 3103–3109. 37 (https://doi.org/10.1007/s00125-017-4450-9) 479–481. 2015 Regulatory Peptides Regulatory 2003 95 Downloaded fromBioscientifica.com at10/02/202109:25:40AM Journal ofClinicalInvestigation Journal 2014 513–548. 1976 (https://doi.org/10.2337/db11-0979) (https://doi.org/10.1210/jcem-37-3- Journal of the Autonomic Nervous System oftheAutonomicNervous Journal 46 Endocrinology Journal ofClinicalEndocrinologyand Journal 798–801. 99 58 1981 E418–E426. 565–570. (https://doi.org/10.1152/ 2010 Gastroenterology 2011 389 et al 178 (https://doi.org/10.1007/ 163 115–120. 1986 www.eje-online.org . EnteroendocrineK :6 300 (https://doi. American Journal American Journal 96–101. (https://doi. Journal ofClinical Journal E1038–E1046. 119 Diabetologia Diabetes 1467–1475. 1972 (https://doi. 2006 Pflugers (https:// R277 51 130

via freeaccess

European Journal of Endocrinology www.eje-online.org 26 35 34 33 32 31 30 29 28 27 25 24 23 22 21 20 19 Review Solloway MJ, Madjidi A,Gu C,Eastham-Anderson J, Clarke HJ, Longuet C, Robledo AM,Dean ED,Dai C,Ali S,McGuinness I, Holst JJ, Wewer Albrechtsen NJ,Pedersen J&Knop FK.Glucagonand Suppli MP, Lund A,Bagger JI, Vilsbøll T &Knop FK.Involvement Knop FK, Aaboe K,Vilsbøll T, Vølund A, Holst JJ,Krarup T& Knop FK, Vilsbøll T, Madsbad S,Holst JJ&Krarup T. Inappropriate Dunning BE, Foley JE&Ahrén B.Alphacellfunctioninhealthand Unger RH &Orci L. Theessentialroleofglucagoninthe Hare KJ, Knop FK,Asmar M,Madsbad S,Deacon CF, Holst JJ& Kreymann B, Ghatei MA,Williams G &Bloom SR.Glucagon-like Taborsky GJ. Evidenceofaparacrineroleforpancreaticsomatostatin Klaff LJ &Taborsky GJ. Pancreaticsomatostatinisamediatorof Samols E, Bonner-Weir S &Weir GC. 2intra-isletinsulin –glucagon Vieira E, Salehi A&Gylfe E.Glucoseinhibitsglucagonsecretionby MacDonald PE, DeMarinis YZ,Ramracheya R,Salehi A,Ma X, McCulloch DK, Raghu PK,Koerker DJ,Palmer JP&Klaff LJ. Kljavin N, Zavala-Solorio J,Kates L, Friedman B, Brauer M db11-1605) hyperplasia. specific disruptionofthemurineglucagonreceptorproduces de Chavez V, Vuguin PM, Charron MJ,Powers AC axis. amino acidsarelinkedinamutualfeedbackcycle:theliver- mehy.2015.10.029) Medical Hypotheses of steatosis-inducedglucagonresistanceinhyperglucagonaemia. 