Part 1 Latest Innovation Surefish Faravashi.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Part 1 Latest Innovation Surefish Faravashi.Pdf www.agilent.com/genomics/surefish Latest Innovation and Advancement in High Resolution Oligo FISH Technology Nargol Faravashi – Sr. Product Manager, Genomics, Agilent Technologies Shashikant Kulkarni M.S (Medicine), Ph.D., FACMG Head of Clinical Genomics Medical Director Cytogenomics and Molecular Pathology Associate Professor of Pediatrics, Genetics, Pathology and Immunology Washington University School of Medicine, St Louis Overview FISH Technology: • Method for detection of translocations, inversions, amplifications, deletions and duplications • Better detection of low-level mosaicism • Enables Visualization in intact cellular context • positional information of aberrations in chromosomal context Limitations of current technologies: Clone based methodologies: bacterial artificial chromosomes (BAC), fosmids, PAC (P1-derived artificial chromosome), YAC (yeast artificial chromosome), PCR templates • Resolution limitations (150-300 Kb) • Not ideal for visualization/verification of smaller genomic regions • Labor intensive • Rapid turnaround time Agilent Industrial Scale Manufacturing: Oligo Library Synthesis (OLS) Oligo Library Synthesis Solution of user-defined oligonucleotides: Release “Oligo Library” oligonucleotides from the microarray BioReagent: substrate .Gene(ome) synthesis .Gene silencing library .Genome partitioning .OligoFISH Oligos specifically selected to unique sequences Repetitive elements Segmental duplications Step 1: Tile region with long oligonucelotides: Step 2: Remove any non-unique oligos: Step 3: Manufacture labeled probes using specifically designed long oligonucleotides Unique design methodology for specific targets , provides unparalleled resolution with high sensitivity and specificity Agilent’s SureFISH offerings SureFISH Probes: 5µl configuration • ASR manufactured under cGMP/QSR guidelines General Purpose Reagents: 100µl configuration • Hybridization buffer • Mounting buffer • Wash buffer1 • Wash buffer2 www.agilent.com/genomics/surefish Agilent’s SureFISH offerings Integration with Microarray Data: • Characterization of CGH findings by visualizing the probe of interest in Agilent CytoGenomics Software • Link from CytoGenomics software to eCommerce website http://ft2.genomics.agilent.com/ProductSearch. aspx?chr=1&PageID=3000 Superior Performance & Key attributes : Coverage of Most Relevant Targets Broad menu-Hundreds of relevant probes for constitutional and cancer applications Flexibility • Various fluorescent dyes to fit visualization needs • In silico design methodology to target specific regions Quality Control • Probe localization to correct chromosomes demonstrated by FISH hybridization images. Images provided on the website for both 4, 14 hour, metaphase & interphase • Each probes is