Gut Hormones in Health and Obesity: the Upcoming Role of Short Chain Fatty Acids

Total Page:16

File Type:pdf, Size:1020Kb

Gut Hormones in Health and Obesity: the Upcoming Role of Short Chain Fatty Acids nutrients Review Gut Hormones in Health and Obesity: The Upcoming Role of Short Chain Fatty Acids Habeeb Alhabeeb 1,* , Ali AlFaiz 1, Emad Kutbi 1, Dayel AlShahrani 1, Abdullah Alsuhail 1, Saleh AlRajhi 2, Nemer Alotaibi 3, Khalid Alotaibi 3, Saad AlAmri 1, Saleh Alghamdi 1 and Naji AlJohani 4 1 Research Center, King Fahad Medical City—KFMC, Riyadh 11525, Saudi Arabia; [email protected] (A.A.); [email protected] (E.K.); [email protected] (D.A.); [email protected] (A.A.); [email protected] (S.A.); [email protected] (S.A.) 2 Family Medicine, King Fahad Medical City—KFMC, Riyadh 11525, Saudi Arabia; [email protected] 3 College of Medicine, Shaqra University, Shaqra 11961, Saudi Arabia; [email protected] (N.A.); [email protected] (K.A.) 4 Obesity, Endocrine, and Metabolism Center, King Fahad Medical City—KFMC, Riyadh 11525, Saudi Arabia; [email protected] * Correspondence: [email protected] Abstract: We are currently facing an obesity pandemic, with worldwide obesity rates having tripled since 1975. Obesity is one of the main risk factors for the development of non-communicable diseases, which are now the leading cause of death worldwide. This calls for urgent action towards understanding the underlying mechanisms behind the development of obesity as well as developing more effective treatments and interventions. Appetite is carefully regulated in humans via the interaction between the central nervous system and peripheral hormones. This involves a delicate balance in external stimuli, circulating satiating and appetite stimulating hormones, and correct functioning of neuronal signals. Any changes in this equilibrium can lead to an imbalance in energy intake versus expenditure, which often leads to overeating, and potentially weight gain resulting in Citation: Alhabeeb, H.; AlFaiz, A.; overweight or obesity. Several lines of research have shown imbalances in gut hormones are found Kutbi, E.; AlShahrani, D.; Alsuhail, A.; in those who are overweight or obese, which may be contributing to their condition. Therefore, this AlRajhi, S.; Alotaibi, N.; Alotaibi, K.; review examines the evidence for targeting gut hormones in the treatment of obesity by discussing AlAmri, S.; Alghamdi, S.; et al. Gut how their dysregulation influences food intake, the potential possibility of altering the circulating Hormones in Health and Obesity: The Upcoming Role of Short Chain levels of these hormones for treating obesity, as well as the role of short chain fatty acids and protein Fatty Acids. Nutrients 2021, 13, 481. as novel treatments. https://doi.org/10.3390/nu13020481 Keywords: obesity; gut hormones; short chain fatty acids; diabetes; overweight; food intake; appetite; Received: 12 December 2020 glucagon-like peptide-1; peptide tyrosine tyrosine; neuropeptide Y Accepted: 30 December 2020 Published: 31 January 2021 Publisher’s Note: MDPI stays neutral 1. Introduction with regard to jurisdictional claims in Historically, humanity has dealt with countless famines, where the scarcity of food published maps and institutional affil- resulted in starvation and significant loss of life. However, today we are facing a different iations. weight associated epidemic, obesity [1]. Obesity is a complex condition that, in simple terms, is caused by a chronic imbalance between energy intake and energy expenditure, and is defined as a body mass index greater than 30 kg/m2. Since 1975, the level of obesity worldwide has almost tripled [2]. According to World Health Organization data, Copyright: © 2021 by the authors. 1.9 billion people worldwide are overweight, with 650 million of those considered obese [2]. Licensee MDPI, Basel, Switzerland. Data from the Health Survey for England carried out in 2017 revealed that in the United This article is an open access article Kingdom, 28.1% of adults are obese, and predict that this number would rise to 48% of the distributed under the terms and population by 2030 [3]. Furthermore, in the United States of America, 42.4% of adults were conditions of the Creative Commons considered obese in 2017–2018 [4]. Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Nutrients 2021, 13, 481. https://doi.org/10.3390/nu13020481 https://www.mdpi.com/journal/nutrients Nutrients 2021, 13, 481 2 of 20 2. Obesity Related Diseases Non-communicable diseases, which are associated with obesity, are the leading cause of death worldwide [5]. Obesity is linked to an increased risk of developing a variety of these diseases such as type 2 diabetes mellitus (T2DM), coronary heart disease, stroke and certain types of cancer [6–9]. The predicted increase in prevalence of obesity by 65 million people in the USA and 11 million in the UK is expected to lead to an additional 8·5 million cases of diabetes, 5.7–7.3 million cases of heart disease and stroke and 492,000– 669,000 additional cases of cancer in both countries by 2030 [10]. Furthermore, conservative estimates