500–510. dysmetabolism inobesity. characterizing type2diabeticsubjectsareearlysignsof Madsbad S. Impairedincretineffectandfastinghyperglucagonaemia org/10.1007/s00125-006-0566-z) type 2diabetesmellitus. i.v. glucose infusioncontributestothereducedincretineffectin suppression ofglucagonduringOGTTbutnotisoglycaemic 1700–1713. disease: influenceofglucagon-likepeptide-1. org/10.1016/S0140-6736(75)92375-2) pathogenesis ofdiabetesmellitus. jc.2009-0921) and Metabolism secretion intype2diabetesmellitus. Vilsbøll T. potencyofGLP-1onglucagon inhibitory Preserved 123 pig pancreas,antrum,andnonantralstomach. peptide-1 (proglucagon-(78–107)amide)onendocrinesecretionfrom Ø 1300–1304. peptide-1 7–36:aphysiologicalincretininman. doi.org/10.1152/ajpendo.1983.245.6.E598) in vivo. (https://doi.org/10.2337/diab.36.5.592) glucagon inhibitionbyhyperglycemia. 1986 – somatostatinrelationships. 370–379. a directeffectonmousepancreaticalphacells. 5 from bothrodentandhumanisletsofLangerhans. dependent pathwaywithinalphacellsregulatesglucagonrelease Johnson PRV, Cox R,Eliasson L&Rorsman P. AKATP channel- 0495(89)90111-X) and Experimental hyperglycemia aredependentontheBcell. Responses ofthepancreaticAcellduringhypoglycemiaand Glucagon coupleshepaticaminoacid catabolismto e143. rskov C, Holst JJ&Nielsen OV. Effectoftruncatedglucagon-like 2009–2013. Diabetes 15 (https://doi.org/10.1371/journal.pbio.0050143) 33–58. American Journal ofPhysiology American Journal (https://doi.org/10.1007/s00125-006-0511-1) (https://doi.org/10.1111/j.1463-1326.2011.01549.x) (https://doi.org/10.1007/s00125-005-1878-0) (https://doi.org/10.1016/S0140-6736(87)91194-9) Diabetes 2017 2009 (https://doi.org/10.1016/S0300-595X(86)80041-X) 1989 (https://doi.org/10.1210/endo-123-4-2009) 2016 66 2013 94 235–240. 38 4679–4687. 86 Diabetologia 702–707. Diabetes, ObesityandMetabolism 62 100–103. Clinics inEndocrinologyandMetabolism 1196–1205. (https://doi.org/10.2337/db16-0994) Lancet (https://doi.org/10.1016/0026- 2007 (https://doi.org/10.1210/ Journal ofClinicalEndocrinology Journal 1983 (https://doi.org/10.1016/j. F KKnop Diabetes 1975 (https://doi.org/10.2337/ 50 245 Metabolism: Clinical Diabetologia 797–805. 1 Endocrinology Diabetologia E598–E603. 1987 14–16. Lancet et al PLoS Biology