sequence verified to ensure specificity to the region of interest Streamlined Workflow • Pre-labeled probes reduce labor time • Compatible with established FISH procedures and filter sets • Fast Hybridization time – 4 hours • No Cot-1 DNA Comprehensive SureFISH Probe Menu Telomere Telomere Telomere dLOC100130417,SAM FAM110C,SH3YL1,ACP1 CHL1,, CNTN4,, D11,NOC2L,KLHL17, ,FAM150B, SYN2,TIMP4,PPARG PLEKHN1,C1orf170,H MYCNOS,MYCN, ,, ES4,ISG15,AGRN,RN NCOA1, LBH,YPEL5,, TSEN2,LOC1001294 F223,C1orf159,LOC25 ABHD12,GINS1,NANP,N 80,MKRN2,, 4099,MIR200B,MIR20 INL,PYGB,ZNF337, CEP19,FBXO45,LRR Telomere 0A,MIR429,TTLL10, EML4,COX7A2L,, C33,PIGX,WDR53,, RPL23AP53,ZNF596, SKI,MORN1,LOC1001 VRK2,FANCL,, BCL11A,, FOXL2,C3orf72,, GATA4,NEIL2,, Telomere 29534,RER1,PEX10,P FLJ16341,REL,PUS10 NULL,, MECOM,, Telomere PNOC,ZNF395,, C9orf66,DOCK8,KAN LCH2,PANK4,HES5,L KIAA1841,LOC339803,C BDH1,, DDHD2,PPAPDC1B, K1,, DMRT1,DMRT3,, Telomere FAM20C,, OC115110,LOC10013 2orf74,AHSA2,USP4 PIK3CA,KCNMB3,, WHSC1L1,LETM2,FG RCL1,MIR101- PLEKHG4B,LRRC14B,C Telomere LOC100133311,HOX 3445,TNFRSF14, MALL,NPHP1,LINC0011 SOX2-OT,SOX2,, FR1,C8orf86,, 2,JAK2, CDC127,SDHA, TERT, FOXC1,GMDS, A5,HOXA6,HOXA7,H AJAP1, 6, MBD5,, SST,RTP2,LOC1001 CEBPD,LOC1002878 C9orf46,CD274,, KHDRBS2, C6orf15,PSORS1C1,C OXA10- AMPD1,NRAS,CSDE1 HOXD13,HOXD12,HOXD 31635,BCL6,, Telomere 46,KIAA0146,, CHD7, PAX5,MIR4540,MIR44 DCBLD1,ROS1,VGLL2,R DSN,PSORS1C2,CCH HOXA9,HOXA9,MIR1 ,SIKE1, NOTCH2, 11,HOXD10,HOXD9,HO CWH43,FRYL,OCIA ZNF721,PIGG,PDE6B, RUNX1T1, TRPS1,, 76,, OS1, APC, CR1,TCF19,POU5F1,P 96B,HOXA10,HOXA1 Centromere XD8,LOC100506783,MIR D1,OCIAD2,SLC10A ATP5I,MYL5,MFSD7,P EXT1, NULL,, PTCH1,LOC10050734 KDM3B,REEP2,EGR1,E SORS1C3, 1,HOXA11- RNF115,CD160,PDZK 10B,HOXD4,HOXD3,LO 4,ZAR1,, CGF3,LOC100129917, MYC,PVT1,MIR1204,, 6, LMX1B,, TF1, SUPT3H,RUNX2,, AS1,HOXA13, 1,, BCL9,, C401022,HOXD1,LOC40 PIGX,PAK2,SENP5, CPLX1,, PVT1,MIR1204,, ASS1,LOC100272217 PDE6A,SLC26A2,TIGD6, MTRNR2L9,KHDRBS2, IKZF1,FIGNL1,DDC, GJA5,GJA8,, 1022,, NCBP2,LOC152217, FAM53A,SLBP,TMEM ZNF251,ZNF34,RPL8, ,FUBP3,PRDM12,EX HMGXB3,CSF1RTCOF1, , EGFR, VOPP1, HIP1, ANXA9,CERS2,FAM6 OSGEPL1,ORMDL1,PM PIGZ,MFI2,MFI2- 129,TACC3,FGFR3,LE ZNF517,ZNF7,COMM OSC2,ABL1,QRFP,FI CD74, CEBPD,KIAA0146,LOC LOC100506136,SHF 3A,PRUNE,SETDB1, S1,, PAX3,, CCDC140,, AS1,DLG1,MIR4797, TM1,WHSC1, D5,ZNF250,ZNF16,ZN BCD1,, RANBP17,TLX3,MIR391 100287846,, MYB, M1, TES, MET, BRAF, ISG20L2,RRNAD1,M HDAC4,MIR4440,MIR44 LOC100507086,, RPL21P44,CHIC2,GS F252,TMED10P1,C8o NOTCH1,MIR4673,MI 2,NPM1,FGF18MIR3912, MLLT4,, MRPS33,LOC100507 RPL24,HDGF,PRCC, 41,, LOC100505806,LOC X2,, PDGFRA, KIT,, rf77,C8orf33 R4674,, NPM1,FGF18, FAM120B,MIR4644,PS 421, EPHB6,TRPV6, SH2D2A,NTRK1,INSR HDAC4,MIR4440,MIR44 285692,SEMA5A,SN TET2,TET2,,, Telomere EHMT1,FLJ40292,MI CNOT6,SCGB3A1,FLT4, MB1,TBP,PDCD2 GALNT11,MLL3, R,PEAR1,LRRC71,AR 41,MGC16025,MIR4269, ORD123,TAS2R1,, Telomere R602 BTNL8,BTNL3,BTNL9,O