of the burden of disease indicators in children predict that 20,000 obese children in Europe have T2DM, a further 400,000 have impaired glucose tolerance, and over 1 million are likely to show a range of indicators for cardiovascular disease, including hypertension and raised cholesterol levels and have three or more indicators of metabolic syndrome. Finally, over 1.4 million children may have early stages of liver disorder linked with non- alcoholic fatty liver disease [11]. While these conditions have typically been characteristic to Western countries, their prevalence is now rising in developing countries, leading to a double burden of non-communicable diseases and undernutrition. Rapid action is required to stop this global rise in obesity [1]. In addition to significantly impacting patients’ quality of life, the obesity epidemic places a huge burden on health services [10]. A systematic review on the economic burden of obesity worldwide by Withrow and Alter (2011) found that medical expenses for obese individuals can be 6%–45% higher than for their normal weight counterparts. Globally, between 0.7% and 2.8% of a country’s total health expenditure is associated with obesity related costs. Estimates suggest that in the UK, the National Health Service spent £6.1 billion on overweight and obesity related ill-health in 2014–2015, which is expected to rise to £9.7 billion by 2050 [12]. There was also a reported wider societal cost of £27 billion. Furthermore, in 2016 the US spent $480.7 billion on direct obesity-related healthcare costs, and there was an estimated indirect societal cost of $1.24 trillion [13]. The remarkable prevalence of obesity and its consequences on overall health have led to calls to identify the root causes of obesity and potential treatments. At a societal level, obesity can be considered as a product of the modern Western lifestyle, resulting from obesogenic environments with the wide availability of convenient high-reward and calorie- dense foods, excessive portions and lack of daily exercise [14]. Research has revealed that obesity can also have a small genetic component. This can take the form of a monogenic disorder in more extreme cases, such as possessing mutations in genes involved in the leptin/melanocortin axis [15], but is more often seen as a polygenic disorder affecting many different genes. In these cases, most of the genes involved are linked with appetite regulation [16]. This link between obesity and appetite regulation highlights the importance of the gut–brain axis in body weight homeostasis, through the lens of satiation [17]. In principle, food ingestion in humans results in gastric distension and secretion of hormones associated with satiety, leading to a short-term reduction in food intake [18–20]. In the first instance, treatment for obesity involves lifestyle interventions to change dietary and physical activity patterns to promote weight loss. However, these interventions are often unsuccessful [21–23]. The National Institute of Care and Excellence (NICE) states that if lifestyle changes are found to be ineffective, pharmacological treatments may be considered [24]. Despite the urgency for effective medical treatments for obesity, to date the options are limited. The sole drug treatment available in the UK, Orlistat, does not yield impressive results regarding long-term weight loss [25], and is associated with gastrointestinal side effects [26]. If these methods have failed, health care practitioners may then discuss weight loss surgery with patients. The only treatment that drastically improves patients’ weight management in a sustainable way is the Roux-en-Y gastric bypass (RYGB) surgery. However, this is a costly, invasive procedure with side effects, that may not always be effective for everyone, for example in elderly patients [27,28]. Furthermore, up to 20% of patients who undergo RYGB experience significant weight regain [29]. Intriguingly, weight loss post-surgery also coincides with an altered pattern of Nutrients 2021, 13, 481 3 of 20 secretion of gut hormones that control appetite [30–32]. Collectively, both genetic evidence and data from patients who have undergone bariatric surgery highlight the contribution of appetite control to obesity through the role of satiety-inducing gut hormones [15,27,32–34]. 3. Appetite Regulation Appetite in humans is carefully regulated by a complex system of neural signals, hormones and external stimuli, which manage the intake of food [33]. This regulation system can be broken down into central regulation involving the arcuate nucleus of the hypothalamus, and peripheral regulation via hormones which are released in the gut or elsewhere. This system requires a delicate balance of signals to function optimally, and its dysregulation can lead to imbalances in energy input compared to output, eventually leading to weight gain and obesity [35]. Appetite regulation can have both homeostatic and hedonic elements [35,36]. Homeostatic appetite control involves the regulation of energy intake needed for bodily functioning and to keep body weight static.