36 . Liver- 1987 (https://doi. (https://doi. 592–596. 2005 et al 2012 2007 α 1988 (https:// 330 -cell α . -cell 2007 48 14

50

Glucagon andthegut 40 39 38 37 36 50 49 48 47 46 45 44 43 42 41 Wewer Albrechtsen NJ,Junker AE,Christensen M,Hædersdal S, Wewer Albrechtsen NJ,Færch K, Jensen TM,Witte DR, Pedersen J, Junker AE, Gluud L,Holst JJ,Knop FK&Vilsbøll T. Diabeticand Dean ED, Li M,Prasad N,Wisniewski SN, Von Deylen A,Spaeth J, Kim J, Okamoto H,Huang Z,Anguiano G,Chen S,Liu Q,Cavino K, Hamaguchi T, Fukushima H,Uehara M, Wada S, Shirotani T, Dunning BE &Gerich JE.Theroleof Grøndahl MF, Keating DJ,Vilsbøll T &Knop FK.Currenttherapies Lawrence AM. Glucagon. Shah P, Basu A,Basu R&Rizza R. Impactoflacksuppression Baron AD, Schaeffer L,Shragg P&Kolterman OG.Roleof Gerich JE, Lorenzi M,Bier DM,Schneider V, Tsalikian E, Karam JH Reaven GM, Chen YDI,Golay A,Swislocki ALM&Jaspan JB. Gromada J, Franklin I&Wollheim CB. Lund A, Bagger JI,Wewer Albrechtsen NJ,Christensen M, Hyperglucagonemia correlateswithplasmalevelsofnon-branched- Wibrand F, Lund AM,Galsgaard KD,Holst JJ,Knop FK&Vilsbøll T. 61 plasma glucagonandglucagonotropicaminoacids. hepatic insulinresistanceattenuatesrelationshipbetweenfasting Torekov SS Mahendran Y, Jonsson AE,Galsgaard KD,Winther-Sørensen M, joim.12462) Medicine of Internal impaired incretineffectandfastinghyperglucagonaemia. nondiabetic patientswithnonalcoholicfattyliverdiseasehavean (https://doi.org/10.1016/j.cmet.2017.05.011) in glucagon signalingrevealshepatic Maddison L, Botros A,Sedgeman LR,Bozadjieva N org/10.1016/j.cmet.2017.05.006) in mice. glucagon receptorinhibition-inducedpancreatic Xin Y, Na E,Hamid R 495–510. mTOR-dependent regulationof Kishikawa H, Ichinose K,Yamaguchi K &Shichiri M.Abnormal org/10.1210/er.2006-0026) implications. and postprandialhyperglycemiain type 2diabetesandtherapeutic org/10.1007/s11892-017-0967-z) modifications? that modify glucagon secretion: what isthe therapeutic effect of such (https://doi.org/10.1146/annurev.me.20.020169.001231) Physiology of glucagononglucosetoleranceinhumans. (https://doi.org/10.2337/diab.36.3.274) glucose outputintypeIIdiabetics. hyperglucagonemia inmaintenanceofincreasedrateshepatic (https://doi.org/10.1056/NEJM197505082921901) somatostatin. & Forsham PH.Preventionofhumandiabeticketoacidosisby 106–110. mellitus. nonobese andobesepatientswithnoninsulin-dependentdiabetes Documentation ofhyperglucagonemiathroughoutthedayin Reviews pancreas: 35yearsofresearch buttheenigmaremains. man. van Hall G Grøndahl M, Hartmann B,Mathiesen ER,Hansen CP, Storkholm JH, ajpgi.00216.2017) Liver Physiology type 2diabetes. chain aminoacidsinpatientswithliverdiseaseindependentof α 671–680. cellproliferation. Diabetes 2007 Cell Metabolism Journal ofClinicalEndocrinologyandMetabolism Journal (https://doi.org/10.1016/j.celrep.2015.06.034) (https://doi.org/10.1210/jcem-64-1-106) 1999 et al et al (https://doi.org/10.1007/s00125-017-4535-5) 28 Endocrine Reviews 2016 New England Journal ofMedicine New EnglandJournal 2018 Current DiabetesReports . Evidenceofaliver-alphacellaxisinhumans: . Evidenceofextrapancreaticglucagonsecretionin 277 84–116. American Journal ofPhysiology:Gastrointestinal and American Journal 2016 65 E283–E290. 314 et al Cell Metabolism 585–597. 2017 279 G91–G96. (https://doi.org/10.1210/er.2006-0007) Annual ReviewofMedicine . AminoacidtransporterSlc38a5controls Downloaded fromBioscientifica.com at10/02/202109:25:40AM 485–493. 25 2007 α 1348.e8–1361.e8. (https://doi.org/10.2337/db15-1541) -cell mass. α Diabetes cellaxisandroleforL-glutamine (https://doi.org/10.1152/ 28 α 2017 -cell dysregulationinfasting 2017 (https://doi.org/10.1111/ α 253–283. -Cells oftheendocrine 1987 178 25 Cell Reports 17 1975 American Journal of American Journal 1362.e5–1373.e5. 128. :6 α 36 (https://doi. cellhyperplasia 1969 et al (https://doi. 292 Diabetologia 274–283. (https://doi. . Interrupted 2015 Endocrine 985–989. 1987 20 Journal Journal 207–222. R278 12 64 2018