Telomere RBM33,SHH, VIPR2 HGEF11,MIR765,, MIR2467,, KIAA0226,KIAA0226, Telomere Telomere RALGPS2,FAM20B,T ING5,D2HGDH,GAL3ST MIR922,FYTTD1,LR R2V2,TRIM7,MIR4638,T OR3A,ABL2,, DISP1,, 2,NEU4,PDCD1,C2orf85, CH3,IQCG,RPL35A,L RIM41,GNB2L1,SNORD9 Telomere FH,KMO,, Telomere MLN, 6A,SNORD95,TRIM52. YWHAE,CRK,MYO1C SDCCAG8,AKT3,AKT Telomere Telomere PAFAH1B1,KIAA0664, 3,AKT3, SHBG,SAT2,ATP1B2,T SH3BP5L,MIR3124,Z P53,WRAP53,EFNB3,D NF672,ZNF692,PGB2 NAH2, ALOX15B,ALOX12B,MI Telomere Telomere R4314,ALOXE3,HES7, INS- Telomere PER1,VAMP2,TMEM10 IGF2,IGF2,MIR483,IGF2- IQSEC3,LOC574538,S 7,MIR4521,MIR3676,C1 Telomere AS,INS,TH,MIR4686, LC6A12,SLC6A13, 7orf59,AURKB,LINC003 Telomere ZMYND11,DIP2C,FLJ KCNQ1, WT1,WT1-AS, A2M,C12orf33,LOC144 Centromere 24,CTC1,PFAS, Telomere EXT2,, NULL, TRAP1,CREBBP, RBFOX1, 45983,GATA3, 571,PZP, Centromere SNRPN,SNURF,SNURF, PMP22,PMP22,PMP22, USP14,THOC1,COLE CCND1,ORAOV1,FGF19 TNFRSF17,SNX29, C10orf114,MIR1915,C CASC1,LYRM5,KRAS, FOXG1,C14orf23, SNORD107,PAR- MIR4731,, TEKT3, C12, SS18,, TCF4, , ORAOV1,FGF19, SN,PAR5,SNORD64,SN C16orf45,KIAA0430,NDE1, 10orf140,MLLT10,DN R3HDM2,INHBC,INHB Centromere METTL21D,SOS2,L2HG CDRT4,FAM18B2- BCL2,KDSR,, FGF4,FGF3, ORD108, UBE3A, MIR484,MYH11, AJC1,, NULL,, RET,, E,GLI1,ARHGAP9,MAR MPHOSPH8,PSPC1T, DH,ATP5S,CDKL1, NIN, CDRT4,FAM18B2, BCL2,KDSR,VPS4B, YAP1,BIRC3,BIRC2,TME OCA2,, OTUD7A, FOPNL,ABCC1,ABCC6,, BMPR1A,, S, TTL,, ELF1,WBP4, PTGDR,PTGER2, RAI1,SMCR5,SREBF1, HSBP1L1,TXNL4A,RB M123, NPAT,ATM, CHRNA7, C16orf52,VWA3A, ACTA2,FAS,FAS- MBD6,DCTN2,KIF5A,PI DLEU2,TRIM13,KCNRG, SAMD4A, MIR33B, SPECC1, FA,ADNP2,LOC10013 ZBTB16, ANKRD26P1,C16orf87,D ATXN2L,TUFM,MIR4721,S AS1, DPCD,FBXW4, P4K2C,DTX3,ARHGEF MIR16- C14orf33,KTN1, MIR4733,NF1,OMG,EVI 0522,PARD6G CD3E,CD3D,CD3G,UBE NAJA2,GPT2,MYLK3,NE H2B1,ATP2A1,RABEP2,CD CALY,PRAP1,C10orf1 25,SLC26A10,B4GALN 1,MIR15A,DLEU1, RAD51B, 2B,EVI2A,RAB11FIP4, Telomere 4A,ATP5L,MLL, TO2,ORC6,SHCBP1,VP 19,NFATC2IP,MIR4517,SP 25,ECHS1,MIR3944,P T1, 9- DLEU7, ZIC5,ZIC2, DICER1,MIR3173,DICE ACACA, CD3D,CD3G,UBE4A,AT S35, SMAD6, NS1,LAT, AOX,MTG1,SPRN,LO Mar,AGAP2,CDK4,CYP PCID2,CUL4A,LAMP1,G R1-AS, TCL6,TCL1B PGAP3,ERBB2,MIR472 P5L,MLL,TTC36,TMEM2 CYP1A1,CYP1A2,CSK,M ZNF668,ZNF646,PRSS53,V C619207,CYP2E1,SY 27B1,LOC100130776, RTP1, RASA3,CDC16 NULL, 8,MIEN1,GRB7,, 5,IFT46,ARCN1,PHLDB1 IR4513,LMAN1L,CPLX3, KORC1,BCKDK,KAT8,PRS CE1,SPRNP1 METTL1,METTL21B,T Telomere Telomere DHX8,ETV4, Telomere , SFM,TSPAN31, ULK3,SCAMP2, S8,PRSS36, MAF, CRHR1,LOC100128977 Centromere MLL,TTC36,TMEM25,IFT RPSAP52,HMGA2, LOC100507217,CHD2,MI LOC400550,FOXF1,MTHFS ,IMP5,MAPT,LOC10013 CLTCL1, HIRA,, 46,ARCN1,PHLDB1,TRE RAP1B,SNORA70G,LO R3175, D,FLJ30679,FOXC2,FOXL1 0148,STH,KIAA1267, TBX1,GNB1L,, H, SNX19, C100507250,NUP107, IGF1R,MIR4714,PGPEP Telomere MKS1,LPO,MPO,BZRA TXNRD2,COMT,MI JAM3,NCAPD3,VPS26B, SLC35E3,MDM2,CPM, 1L P1,LOC100506779,MIR R4761,ARVCF THYN1,ACAD8,, NULL RPL6,PTPN11,, Telomere