Recommended publications
  • The Impact of a Plant-Based Diet on Gestational Diabetes:A Review
    antioxidants Review The Impact of a Plant-Based Diet on Gestational Diabetes: A Review Antonio Schiattarella 1 , Mauro Lombardo 2 , Maddalena Morlando 1 and Gianluca Rizzo 3,* 1 Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; [email protected] (A.S.); [email protected] (M.M.) 2 Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy; [email protected] 3 Independent Researcher, Via Venezuela 66, 98121 Messina, Italy * Correspondence: [email protected]; Tel.: +39-320-897-6687 Abstract: Gestational diabetes mellitus (GDM) represents a challenging pregnancy complication in which women present a state of glucose intolerance. GDM has been associated with various obstetric complications, such as polyhydramnios, preterm delivery, and increased cesarean delivery rate. Moreover, the fetus could suffer from congenital malformation, macrosomia, neonatal respiratory distress syndrome, and intrauterine death. It has been speculated that inflammatory markers such as tumor necrosis factor-alpha (TNF-α), interleukin (IL) 6, and C-reactive protein (CRP) impact on endothelium dysfunction and insulin resistance and contribute to the pathogenesis of GDM. Nutritional patterns enriched with plant-derived foods, such as a low glycemic or Mediterranean diet, might favorably impact on the incidence of GDM. A high intake of vegetables, fibers, and fruits seems to decrease inflammation by enhancing antioxidant compounds. This aspect contributes to improving insulin efficacy and metabolic control and could provide maternal and neonatal health benefits. Our review aims to deepen the understanding of the impact of a plant-based diet on Citation: Schiattarella, A.; Lombardo, oxidative stress in GDM.
    [Show full text]
  • Multifaceted Physiological Roles of Adiponectin in Inflammation And
    International Journal of Molecular Sciences Review Multifaceted Physiological Roles of Adiponectin in Inflammation and Diseases Hyung Muk Choi 1, Hari Madhuri Doss 1,2 and Kyoung Soo Kim 1,2,* 1 Department of Clinical Pharmacology and Therapeutics, Kyung Hee University School of Medicine, Seoul 02447, Korea; [email protected] (H.M.C.); [email protected] (H.M.D.) 2 East-West Bone & Joint Disease Research Institute, Kyung Hee University Hospital at Gangdong, Gandong-gu, Seoul 02447, Korea * Correspondence: [email protected]; Tel.: +82-2-961-9619 Received: 3 January 2020; Accepted: 10 February 2020; Published: 12 February 2020 Abstract: Adiponectin is the richest adipokine in human plasma, and it is mainly secreted from white adipose tissue. Adiponectin circulates in blood as high-molecular, middle-molecular, and low-molecular weight isoforms. Numerous studies have demonstrated its insulin-sensitizing, anti-atherogenic, and anti-inflammatory effects. Additionally, decreased serum levels of adiponectin is associated with chronic inflammation of metabolic disorders including Type 2 diabetes, obesity, and atherosclerosis. However, recent studies showed that adiponectin could have pro-inflammatory roles in patients with autoimmune diseases. In particular, its high serum level was positively associated with inflammation severity and pathological progression in rheumatoid arthritis, chronic kidney disease, and inflammatory bowel disease. Thus, adiponectin seems to have both pro-inflammatory and anti-inflammatory effects. This indirectly indicates that adiponectin has different physiological roles according to an isoform and effector tissue. Knowledge on the specific functions of isoforms would help develop potential anti-inflammatory therapeutics to target specific adiponectin isoforms against metabolic disorders and autoimmune diseases.
