Lesson 3 – Plants Alive!
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stenospermocarpy Biological Mechanism That Produces Seedlessness in Some Fruits (Many Table Grapes, Watermelon)
Phytohormones The growth and development of a plant are influenced by: •Gene:c factors •External environmental factors •Chemical hormones inside the plant Secondary messengers 1. Involve in the transfer informaon from sources to targets 2. Amplify the signal produced by the phytohormone Phytohormones Plant hormones are organic compounds that are effec:ve at very low concentraon (1g 20,000 tons-1) They interact with specific target :ssues to cause physiological responses •Growth •Fruit ripening Phytohormones •Hormones s:mulate or inhibit plant growth Major groups of hormones: 1. Auxins 2. Gibberellins 3. Ethylene 4. Cytokinins 5. Abscisic acid 6. Brassinostereoids 7. Salicylic acid 8. Polyaminas 9. Jasmonates 10. Systemin 11. Nitric oxide Arabidopsis thaliana Phytohormones EARLY EXPERIMENTS ON PHOTROPISM SHOWED THAT A STIMULUS (LIGHT) RELEASED CHEMICALS THAT INFLUENCED GROWTH Auxins Auxin causes several responses in plants: * Phototropism * Geotropism * Promo:on of apical dominance * Flower formaon * Fruit set and growth * Formaon of adven::ous roots * Differen:aon of vascular :ssues (de novo or repairing existent vascular :ssue) Auxins Addi:on of auxins produce parthenocarpic fruit. Stenospermocarpy Biological mechanism that produces seedlessness in some fruits (many table grapes, watermelon) diploid + tetraploid parent = triploid seeds vegetave parthenocarpy Plants that do not require pollinaon or other s:mulaon to produce parthenocarpic fruit (cucumber) Auxins Synthe:c auxins Widely used in agriculture and hor:culture • prevent leaf abscission • prevent fruit drop • promote flowering and frui:ng • control weeds Agent Orange - 1:1 rao of 2,4-D and 2,4,5-T Dioxin usually contaminates 2,4,5-T, which is linked to miscarriages, birth defects, leukemia, and other types of cancer. -
A Framework for Plant Behavior Author(S): Jonathan Silvertown and Deborah M
A Framework for Plant Behavior Author(s): Jonathan Silvertown and Deborah M. Gordon Reviewed work(s): Source: Annual Review of Ecology and Systematics, Vol. 20 (1989), pp. 349-366 Published by: Annual Reviews Stable URL: http://www.jstor.org/stable/2097096 . Accessed: 10/02/2012 12:56 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Annual Reviews is collaborating with JSTOR to digitize, preserve and extend access to Annual Review of Ecology and Systematics. http://www.jstor.org Annu. Rev. Ecol. Syst. 1989. 20:349-66 Copyright ? 1989 by Annual Reviews Inc. All rights reserved A FRAMEWORKFOR PLANT BEHAVIOR Jonathan Silvertown' and Deborah M. Gordon2 'BiologyDepartment, Open University, Milton Keynes MK7 6AA, UnitedKingdom 2Departmentof Zoology,University of Oxford,South Parks Rd, Oxford,OXI 3PS, UnitedKingdom INTRODUCTION The language of animalbehavior is being used increasinglyto describecertain plant activities such as foraging (28, 31, 56), mate choice (67), habitatchoice (51), and sex change (9, 10). Furthermore,analytical tools such as game theory, employed to model animal behavior, have also been applied to plants (e.g. 42, 54). There is some question whetherwords used to describe animal behavior, such as the word behavior itself, or foraging, can be properly applied to the activities of plants. -
Plant Physiology
PLANT PHYSIOLOGY Vince Ördög Created by XMLmind XSL-FO Converter. PLANT PHYSIOLOGY Vince Ördög Publication date 2011 Created by XMLmind XSL-FO Converter. Table of Contents Cover .................................................................................................................................................. v 1. Preface ............................................................................................................................................ 1 2. Water and nutrients in plant ............................................................................................................ 2 1. Water balance of plant .......................................................................................................... 2 1.1. Water potential ......................................................................................................... 3 1.2. Absorption by roots .................................................................................................. 6 1.3. Transport through the xylem .................................................................................... 8 1.4. Transpiration ............................................................................................................. 9 1.5. Plant water status .................................................................................................... 11 1.6. Influence of extreme water supply .......................................................................... 12 2. Nutrient supply of plant ..................................................................................................... -