Telomere 142,MIR4736, SOX9, CRKL,AIFM3,LZTR Telomere TBX5,LOC255480, STS, CDKL5,RS1, ASPSCR1,STRA13,LR 1,THAP7,FLJ39582, WDR66,BCL7A,MLXIP DMD, RP2,PHF16,, RC45 MIR650,IGLL5, Telomere SLC38A5,FTSJ1,P Telomere IGLL5,RTDR1,GNA ORCN,EBP,TBC1D Telomere Z,RAB36,BCR,FBX 25, PPAP2C,MIER2,THE Telomere W4P1,CES5AP1,ZD GLOD5,GATA1,HD BCORP1,T G,C2CD4C,SHC2,OD JAG1, HHC8P1,IGLL1,C22 Centromere AC6,ERAS,PCSK1 XLNG2P,T F3L2,MADCAM1,C19 DNMT3B,MA orf43,GUSBP11,RG CLIC6,LINC001 N, XLNG2P,T orf20,CDC34,GZMM, PRE1, L4,ZNF70,VPREB3, 60,LOC1005063 BCYRN1,GJB1,ZM XLNG2P,C POLRMT,FGF22,RNF PTPRT C22orf15,CHCHD10 85,RUNX1, YM3,NONO,ITGB1 Yorf15B,K 126,FSTL3,PRSS57, ABCC13,HSP ,MMP11,SMARCB1, LINC00114,LIN BP2, TSIX,XIST, STK11,C19orf26,ATP A13,LIPI,RBM DERL3,SLC2A11,L DM5DTelo C00114,LINC00 PLP1,RAB9B,, 5D,MIDN,C19orf23,CI 11,SAMSN1, OC284889,MIF,GST mere 114,ETS2,PSM COL4A6, RBP,C19orf24, C20orf108,AU T2,GSTT2B,DDTL, G1,BRWD1, KCNE1L,ACSL4, LYPD4,DMRTC2,RPS RKA,CSTF1, DDT,GSTT2,GSTTP LINC00323,MIR
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • The Impact of Chromosomal Translocation Locus and Fusion Oncogene Coding Sequence in Synovial Sarcomagenesis
    Oncogene (2016) 35, 5021–5032 © 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 0950-9232/16 www.nature.com/onc ORIGINAL ARTICLE The impact of chromosomal translocation locus and fusion oncogene coding sequence in synovial sarcomagenesis KB Jones1,2,3, JJ Barrott1,2,3, M Xie4, M Haldar5, H Jin1,2,3, J-F Zhu1,2,3, MJ Monument1,3, TL Mosbruger3,6, EM Langer5, RL Randall1,3, RK Wilson4,7,8,9, BR Cairns2,3,10, L Ding4,7,8,9 and MR Capecchi5 Synovial sarcomas are aggressive soft-tissue malignancies that express chromosomal translocation-generated fusion genes, SS18-SSX1 or SS18-SSX2 in most cases. Here, we report a mouse sarcoma model expressing SS18-SSX1, complementing our prior model expressing SS18-SSX2. Exome sequencing identified no recurrent secondary mutations in tumors of either genotype. Most of the few mutations identified in single tumors were present in genes that were minimally or not expressed in any of the tumors. Chromosome 6, either entirely or around the fusion gene expression locus, demonstrated a copy number gain in a majority of tumors of both genotypes. Thus, by fusion oncogene coding sequence alone, SS18-SSX1 and SS18-SSX2 can each drive comparable synovial sarcomagenesis, independent from other genetic drivers. SS18-SSX1 and SS18-SSX2 tumor transcriptomes demonstrated very few consistent differences overall. In direct tumorigenesis comparisons, SS18-SSX2 was slightly more sarcomagenic than SS18-SSX1, but equivalent in its generation of biphasic histologic features. Meta-analysis of human synovial sarcoma patient series identified two tumor–gentoype–phenotype correlations that were not modeled by the mice, namely a scarcity of male hosts and biphasic histologic features among SS18-SSX2 tumors.