    [Show full text]
  • New Developments in Prokinetic Therapy for Gastric Motility Disorders
    REVIEW published: 24 August 2021 doi: 10.3389/fphar.2021.711500 New Developments in Prokinetic Therapy for Gastric Motility Disorders Michael Camilleri* and Jessica Atieh Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States Prokinetic agents amplify and coordinate the gastrointestinal muscular contractions to facilitate the transit of intra-luminal content. Following the institution of dietary recommendations, prokinetics are the first medications whose goal is to improve gastric emptying and relieve symptoms of gastroparesis. The recommended use of metoclopramide, the only currently approved medication for gastroparesis in the United States, is for a duration of less than 3 months, due to the risk of reversible or irreversible extrapyramidal tremors. Domperidone, a dopamine D2 receptor antagonist, is available for prescription through the FDA’s program for Expanded Access to Investigational Drugs. Macrolides are used off label and are associated with tachyphylaxis and variable duration of efficacy. Aprepitant relieves some symptoms of gastroparesis. There are newer agents in the pipeline targeting diverse gastric (fundic, antral and pyloric) motor functions, including novel serotonergic 5-HT4 agonists, dopaminergic D2/3 antagonists, neurokinin NK1 antagonists, and ghrelin agonist. Novel Edited by: targets with potential to improve gastric motor functions include the pylorus, macrophage/ Jan Tack, inflammatory function, oxidative
    [Show full text]
  • Searching for Novel Peptide Hormones in the Human Genome Olivier Mirabeau
    Searching for novel peptide hormones in the human genome Olivier Mirabeau To cite this version: Olivier Mirabeau. Searching for novel peptide hormones in the human genome. Life Sciences [q-bio]. Université Montpellier II - Sciences et Techniques du Languedoc, 2008. English. tel-00340710 HAL Id: tel-00340710 https://tel.archives-ouvertes.fr/tel-00340710 Submitted on 21 Nov 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE MONTPELLIER II SCIENCES ET TECHNIQUES DU LANGUEDOC THESE pour obtenir le grade de DOCTEUR DE L'UNIVERSITE MONTPELLIER II Discipline : Biologie Informatique Ecole Doctorale : Sciences chimiques et biologiques pour la santé Formation doctorale : Biologie-Santé Recherche de nouvelles hormones peptidiques codées par le génome humain par Olivier Mirabeau présentée et soutenue publiquement le 30 janvier 2008 JURY M. Hubert Vaudry Rapporteur M. Jean-Philippe Vert Rapporteur Mme Nadia Rosenthal Examinatrice M. Jean Martinez Président M. Olivier Gascuel Directeur M. Cornelius Gross Examinateur Résumé Résumé Cette thèse porte sur la découverte de gènes humains non caractérisés codant pour des précurseurs à hormones peptidiques. Les hormones peptidiques (PH) ont un rôle important dans la plupart des processus physiologiques du corps humain.
    [Show full text]
  • Effects of Dietary Macronutrients on Appetite-Related Hormones in Blood on Body Composition of Lean and Obese Rats
    Animal Industry Report Animal Industry Report AS 652 ASL R2081 2006 Effects of Dietary Macronutrients on Appetite-Related Hormones in Blood on Body Composition of Lean and Obese Rats Michelle Bohan Iowa State University Lloyd L. Anderson Iowa State University Allen H. Trenkle Iowa State University Donald C. Beitz Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/ans_air Part of the Agriculture Commons, and the Animal Sciences Commons Recommended Citation Bohan, Michelle; Anderson, Lloyd L.; Trenkle, Allen H.; and Beitz, Donald C. (2006) "Effects of Dietary Macronutrients on Appetite-Related Hormones in Blood on Body Composition of Lean and Obese Rats ," Animal Industry Report: AS 652, ASL R2081. DOI: https://doi.org/10.31274/ans_air-180814-908 Available at: https://lib.dr.iastate.edu/ans_air/vol652/iss1/22 This Companion Animal is brought to you for free and open access by the Animal Science Research Reports at Iowa State University Digital Repository. It has been accepted for inclusion in Animal Industry Report by an authorized editor of Iowa State University Digital Repository. For more information, please contact [email protected]. Iowa State University Animal Industry Report 2006 Effects of Dietary Macronutrients on Appetite-Related Hormones in Blood on Body Composition of Lean and Obese Rats A.S. Leaflet R2081 ghrelin. Ghrelin is an antagonist of leptin by acting upon the neuropeptide Y/Y1 receptor pathway. Leptin causes Michelle Bohan, graduate student of biochemistry; satiety, whereas ghrelin stimulates nutrient intake. Leptin Lloyd Anderson, distinguished professor of animal science; and ghrelin thereby regulate the action of each other.