Arxiv:1508.05435V1 [Physics.Bio-Ph]
Fast nastic motion of plants and bio-inspired structures Q. Guo1,2, E. Dai3, X. Han4, S. Xie5, E. Chao3, Z. Chen4 1College of Materials Science and Engineering, FuJian University of Technology, Fuzhou 350108, China 2Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fuzhou 350108, China 3Department of Biomedical Engineering, Washington University, St. Louis, MO 63130 USA 4Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, NH 03755, USA 5Department of Energy, Environmental, and Chemical Engineering, Washington University, St. Louis, MO 63130 USA ∗ (Dated: August 25, 2015) The capability to sense and respond to external mechanical stimuli at various timescales is es- sential to many physiological aspects in plants, including self-protection, intake of nutrients, and reproduction. Remarkably, some plants have evolved the ability to react to mechanical stimuli within a few seconds despite a lack of muscles and nerves. The fast movements of plants in response to mechanical stimuli have long captured the curiosity of scientists and engineers, but the mechanisms behind these rapid thigmonastic movements still are not understood completely. In this article, we provide an overview of such thigmonastic movements in several representative plants, including Dionaea, Utricularia, Aldrovanda, Drosera, and Mimosa. In addition, we review a series of studies that present biomimetic structures inspired by fast moving plants. We hope that this article will shed light on the current status of research on the fast movements of plants and bioinspired struc- tures and also promote interdisciplinary studies on both the fundamental mechanisms of plants’ fast movements and biomimetic structures for engineering applications, such as artificial muscles, multi-stable structures, and bioinspired robots. -
History and Epistemology of Plant Behaviour: a Pluralistic View?
Synthese (2021) 198:3625–3650 https://doi.org/10.1007/s11229-019-02303-9 BIOBEHAVIOUR History and epistemology of plant behaviour: a pluralistic view? Quentin Hiernaux1 Received: 8 June 2018 / Accepted: 24 June 2019 / Published online: 2 July 2019 © Springer Nature B.V. 2019 Abstract Some biologists now argue in favour of a pluralistic approach to plant activities, under- standable both from the classical perspective of physiological mechanisms and that of the biology of behaviour involving choices and decisions in relation to the environ- ment. However, some do not hesitate to go further, such as plant “neurobiologists” or philosophers who today defend an intelligence, a mind or even a plant consciousness in a renewed perspective of these terms. To what extent can we then adhere to pluralism in the study of plant behaviour? How does this pluralism in the study and explanation of plant behaviour fit into, or even build itself up, in a broader history of science? Is it a revolutionary way of rethinking plant behaviour in the twenty-first century or is it an epistemological extension of an older attitude? By proposing a synthesis of the question of plant behaviour by selected elements of the history of botany, the objective is to show that the current plant biology is not unified on the question of behaviour, but that its different tendencies are in fact part of a long botanical tradition with contrasting postures. Two axes that are in fact historically linked will serve as a common thread. 1. Are there several ways of understanding or conceiving plant behaviour within plant sciences and their epistemology? 2. -
Plants That Bite Back. Carolina Beach State Park: an Environmental Education Learning Experience Designed for the Middle Grades
DOCUMENT RESUME ED 376 026 SE 054 367 AUTHOR Wahab, Phoebe TITLE Plants that Bite Back. Carolina Beach State Park: An Environmental Education Learning Experience Designed for the Middle Grades. INSTITUTION North Carolina State Dept. of Environment, Health, and Natural Resources, Raleigh. Div. of Parks and Recreation. PUB DATE 93 ::OTE 131p.; For other Environmental Education Learning Experiences, see SE 054 364-371. AVAILABLE FROMNorth Carolina Division of Parks and Recreation, P.O. Box 27687, Raleigh, NC 27611-7687. PUB TYPE Guides Classroom Use Teaching Guides (For Teacher)(052) EDRS PRICE MF01/PC06 Plus Postage. DESCRIPTORS Botany; Conservation (Environment); *Endangered Species; *Environmental Education; Experiential Learning; Field Trips; Intermediate Grades; Junior High Schools; Middle Schools; Natural Resources; Outdoor Activities; *Outdoor Education; Plant Growth; Plants (Botany); Teaching Guides IDENTIFIERS *Biological Adaptations; *Carnivorous Plants; Natural Resources Management; Nature; North Carolina; State Parks ABSTRACT This learning packet, one in a series of eight, was developed by the Carolina Beach State Park in North Carolina for the middle grades to teach about carnivorous plants. Loose-leaf pages are presented in 10 sections that contain:(1) introductions to the North Carolina State Park System, the Carolina Beach State Park, the park's activity packet, and how plants eat;(2) a summary of the activities that includes major concepts and objectives covered; (3) four pre-visit activities on carnivorous plants;(4) three -