    [Show full text]
  • Synovial Sarcoma: Recent Discoveries As a Roadmap to New Avenues for Therapy
    Published OnlineFirst January 22, 2015; DOI: 10.1158/2159-8290.CD-14-1246 REVIEW Synovial Sarcoma: Recent Discoveries as a Roadmap to New Avenues for Therapy Torsten O. Nielsen 1 , Neal M. Poulin 1 , and Marc Ladanyi 2 ABSTRACT Oncogenesis in synovial sarcoma is driven by the chromosomal translocation t(X,18; p11,q11), which generates an in-frame fusion of the SWI/SNF subunit SS18 to the C-terminal repression domains of SSX1 or SSX2. Proteomic studies have identifi ed an integral role of SS18–SSX in the SWI/SNF complex, and provide new evidence for mistargeting of polycomb repression in synovial sarcoma. Two recent in vivo studies are highlighted, providing additional support for the importance of WNT signaling in synovial sarcoma: One used a conditional mouse model in which knock- out of β-catenin prevents tumor formation, and the other used a small-molecule inhibitor of β-catenin in xenograft models. Signifi cance: Synovial sarcoma appears to arise from still poorly characterized immature mesenchymal progenitor cells through the action of its primary oncogenic driver, the SS18–SSX fusion gene, which encodes a multifaceted disruptor of epigenetic control. The effects of SS18–SSX on polycomb-mediated gene repression and SWI/SNF chromatin remodeling have recently come into focus and may offer new insights into the basic function of these processes. A central role for deregulation of WNT–β-catenin sig- naling in synovial sarcoma has also been strengthened by recent in vivo studies. These new insights into the the biology of synovial sarcoma are guiding novel preclinical and clinical studies in this aggressive cancer.
    [Show full text]
  • A Novel FISH Assay for SS18–SSX Fusion Type in Synovial Sarcoma
    Laboratory Investigation (2004) 84, 1185–1192 & 2004 USCAP, Inc All rights reserved 0023-6837/04 $30.00 www.laboratoryinvestigation.org A novel FISH assay for SS18–SSX fusion type in synovial sarcoma Cecilia Surace1,2, Ioannis Panagopoulos1, Eva Pa˚lsson1, Mariano Rocchi2, Nils Mandahl1 and Fredrik Mertens1 1Department of Clinical Genetics, Lund University Hospital, Lund, Sweden and 2DAPEG, Section of Genetics, University of Bari, Bari, Italy Synovial sarcoma is a morphologically, clinically and genetically distinct entity that accounts for 5–10% of all soft tissue sarcomas. The t(X;18)(p11.2;q11.2) is the cytogenetic hallmark of synovial sarcoma and is present in more than 90% of the cases. It produces three types of fusion gene formed in part by SS18 from chromosome 18 and by SSX1, SSX2 or, rarely, SSX4 from the X chromosome. The SS18–SSX fusions do not seem to occur in other tumor types, and it has been shown that in synovial sarcoma a clear correlation exists between the type of fusion gene and histologic subtype and, more importantly, clinical outcome. Previous analyses regarding the type of fusion genes have been based on PCR amplification of the fusion transcript, requiring access to good- quality RNA. In order to obtain an alternative tool to diagnose and follow this malignancy, we developed a fluorescence in situ hybridization (FISH) assay that could distinguish between the two most common fusion genes, that is, SS18–SSX1 and SS18–SSX2. The specificity of the selected bacterial artificial chromosome clones used in the detection of these fusion genes, as well as the sensitivity of the analysis in metaphase and interphase cells, was examined in a series of 28 synovial sarcoma samples with known fusion gene status.
    [Show full text]
  • Histone H2A Bbd (H2AFB1) (NM 001017990) Human Recombinant Protein Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TP316020 Histone H2A Bbd (H2AFB1) (NM_001017990) Human Recombinant Protein Product data: Product Type: Recombinant Proteins Description: Recombinant protein of human H2A histone family, member B1 (H2AFB1) Species: Human Expression Host: HEK293T Tag: C-Myc/DDK Predicted MW: 12.5 kDa Concentration: >50 ug/mL as determined by microplate BCA method Purity: > 80% as determined by SDS-PAGE and Coomassie blue staining Buffer: 25 mM Tris.HCl, pH 7.3, 100 mM glycine, 10% glycerol Preparation: Recombinant protein was captured through anti-DDK affinity column followed by conventional chromatography steps. Storage: Store at -80°C. Stability: Stable for 12 months from the date of receipt of the product under proper storage and handling conditions. Avoid repeated freeze-thaw cycles. RefSeq: NP_001017990 Locus ID: 474382 UniProt ID: P0C5Y9 RefSeq Size: 517 Cytogenetics: Xq28 RefSeq ORF: 345 Synonyms: H2A.B; H2A.Bbd; H2AFB1 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 Histone H2A Bbd (H2AFB1) (NM_001017990) Human Recombinant Protein – TP316020 Summary: Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Nucleosomes consist of approximately 146 bp of DNA wrapped around a histone octamer composed of pairs of each of the four core histones (H2A, H2B, H3, and H4).