via freeaccess European Journal of Endocrinology 58 64 63 62 61 60 59 57 56 55 54 53 52 51 Review Kosinski M, Knop FK,Vedtofte L, Swierzewska P, Grycewiczv J, Bagger JI, Knop FK,Lund A,Vestergaard H, Holst JJ&Vilsbøll T. Meier JJ, Deacon CF, Schmidt WE,Holst JJ&Nauck MA.Suppression Bagger JI, Knop FK,Lund A,Holst JJ&Vilsbøll T. Glucagonresponses Knop FK, Vilsbøll T, Larsen S,Madsbad S,Holst JJ&Krarup T. Hare KJ, Vilsbøll T, Holst JJ&Knop FK.Inappropriateglucagon Nauck M, Stöckmann F, Ebert R &Creutzfeldt W. Reducedincretin Oh TJ, Kim MY, Shin JY, Lee JC,Kim S,Park KS&Cho YM.The Muscelli E, Mari A,Casolaro A,Camastra S,Seghieri G,Gastaldelli A, Knop FK, Vilsbøll T, Højberg PV, Larsen S,Madsbad S,Vølund A, Calanna S, Christensen M,Holst JJ,Laferrère B,Gluud LL,Vilsbøll T Gedulin BR, Rink TJ&Young AA. Dose-responseforglucagonostatic Wan Y, Wang Q &Prud’homme GJ.GABAergicsysteminthe effect ingestationaldiabetesmellitus. &Vilsbøll T.Cypryk K Postpartum reversibilityofimpairedincretin 737–745. diabetes. Impaired regulationoftheincretineffectinpatientswithtype2 0598-z) Diabetologia than duringintravenousglucoseadministrationinhumansubjects. of glucagonsecretionislowerafteroralglucoseadministration org/10.1007/s00125-014-3264-2) healthy individuals. intravenous glucoseinfusionsinpatientswithtype2diabetesand to increasingoralloadsofglucoseandcorrespondingisoglycaemic 144–150. in patientswithchronicpancreatitis. during IVGTTsustainsalongsidedevelopmentofglucoseintolerance Glucagon suppressionduringOGTTworsenswhile (https://doi.org/10.1152/ajpendo.00700.2009) of Physiology:EndocrinologyandMetabolism administration inpatientswithtype1diabetes. response afteroralcomparedwithisoglycemicintravenousglucose org/10.2337/db13-1878) young –type2and3. intravenous glucoseinpatientswithmaturity-onsetdiabetesofthe & Vilsbøll T. Incretineffectandglucagonresponsestooral Ø 29 effect inType 2(non-insulin-dependent)diabetes. org/10.1111/cen.12167) type 2diabetes. incretin effectinKoreansubjectswithnormalglucosetoleranceor org/10.2337/db07-1315) 2 diabeticpatients. tolerance ontheincretineffectinnormalsubjectsandtype Holst JJ &Ferrannini E.Separateimpactofobesityandglucose (https://doi.org/10.2337/db07-0100) or consequenceofthediabeticstate? Holst JJ &Krarup T. Reducedincretineffectintype2diabetes:cause s00125-013-2841-0) studies. 2 diabetesmellitus:systematicreviewandmeta-analysesofclinical & Knop FK. Secretion of glucagon-like peptide-1 in patients with type org/10.1016/S0026-0495(97)90170-0) effect ofamylininrats. (https://doi.org/10.2147/DMSO.S50642) Metabolic Syndrome andObesity:Targets andTherapy endocrine pancreas:anewtargetfordiabetestreatment. 801–806. of insulinactiononpancreaticalphacells. hyperinsulinaemic patientswithglucoseintolerance:importance glucagon responsetoarginineanditsnormalizationinobese 104–107. stoft SH, Bagger JI,Hansen T, Pedersen O,Holst JJ,Knop FK 46–52. Diabetologia Journal ofClinicalEndocrinologyandMetabolism Journal (https://doi.org/10.1007/BF00408354) (https://doi.org/10.1210/jc.2010-2435) (https://doi.org/10.1016/j.regpep.2010.05.011) (https://doi.org/10.1016/j.regpep.2013.08.002) (https://doi.org/10.1007/BF02427280) 2007 Clinical Endocrinology 50 Diabetes 2013 Diabetologia 806–813. Metabolism 56 Diabetes 2008 965–972. (https://doi.org/10.1007/s00125-007- 2014 57 1997 2014 1340–1348. 2014 Diabetes Regulatory Peptides Regulatory F KKnop Regulatory Peptides Regulatory 57 (https://doi.org/10.1007/ 46 1720–1725. 63 2010 Diabetologia 80 67–70. 2838–2844. 2007 221–227. American Journal American Journal 298 (https://doi. 2015 Diabetologia (https://doi. 56 E832–E837. (https://doi. 1951–1959. 1991 2010 2011 2013 (https://doi. Diabetes, 8 (https://doi. 79–87. 34 164 96 186 1986