    [Show full text]
  • (Title of the Thesis)*
    THE PHYSIOLOGICAL ACTIONS OF ADIPONECTIN IN CENTRAL AUTONOMIC NUCLEI: IMPLICATIONS FOR THE INTEGRATIVE CONTROL OF ENERGY HOMEOSTASIS by Ted Donald Hoyda A thesis submitted to the Department of Physiology In conformity with the requirements for the degree of Doctor of Philosophy Queen‟s University Kingston, Ontario, Canada (September, 2009) Copyright © Ted Donald Hoyda, 2009 ABSTRACT Adiponectin regulates feeding behavior, energy expenditure and autonomic function through the activation of two receptors present in nuclei throughout the central nervous system, however much remains unknown about the mechanisms mediating these effects. Here I investigate the actions of adiponectin in autonomic centers of the hypothalamus (the paraventricular nucleus) and brainstem (the nucleus of the solitary tract) through examining molecular, electrical, hormonal and physiological consequences of peptidergic signalling. RT-PCR and in situ hybridization experiments demonstrate the presence of AdipoR1 and AdipoR2 mRNA in the paraventricular nucleus. Investigation of the electrical consequences following receptor activation in the paraventricular nucleus indicates that magnocellular-oxytocin cells are homogeneously inhibited while magnocellular-vasopressin neurons display mixed responses. Single cell RT-PCR analysis shows oxytocin neurons express both receptors while vasopressin neurons express either both receptors or one receptor. Co-expressing oxytocin and vasopressin neurons express neither receptor and are not affected by adiponectin. Median eminence projecting corticotropin releasing hormone neurons, brainstem projecting oxytocin neurons, and thyrotropin releasing hormone neurons are all depolarized by adiponectin. Plasma adrenocorticotropin hormone concentration is increased following intracerebroventricular injections of adiponectin. I demonstrate that the nucleus of the solitary tract, the primary cardiovascular regulation site of the medulla, expresses mRNA for AdipoR1 and AdipoR2 and mediates adiponectin induced hypotension.
    [Show full text]
  • Pharmacological Agents Currently in Clinical Trials for Disorders in Neurogastroenterology
    Pharmacological agents currently in clinical trials for disorders in neurogastroenterology Michael Camilleri J Clin Invest. 2013;123(10):4111-4120. https://doi.org/10.1172/JCI70837. Clinical Review Esophageal, gastrointestinal, and colonic diseases resulting from disorders of the motor and sensory functions represent almost half the patients presenting to gastroenterologists. There have been significant advances in understanding the mechanisms of these disorders, through basic and translational research, and in targeting the receptors or mediators involved, through clinical trials involving biomarkers and patient responses. These advances have led to relief of patients’ symptoms and improved quality of life, although there are still significant unmet needs. This article reviews the pipeline of medications in development for esophageal sensorimotor disorders, gastroparesis, chronic diarrhea, chronic constipation (including opioid-induced constipation), and visceral pain. Find the latest version: https://jci.me/70837/pdf Review Pharmacological agents currently in clinical trials for disorders in neurogastroenterology Michael Camilleri Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota, USA. Esophageal, gastrointestinal, and colonic diseases resulting from disorders of the motor and sensory functions represent almost half the patients presenting to gastroenterologists. There have been significant advances in under- standing the mechanisms of these disorders, through basic and translational research, and in targeting the recep- tors or mediators involved, through clinical trials involving biomarkers and patient responses. These advances have led to relief of patients’ symptoms and improved quality of life, although there are still significant unmet needs. This article reviews the pipeline of medications in development for esophageal sensorimotor disorders, gastropa- resis, chronic diarrhea, chronic constipation (including opioid-induced constipation), and visceral pain.