    [Show full text]
  • Charakterisierung Der Interaktion Der Merkelzell-Polyomavirus Kodierten T-Antigene Mit Dem Wirtsfaktor Kap1 Svenja Siebels
    Charakterisierung der Interaktion der Merkelzell-Polyomavirus kodierten T-Antigene mit dem Wirtsfaktor Kap1 DISSERTATION zur Erlangung des Doktorgrades (Dr. rer. nat.) an der Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich Biologie der Universität Hamburg vorgelegt von Svenja Siebels Hamburg, Juli 2018 Gutachter: Prof. Dr. Nicole Fischer Prof. Dr. Thomas Dobner Disputation: 19. Oktober 2018 Für meine Familie. Zusammenfassung Das Merkelzell-Polyomavirus (MCPyV) ist nachweislich für ca. 80 % aller Merkelzellkarzinome (Merkel cell carcinoma (MCC)) verantwortlich. Das virale Genom ist dabei monoklonal in die DNA der Wirtszelle integriert und trägt zusätzlich charakteristische Mutationen im T-Lokus. Das MCPyV kodiert wie alle Polyomaviren (PyV) die Tumor-Antigene (T-Ag) Large T-Ag und small T-Ag, die transformierende Eigenschaften besitzen. Dennoch sind viele Fragen zur MCC-Entstehung weiterhin ungeklärt. Insbesondere die Ursprungszelle, aus der das MCC hervorgeht, ist ungewiss. Das unvollständige Wissen um den viralen Lebenszyklus sowie die kontroversen Modelle hinsichtlich des Reservoirs des Virus erschweren zusätzlich das Verständnis zur Tumorentstehung. Um das transformierende Potential des MCPyV LT-Ags zu beleuchten, wurden vor Beginn dieser Arbeit neue zelluläre Interaktionspartner des LT-Ags mithilfe von Tandem-Affinitäts-Aufreinigung und anschließender multidimensionaler Protein-Interaktions-Technologie (MudPIT) identifiziert (M. Czech-Sioli, Manuskript in Arbeit). Unter den Kandidaten befand sich das Chromatin-modifizierende Protein, Zellzyklusregulator und Korepressor Kap1 (KRAB-associated protein 1) als putativer Interaktionspartner des LT-Ags. Die Interaktion des LT-Ags, sT-Ags und des verkürzten tLT-Ags (tLT-Ags) mit dem Wirtsfaktor Kap1 wurde in dieser Arbeit mithilfe von Koimmunpräzipitationen in unterschiedlichen Tumorzelllinien bestätigt. Weiterhin wurde die Bindung des LT-Ags an Kap1 auf den N-Terminus des LT-Ags und die RBCC-Domäne von Kap1 eingegrenzt.
    [Show full text]
  • Chew Et Al-2021-Nature Communi
    Short H2A histone variants are expressed in cancer Guo-Liang Chew, Marie Bleakley, Robert Bradley, Harmit Malik, Steven Henikoff, Antoine Molaro, Jay Sarthy To cite this version: Guo-Liang Chew, Marie Bleakley, Robert Bradley, Harmit Malik, Steven Henikoff, et al.. Short H2A histone variants are expressed in cancer. Nature Communications, Nature Publishing Group, 2021, 12 (1), pp.490. 10.1038/s41467-020-20707-x. hal-03118929 HAL Id: hal-03118929 https://hal.archives-ouvertes.fr/hal-03118929 Submitted on 22 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ARTICLE https://doi.org/10.1038/s41467-020-20707-x OPEN Short H2A histone variants are expressed in cancer Guo-Liang Chew 1, Marie Bleakley2, Robert K. Bradley 3,4,5, Harmit S. Malik4,6, Steven Henikoff 4,6, ✉ ✉ Antoine Molaro 4,7 & Jay Sarthy 4 Short H2A (sH2A) histone variants are primarily expressed in the testes of placental mammals. Their incorporation into chromatin is associated with nucleosome destabilization and modulation of alternate splicing. Here, we show that sH2As innately possess features similar to recurrent oncohistone mutations associated with nucleosome instability. Through 1234567890():,; analyses of existing cancer genomics datasets, we find aberrant sH2A upregulation in a broad array of cancers, which manifest splicing patterns consistent with global nucleosome destabilization.