Glucagon andthegut 69 68 67 66 65 78 77 76 75 74 73 72 71 70 Rhee NA, Plamboeck A, Veedfald S, Deacon CF, Hartmann B,Wettergren A, Hansen KB, Vilsbøll T, Bagger JI,Holst JJ&Knop FK.Reducedglucose Gyldenløve M, Vilsbøll T, Zachariae C,Holst JJ,Knop FK&Skov L. Muscelli E, Mari A,Natali A,Astiarraga BD,Camastra S,Frascerra S, Idorn T, Knop FK,Jørgensen M,Holst JJ,Hornum M&Feldt- Bak MJ, Albrechtsen NW, Pedersen J,Hartmann B,Christensen M, Sutherland EW &deDuve C.Originanddistributionofthe Chia CW, Carlson OD, Kim W, Shin YK,Charles CP, Kim HS, Calanna S, Christensen M,Holst JJ,Laferrère B,Gluud LL,Vilsbøll T Holst JJ. Thephysiologyofglucagon-likepeptide1. Hædersdal S, Lund A,Maagensen H,Nielsen-Hannerup E,Holst JJ, Hædersdal S, Lund A,Nielsen-Hannerup E,Maagensen H,Holst JJ, Lund A, Bagger JI,Christensen M,Grøndahl M,vanHall G,Holst JJ, 0264) Endocrinology vagotomised subjectswithpyloroplasty. Characterisation oforalandi.v. glucosehandlingintruncally Svendsen LB, Meisner S,Hovendal C,Knop FK,Vilsbøll T 0119) Metabolism effect inhealthysubjects. relative physicalinactivity, andhigh-caloriedietimpairstheincretin tolerance andinsulinresistanceinducedbysteroidtreatment, 278 nondiabetic patientswithpsoriasis. Impaired incretineffectisanearlysignofglucosedysmetabolismin E1144–E1150. ofPhysiology:EndocrinologyandMetabolism American Journal function insubjectswithnormalorimpairedglucosetolerance. Holst JJ &Ferrannini E.Impactofincretinhormoneson ki.2012.460) Kidney International disturbances innondiabeticpatientswithend-stagerenaldisease. Rasmussen B. Gastrointestinalfactorscontributetoglucometabolic 0941) Endocrinology oxyntomodulin measurementinhumans. and sensitivityofcommercially availableassaysforglucagonand Vilsbøll T, Knop FK,Deacon CF, Dragsted LO&Holst JJ.Specificity Biological Chemistry hyperglycemic-glycogenolytic factorofthepancreas. Diabetes polypeptide worsenspostprandialhyperglycemiaintype2diabetes. Melvin DL &Egan JM.Exogenousglucose-dependentinsulinotropic 3346–3352. polypeptide inpatientswithtype2diabetes. & Knop FK.Secretionofglucose-dependentinsulinotropic physrev.00034.2006) Reviews 2 diabetes. glucose butnotpostprandialexcursionsinpatientswithtype Knop FK &Vilsbøll T. Glucagonreceptorantagonismlowersfasting A496–A565. diabetes andnormalglucosetolerantindividuals. mediated glucosedisposalandincretineffectinpatientswithtype2 Knop FK &Vilsbøll T. TheRoleofglucagoningastrointestinal- org/10.1210/jc.2016-1948) Endocrinology andMetabolism OGTT vsisoglycemicintravenousglucoseinfusion. Vilsbøll T &Knop FK.Higherendogenousglucoseproductionduring (https://doi.org/10.1530/EJE-14-0314) healthy subjects. glucose tolerance,andgastrointestinal-mediateddisposalin The impactofdipeptidylpeptidase4inhibitiononincretineffect, 660–670. 2007 2009 Ø 2010 Diabetes stoft SH, Holst JJ,Deacon CF, Vilsbøll T &Knop FK. (https://doi.org/10.2337/dc13-0465) 2013 2014 87 58 (https://doi.org/10.1111/joim.12388) (https://doi.org/10.1152/ajpendo.00571.2005) 1409–1439. 1342–1349. 95 European Journal ofEndocrinology European Journal 170 169 2013 1948 2017 3309–3317. 187–201. 529–538. 83 175 66 Journal ofClinicalEndocrinologyand Journal Downloaded fromBioscientifica.com at10/02/202109:25:40AM 915–923. A496–A565. 2016 (https://doi.org/10.1152/ 663–674. (https://doi.org/10.2337/db08-0958) (https://doi.org/10.1210/jc.2010- (https://doi.org/10.1530/EJE-13- (https://doi.org/10.1530/EJE-13- 101 Journal of Internal Medicine ofInternal Journal (https://doi.org/10.1038/ 4377–4384. European Journal of European Journal European Journal of European Journal 178 Diabetes Care www.eje-online.org :6 2014 Diabetes (https://doi. Journal ofClinical Journal Physiological Journal of Journal 171 β et al -cell 2017 2013 2006 353–362. R279 . 2015 66 36 291 via freeaccess