    [Show full text]
  • Secretin and Autism: a Clue but Not a Cure
    SCIENCE & MEDICINE Secretin and Autism: A Clue But Not a Cure by Clarence E. Schutt, Ph.D. he world of autism has been shaken by NBC’s broadcast connections could not be found. on Dateline of a film segment documenting the effect of Tsecretin on restoring speech and sociability to autistic chil- The answer was provided nearly one hundred years ago by dren. At first blush, it seems unlikely that an intestinal hormone Bayless and Starling, who discovered that it is not nerve signals, regulating bicarbonate levels in the stomach in response to a but rather a novel substance that stimulates secretion from the good meal might influence the language centers of the brain so cells forming the intestinal mucosa. They called this substance profoundly. However, recent discoveries in neurobiology sug- “secretin.” They suggested that there could be many such cir- gest several ways of thinking about the secretin-autism connec- culating substances, or molecules, and they named them “hor- tion that could lead to the breakthroughs we dream about. mones” based on the Greek verb meaning “to excite”. As a parent with more than a decade of experience in consider- A simple analogy might help. If the body is regarded as a commu- ing a steady stream of claims of successful treatments, and as a nity of mutual service providers—the heart and muscles are the pri- scientist who believes that autism is a neurobiological disorder, I mary engines of movement, the stomach breaks down foods for have learned to temper my hopes about specific treatments by distribution, the liver detoxifies, and so on—then the need for a sys- seeing if I could construct plausible neurobiological mechanisms tem of messages conveyed by the blood becomes clear.
    [Show full text]
  • Links Between HPA Axis and Adipokines: Clinical Implications in Paradigms of Stress-Related Disorders
    Expert Review of Endocrinology & Metabolism ISSN: 1744-6651 (Print) 1744-8417 (Online) Journal homepage: https://www.tandfonline.com/loi/iere20 Links between HPA axis and adipokines: clinical implications in paradigms of stress-related disorders Panagiota Papargyri, Evangelia Zapanti, Nicolaos Salakos, Loukas Papargyris, Alexandra Bargiota & George MASTORAKOS To cite this article: Panagiota Papargyri, Evangelia Zapanti, Nicolaos Salakos, Loukas Papargyris, Alexandra Bargiota & George MASTORAKOS (2018) Links between HPA axis and adipokines: clinical implications in paradigms of stress-related disorders, Expert Review of Endocrinology & Metabolism, 13:6, 317-332, DOI: 10.1080/17446651.2018.1543585 To link to this article: https://doi.org/10.1080/17446651.2018.1543585 Accepted author version posted online: 01 Nov 2018. Published online: 13 Nov 2018. Submit your article to this journal Article views: 55 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=iere20 EXPERT REVIEW OF ENDOCRINOLOGY & METABOLISM 2018, VOL. 13, NO. 6, 317–332 https://doi.org/10.1080/17446651.2018.1543585 REVIEW Links between HPA axis and adipokines: clinical implications in paradigms of stress-related disorders Panagiota Papargyria, Evangelia Zapantib, Nicolaos Salakosc, Loukas Papargyrisd,e, Alexandra Bargiotaf and George MASTORAKOSa aUnit of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion Hospital, School of Medicine, National and Kapodistrian
    [Show full text]
  • Glucagon and Gastrointestinal Motility in Relation to Thyroid-Parathyroid Function
    Upsala J Med Sci 77: 183-188, 1972 Glucagon and Gastrointestinal Motility in Relation to Thyroid-Parathyroid Function HENRY JOHANSSON and ANDERS SEGERSTROM From the Department of Surgery, University Hospital, Uppsala, Sweden ABSTRACT MATERIAL Gastrointestinal propulsive motility was studied after The material consisted of 109 male albino rats (Sprague- inhgastric deposition of a non-absorbable isotope in Dawley) fed on laboratory food and with free access to rats after subcutaneous glucagon injections. Glucagon water. The animals were distributed at random in fol- administration was followed by retardation of gastric lowing series: emptying. The results indicated that the retarding effect Series I of glucagon on gastrointestinal propulsion was independent The influence of glucagon on gastrointestinal motility in of the presence of both thyroid and parathyroid tissue. intact rats. The observation period was 7 days. The hypocalcemic effect of glucagon was exerted in- dependently of the presence of thyroid tissue, Le. thyro- 1. Intact rats given 1.2 mg glucagon/kg body weight calcitonin. (GN-A, n= 6) 2. Intact rats given 4.8 mg glucagon/kg body weight (GN-B, n= 5) 3. Intact rats given 9.6 mg glucagon/kg body weight INTRODUCTION (GN-C, n= 12) 4. Intact rats given glucine buffert (GLY, n= 10). Glucagon is known to influence gastrointestinal Series I1 motility. In man, Dotevall & Kock (2) observed The influence of glucagon on gastrointestinal motility in that glucagon retarded gastrointestinal motility parathyroidectomized rats. The animals were given 4.8 independently of the hyperglucemia. In dogs, mg glucagon/kg body weight. The observation period glucagon retarded motility of the stomach ani was 90 days.