    [Show full text]
  • Intrinsic Disorder of the BAF Complex: Roles in Chromatin Remodeling and Disease Development
    International Journal of Molecular Sciences Article Intrinsic Disorder of the BAF Complex: Roles in Chromatin Remodeling and Disease Development Nashwa El Hadidy 1 and Vladimir N. Uversky 1,2,* 1 Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd. MDC07, Tampa, FL 33612, USA; [email protected] 2 Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow Region, Russia * Correspondence: [email protected]; Tel.: +1-813-974-5816; Fax: +1-813-974-7357 Received: 20 September 2019; Accepted: 21 October 2019; Published: 23 October 2019 Abstract: The two-meter-long DNA is compressed into chromatin in the nucleus of every cell, which serves as a significant barrier to transcription. Therefore, for processes such as replication and transcription to occur, the highly compacted chromatin must be relaxed, and the processes required for chromatin reorganization for the aim of replication or transcription are controlled by ATP-dependent nucleosome remodelers. One of the most highly studied remodelers of this kind is the BRG1- or BRM-associated factor complex (BAF complex, also known as SWItch/sucrose non-fermentable (SWI/SNF) complex), which is crucial for the regulation of gene expression and differentiation in eukaryotes. Chromatin remodeling complex BAF is characterized by a highly polymorphic structure, containing from four to 17 subunits encoded by 29 genes. The aim of this paper is to provide an overview of the role of BAF complex in chromatin remodeling and also to use literature mining and a set of computational and bioinformatics tools to analyze structural properties, intrinsic disorder predisposition, and functionalities of its subunits, along with the description of the relations of different BAF complex subunits to the pathogenesis of various human diseases.
    [Show full text]
  • On the Role of Chromosomal Rearrangements in Evolution
    On the role of chromosomal rearrangements in evolution: Reconstruction of genome reshuffling in rodents and analysis of Robertsonian fusions in a house mouse chromosomal polymorphism zone by Laia Capilla Pérez A thesis submitted for the degree of Doctor of Philosophy in Animal Biology Supervisors: Dra. Aurora Ruiz-Herrera Moreno and Dr. Jacint Ventura Queija Institut de Biotecnologia i Biomedicina (IBB) Departament de Biologia Cel·lular, Fisiologia i Immunologia Departament de Biologia Animal, Biologia Vegetal i Ecologia Universitat Autònoma de Barcelona Supervisor Supervisor PhD candidate Aurora Ruiz-Herrera Moreno Jacint Ventura Queija Laia Capilla Pérez Bellaterra, 2015 A la mare Al pare Al mano “Visto a la luz de la evolución, la biología es, quizás, la ciencia más satisfactoria e inspiradora. Sin esa luz, se convierte en un montón de hechos varios, algunos de ellos interesantes o curiosos, pero sin formar ninguna visión conjunta.” Theodosius Dobzhansky “La evolución es tan creativa. Por eso tenemos jirafas.” Kurt Vonnegut This thesis was supported by grants from: • Ministerio de Economía y Competitividad (CGL2010-15243 and CGL2010- 20170). • Generalitat de Catalunya, GRQ 1057. • Ministerio de Economía y Competitividad. Beca de Formación de Personal Investigador (FPI) (BES-2011-047722). • Ministerio de Economía y Competitividad. Beca para la realización de estancias breves (EEBB-2011-07350). Covers designed by cintamontserrat.blogspot.com INDEX Abstract 15-17 Acronyms 19-20 1. GENERAL INTRODUCTION 21-60 1.1 Chromosomal rearrangements
    [Show full text]
  • Global Chromatin Changes Resulting from Single-Gene Inactivation—The Role of SMARCB1 in Malignant Rhabdoid Tumor
    cancers Article Global Chromatin Changes Resulting from Single-Gene Inactivation—The Role of SMARCB1 in Malignant Rhabdoid Tumor Colin Kenny 1, Elaine O’Meara 2, Mevlüt Ula¸s 2 , Karsten Hokamp 3 and Maureen J. O’Sullivan 1,2,4,* 1 School of Medicine, Trinity College, University of Dublin, Dublin 2, Ireland; [email protected] 2 The National Children’s Research Centre, O’Sullivan Research Laboratory, Oncology Division, Gate 5, Children’s Health Ireland at Crumlin, D12N512 Dublin, Ireland; [email protected] (E.O.); [email protected] (M.U.) 3 School of Genetics and Microbiology, Trinity College, University of Dublin, Dublin 2, Ireland; [email protected] 4 Histology Laboratory, Pathology Department, Children’s Health Ireland at Crumlin, D12N512 Dublin, Ireland * Correspondence: [email protected] Simple Summary: Malignant rhabdoid tumors (MRT), one of the most lethal, treatment-resistant human cancers, arises in young children within brain, kidney, liver and/or soft tissues. Generally, cancer arises in older adults, and results from multiple significant changes (mutations) accumulating in the genetic blueprint (DNA) of a person’s tissues. This blueprint is composed of a 4-letter alphabet. Together, the multiple significant changes in the blueprint then allow a cell to go “out of control”, becoming a cancer cell. The striking thing about MRT is that it has only a single spelling change, so that mutation must be very powerful to lead to such a lethal cancer. Using a model system that we developed, we show herein how this single mutation alters how the whole of the DNA is arranged, Citation: Kenny, C.; O’Meara, E.; Ula¸s,M.; Hokamp, K.; O’Sullivan, thereby having its profound and lethal effects.