European Journal of Endocrinology www.eje-online.org

91 90 89 88 87 86 85 84 83 82 81 80 79 Review Salehi M, Gastaldelli A&D’Alessio DA.Blockadeofglucagon-like Juel CTB, Lund A,Hansen CP, Storkholm JH,Wewer Albrechtsen NJ, Juel CTBJ, Lund A,Hansen CP, Storkholm JH,Wewer Albrechtsen NJ, Rhee NA, Wahlgren CD, Pedersen J, Mortensen B,Langholz E, Knop FK, Hare KJ,Pedersen J,Hendel JW, Poulsen SS,Holst JJ& Knop FK. Resolutionoftype2diabetesfollowinggastricbypass Campbell JE &Drucker DJ.Islet Holst JJ, Aggestrup S,Loud FB&Olesen M.Contentandgelfiltration Ravazzola M, Unger RH&Orci L. Demonstrationofglucagoninthe Matsuyama T &Foà PP. Plasmaglucose,insulin,pancreatic, Muller WA, Girardier L,Seydoux J,Berger M,Renold AE&Vranic M. Scheltema RA, Hauschild JP, Lange O,Hornburg D,Denisov E, Wewer Albrechtsen NJ,Hartmann B,Veedfald S, Windeløv JA, org/10.1053/j.gastro.2013.11.044) bypass. peptide 1receptorcorrectspost-prandialhypoglycemiaaftergastric org/10.2337/dbi16-0049) pancreatectomized patients. reducespostprandialglucoseexcursionsintotally Holst JJ, Vilsbøll T &Knop FK.TheGLP-1receptoragonist subjects. the secretionofgut-derivedglucagonintotallypancreatectomized Holst JJ, Vilsbøll T &Knop FK.Intravenousargininehasnoeffecton org/10.1007/s00125-015-3696-3) with type2diabetes. expression ofsmall-intestinalenteroendocrinecellsinobesepatients Effect ofRoux-en-Ygastricbypassonthedistributionandhormone Wandall EP, Friis SU,Vilmann P, Paulsen SJ,Kristiansen VB source ofgut-derivedglucagon. are moreabundantinpatientswithtype2diabetes–apotential Vilsbøll T. Prohormoneconvertase2positiveenteroendocrinecells org/10.1007/s00125-009-1511-8) signalling? involvementofgut-derivedglucagonandglucagonotropic surgery: 11 regulators ofenergyhomeostasis. 729) Metabolism in humanfundicmucosa. profiles ofglucagon-likeandsomatostatin-likeimmunoreactivity org/10.2337/diab.30.10.879) stomach ofhumanfetuses. org/10.3181/00379727-147-38288) for ExperimentalBiologyandMedicine Proceedings oftheSocietyforExperimentalBiologyandMedicine: and enteroglucagonlevelsinnormaldepancreatizeddogs. 124–132. in depancreatizeddogs. Extrapancreatic glucagonandglucagonlikeimmunoreactivity mcp.M114.043489) Cellular Proteomics quadrupole andanultra-high-fieldorbitrapanalyzer. Benchtop massspectrometerwithapre-filter, high-performance Damoc E, Kuehn A,Makarov A&Mann M.TheQexactiveHF, a 014-3283-z) Diabetologia sandwich ELISA:nonspecificinterferenceortrulyelevatedlevels? Knop FK, Vilsbøll T Plamboeck A, Bojsen-Møller KN,Idorn T, Feldt-Rasmussen B, 329–338. Gastroenterology Diabetes (https://doi.org/10.1172/JCI109096) 1983 Diabetologia 2014 (https://doi.org/10.1038/nrendo.2015.51) 56 2017 57 2014 729–732. et al 1919–1926. Diabetologia 2009 2014 66 . Hyperglucagonaemiaanalysedbyglucagon Journal ofClinicalInvestigation Journal 13 LB1–LB94. Journal ofClinicalEndocrinologyand Journal 3698–3708. Diabetes Diabetes 52 146 (https://doi.org/10.1210/jcem-56-4- Diabetes 2270–2276. α 2015 cellsandglucagon–critical (https://doi.org/10.1007/s00125- 669.e2–680.e2. Nature ReviewsEndocrinology 1981 1974 2017 F KKnop 58 (https://doi.org/10.1074/ 2011 30 147 2254–2258. 66 879–882. (https://doi. A20. 97–102. 60 A442–A521. (https://doi. (https://doi. Molecular and 1978 (https://doi. (https://doi. (https://doi. et al 62 2015