    [Show full text]
  • Supplementary Table 1. Clinico-Pathologic Features of Patients with Pancreatic Neuroendocrine Tumors Associated with Cushing’S Syndrome
    Supplementary Table 1. Clinico-pathologic features of patients with pancreatic neuroendocrine tumors associated with Cushing’s syndrome. Review of the English/Spanish literature. Other hormones Age of Cortisol Other hormones Other ACTH Size (ICH or assay) ENETS Follow- Time Year Author Sex CS onset level (Blood syndromes or Site MET Type AH level (cm) corticotrophic Stage up (months) (years) (µg/dl) detection) NF other differentiation 1 1 1946 Crooke F 28 uk uk none no 4.5 H liver/peritoneum NET uk uk yes IV DOD 6 2 1956 Rosenberg 2 F 40 uk 92 none no 10 B liver NET uk uk yes IV PD 3 & p 3 1959 Balls F 36 uk elevated insulin Insulinoma 20 B liver/LNl/lung NET uk uk yes IV DOD 1 4 & 4 1962 Meador F 47 13~ elevated none no uk T liver/spleen NET ACTH uk yes IV uk 5 1963 Liddle5 uk uk uk elevated uk uk uk uk uk NET ACTH uk uk uk uk 6 1964 Hallwright6 F 32 uk uk none no large H LN/liver NET ACTH, MSH uk yes IV DOD 24 7 1965 Marks7 M 43 uk elevated insulin insulinomas 1.8 T liver NET uk uk yes IV DOD 7 8 1965 Sayle8 F 62 uk uk none carcinoidb 4 H LN/liver NET uk uk yes IV DOD 6 9 1965 Sayle8 F 15 uk uk none no 4 T no NET ACTH uk yes IIa DOD 5 9 b mesentery/ 10 1965 Geokas M 59 uk uk gastrin ZES large T NET uk uk yes IV DOD 2 LN/pleural/bone 11 1965 Law10 F 35 1.2 ∞ 91 gastrin ZESs uk B LN/liver NET ACTH, MSH gastrin yes IV PD 12 1967 Burkinshaw11 M 2 uk 72 none no large T no NET uk uk no uk AFD 12 13 1968 Uei12 F 9 uk uk none ZESs 7 T liver NET ACTH uk yes IV DOD 8 13 PTH, ADH, b gastrin, 14 1968 O'Neal F 52 13~ uk ZES uk T LN/liver/bone NET
    [Show full text]
  • Glucagon-Like Peptide 1 Secretion by the L-Cell the View from Within Gareth E
    Glucagon-Like Peptide 1 Secretion by the L-Cell The View From Within Gareth E. Lim1 and Patricia L. Brubaker1,2 Glucagon-like peptide 1 (GLP-1) is a gut-derived peptide GLP-1 receptor antagonists as well as GLP-1 receptor null secreted from intestinal L-cells after a meal. GLP-1 has mice have demonstrated that GLP-1 makes an essential numerous physiological actions, including potentiation of contribution to the “incretin” effect after a meal (3,4). glucose-stimulated insulin secretion, enhancement of However, GLP-1 secretion is reduced in patients with type ␤-cell growth and survival, and inhibition of glucagon 2 diabetes (5–7), and this may contribute in part to the release, gastric emptying, and food intake. These antidia- reduced incretin effect and the hyperglycemia that is betic effects of GLP-1 have led to intense interest in the use observed in these individuals (8). Thus, interest has now of this peptide for the treatment of patients with type 2 focused on the factors that regulate the release of this diabetes. Oral nutrients such as glucose and fat are potent physiological regulators of GLP-1 secretion, but non-nutri- peptide after nutrient ingestion. Many different GLP-1 ent stimulators of GLP-1 release have also been identified, secretagogues have been described in the literature over including the neuromodulators acetylcholine and gastrin- the past few decades, including nutrients, neurotransmit- releasing peptide. Peripheral hormones that participate in ters, neuropeptides, and peripheral hormones (rev. in energy homeostasis, such as leptin, have also been impli- 9,10). However, the specific receptors, ion channels, and cated in the regulation of GLP-1 release.
    [Show full text]