    [Show full text]
  • A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2018 A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family Linda Molla Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Linda Molla June 2018 © Copyright by Linda Molla 2018 A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY Linda Molla, Ph.D. The Rockefeller University 2018 APOBEC2 is a member of the AID/APOBEC cytidine deaminase family of proteins. Unlike most of AID/APOBEC, however, APOBEC2’s function remains elusive. Previous research has implicated APOBEC2 in diverse organisms and cellular processes such as muscle biology (in Mus musculus), regeneration (in Danio rerio), and development (in Xenopus laevis). APOBEC2 has also been implicated in cancer. However the enzymatic activity, substrate or physiological target(s) of APOBEC2 are unknown. For this thesis, I have combined Next Generation Sequencing (NGS) techniques with state-of-the-art molecular biology to determine the physiological targets of APOBEC2. Using a cell culture muscle differentiation system, and RNA sequencing (RNA-Seq) by polyA capture, I demonstrated that unlike the AID/APOBEC family member APOBEC1, APOBEC2 is not an RNA editor. Using the same system combined with enhanced Reduced Representation Bisulfite Sequencing (eRRBS) analyses I showed that, unlike the AID/APOBEC family member AID, APOBEC2 does not act as a 5-methyl-C deaminase.
    [Show full text]
  • A Role for SMARCB1 in Synovial Sarcomagenesis Reveals That SS18-SSX Induces Canonical BAF Destruction
    Author Manuscript Published OnlineFirst on June 2, 2021; DOI: 10.1158/2159-8290.CD-20-1219 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. SMARCB1 in Synovial Sarcomagenesis 1 A role for SMARCB1 in synovial sarcomagenesis reveals that SS18-SSX induces canonical BAF destruction Jinxiu Li*1,2,3, Timothy S. Mulvihill*2,3, Li Li1,2,3, Jared J. Barrott1,2,3, Mary L. Nelson1,2,3, Lena Wagner6, Ian C. Lock1,2,3, Amir Pozner1,2,3, Sydney Lynn Lambert1,2,3, Benjamin B. Ozenberger1,2,3, Michael B. Ward3,4, Allie H. Grossmann3,4, Ting Liu3,4, Ana Banito6, Bradley R. Cairns2,3,5† and Kevin B. Jones1,2,3† 1Department of Orthopaedics, 2Department of Oncological Sciences, 3Huntsman Cancer Institute, 4Department of Pathology, 5Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah. 6Hopp Children’s Cancer Center (KiTZ), German Cancer Research Center (DFKZ), Heidelberg, Germany. *These authors contributed equally to this work. †These authors are co-corresponding authors. Please Address Correspondence to: Kevin B. Jones and Bradley R. Cairns Address: 2000 Circle of Hope Drive, Salt Lake City, UT 84112 Phone: 801-585-0300 Fax: 801-585-7084 Email: [email protected], [email protected] Running Title: SMARCB1 in Synovial Sarcomagenesis Key Words: SWI/SNF; Chromatin Remodeling; Mouse Genetic Model; Epigenetics; Biochemistry Financial Support: This work was supported by R01CA201396 (Jones and Cairns), U54CA231652 (Jones, Cairns, and Banito), and 2P30CA042014-31, from the National Cancer Institute (NCI/NIH), as well as the Paul Nabil Bustany Fund for Synovial Sarcoma Research (Jones), and the Sarcoma Foundation of America (Barrott).
    [Show full text]