. Accepted 13April2018 Received 8March2018

106 105 104 103 102 101 100

Glucagon andthegut 98 97 96 95 94 93 99 92 Guzman CB, Zhang XM,Liu R,Regev A,Shankar S,Garhyan P, Hamberg O &Vilstrup H. Regulationofureasynthesis byglucose DeFronzo RA. Fromthetriumviratetoominousoctet:anew Unger RH, Aguilar-Parada E,Müller WA &Eisentraut AM.Studies Shah P, Vella A, Basu A,Basu R, Schwenk WF&Rizza RA.Lackof Ullrich J, Ernst B,Wilms B, Thurnheer M&Schultes B.Roux-enY Ellenbroek JH, Töns HAM, Hanegraaf MAJ,Rabelink TJ,Engelse MA, Ferrannini E, Muscelli E,Natali A,Gabriel R,Mitrakou A,Flyvbjerg A, Takemura N, Saiura A,Koga R,Yamamoto J &Yamaguchi T. Risk Dresler CM, Fortner JG,McDermott K&Bajorunas DR.Metabolic Chernick SS &Scow RO.Earlyeffectsoftotalpancreatectomyon Chaikoff IL, Connor CL&Biskind GR.Fattyinfiltrationandcirrhosis Dragstedt LR, Clark DE&Vermeulen C. The significance oflipocaic Lund A, Bagger JI,Albrechtsen NJW, Christensen M,Grøndahl M, Rabiee A, Magruder JT, Salas-Carrillo R,Carlson O,Egan JM, Pillai SG, Kazda C,Chalasani N&Hardy TA. Treatment with (https://doi.org/10.1016/0261-5614(94)90099-X) and glucagoninnormalman. 58 paradigm forthetreatmentoftype2diabetesmellitus. org/10.1172/JCI106297) ofClinicalInvestigation Journal of pancreaticalphacellfunctioninnormalanddiabeticsubjects. org/10.1210/jcem.85.11.6993) Endocrinology andMetabolism in subjectswithtype2diabetesmellitus. suppression ofglucagoncontributestopostprandialhyperglycemia (https://doi.org/10.1007/s11695-012-0754-5) habits inseverelyobesesubjects. reduceshedonichungerandimprovesdietary gastric bypasssurgery 2011 dom.12997) Obesity andMetabolism Carlotti F &deKoning EJP. Pancreatic org/10.1007/s00125-007-0806-x) insulin resistance. Association offastingglucagonandproinsulinconcentrationswith Golay A, Hojlund K&InvestigatorsTRbetweenISandCDR(RISC)P. org/10.1177/1457496916669630) ofSurgery Scandinavian Journal factors forandmanagementofpostpancreatectomyhepaticsteatosis. 00007) 1991 consequences of(regional)totalpancreatectomy. 125–131. fat metabolismintherat. ofPathology American Journal of theliverindepancreatizeddogsmaintainedwithinsulin. org/10.1097/00000658-193911000-00010) in surgery. 66 liver fatcontentintotallypancreatectomizedpatients. Hansen CP, Storkholm JH,Holst JJ,Vilsbøll T &Knop FK.Increased 19 patients withtype2diabetes. LY2409021, aglucagonreceptorantagonist,increasesliverfatin and pancreaticendocrinedysfunction. after Roux-en-Ygastricbypass:Unravelingtheroleofguthormonal Askin FB, Elahi D&Andersen DK.Hyperinsulinemichypoglycemia 773–795. A4674–A688. 1521–1528. 214 167 199–205. 131–140. Annals ofSurgery (https://doi.org/10.2337/db09-9028) (https://doi.org/10.1111/dom.12958) Diabetologia (https://doi.org/10.1016/j.jss.2010.09.047) (https://doi.org/10.1097/00000658-199108000- 2017 American Journal ofPhysiology American Journal Downloaded fromBioscientifica.com at10/02/202109:25:40AM 1939 1938 2000 19 2017 1970 Diabetes, ObesityandMetabolism 2007 Clinical Nutrition 1810–1813. Obesity Surgery 110 14 85 106 49 50 101–110.7. 4053–4059. 907–915. α 837–848. 2342–2347. Journal ofSurgicalResearchJournal -cell massinobesity. 224–229. Journal ofClinical Journal 178 (https://doi.org/10.1111/ 1994 :6 2013 (https://doi. (https://doi. Annals ofSurgery (https://doi. (https://doi. (https://doi. 13 23 Diabetes 1959 Diabetes 183–191. 50–55. R280 Diabetes, 196 2017 2017 2009

via freeaccess