Plant Classification and Seeds
Ashley Pearson – Plant Classification and Seeds ● Green and Gorgeous Oxfordshire ● Cut flowers ● Small amounts of veg still grown and sold locally Different Classification Systems Classification by Life Cycle : Ephemeral (6-8 wks) Annual Biennial Perennial Classification by Ecology: Mesophyte, Xerophyte, Hydrophyte, Halophyte, Cryophyte Raunkiaers Life Form System: based on the resting stage Raunkiaers Life Form System Classification contd. Classification by Plant Growth Patterns Monocots vs. Dicots (NB. only applies to flowering plants - angiosperms) Binomial nomenclature e.g., Beetroot = Beta vulgaris Plantae, Angiosperms, Eudicots, Caryophyllales, Amaranthaceae, Betoideae, Beta, Beta vulgaris After morphological characters, scientists used enzymes and proteins to classify plants and hence to determine how related they were via evolution (phylogeny) Present day we use genetic data (DNA, RNA, mDNA, even chloroplast DNA) to produce phylogenetic trees Plant part modifications ● Brassica genus ● ● Roots (swede, turnips) ● Stems (kohl rabi) ● Leaves (cabbages, Brussels Sprouts-buds) ● Flowers (cauliflower, broccoli) ● Seeds (mustards, oil seed rape) Plant hormones / PGR's / phytohormones ● Chemicals present in very low concentrations that promote and influence the growth, development, and differentiation of cells and tissues. ● NB. differences to animal hormones! (no glands, no nervous system, no circulatory system, no specific mode of action) ● Not all plant cells respond to hormones, but those that do are programmed to respond at specific points in their growth cycle ● Five main classes of PGR's ● Abscisic acid (ABA) ● Role in abscission, winter bud dormancy (dormin) ● ABA-mediated signalling also plays an important part in plant responses to environmental stress and plant pathogens ● ABA is also produced in the roots in response to decreased water potential. -
ORCHIDS Lincoln Park Conservatory and Gardens Docent Training March 14, 2020
ORCHIDS Lincoln Park Conservatory and Gardens Docent Training March 14, 2020 Contents Title Page 1. Essential Orchids 1 2. Essential Carnivorous Plants 4 3. Orchid Room Highlights 6 4. History of Orchids 8 5. Orchids and their Pollinators 11 6. Orchids 17 7. What are Bromeliads 21 8. Bromeliads 24 9. Epiphytic Cacti 25 10. Tropical Cacti 27 11. Carnivorous Plants 29 12. Carnivorous Plants 2 33 13. Ant Plants 35 14. Ant Plants 2 37 15. Vanilla Orchid 36 16. Goldfish vs. Koi 39 Reading assignments supplement each week’s lectures. Please read before the lecture. This page intentionally left blank Essential Orchids Orchids are one of the oldest and largest families in the plant kingdom with over 25,000 species worldwide. Through the millions of years of their existence, they developed complex relationships with their pollinators, animal communities, and environment in general. Today, orchids are now among the most widely grown and popular flowering potted plants in the world. With modern scientific cultivation, there are over 100,000 varieties of orchids and the number is increasing. However, in the wild populations are declining; many orchids are on the endangered lists, and almost all collecting of orchids is banned. What Makes an Orchid an Orchid? All orchids share three basic characteristics: ● Three sepals ● Three petals. In most orchids, one of these is highly modified and called a lip, or labellum. These are easy to see in most of the common orchids, and act as a landing pad for insect pollinators. ● A column. In most flowers the male (stamen) and female (pistil) reproductive structures are separate. -
Plant-Environment Interactions: from Sensory Plant Biology to Active
Signaling and Communication in Plants Series Editors František Baluška Department of Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany Jorge Vivanco Center for Rhizosphere Biology, Colorado State University, 217 Shepardson Building, Fort Collins, CO 80523-1173, USA František Baluška Editor Plant-Environment Interactions From Sensory Plant Biology to Active Plant Behavior Editor František Baluška Department of Plant Cell Biology IZMB University of Bonn Kirschallee 1 D-53115 Bonn Germany email: [email protected] ISSN 1867-9048 ISBN 978-3-540-89229-8 e-ISBN 978-3-540-89230-4 DOI: 10.1007/978-3-540-89230-4 Library of Congress Control Number: 2008938968 © 2009 Springer-Verlag Berlin Heidelberg This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: WMXDesign GmbH, Heidelberg, Germany Printed on acid-free paper 9 8 7 6 5 4 3 2 1 springer.com František Baluška dedicates this book to Prof. -
Investigating Plant Physiology with Wisconsin Fast Plants™ Investigating Plant Physiology with Wisconsin Fast Plants™
Investigating Plant Physiology with Wisconsin Fast Plants™ Investigating Plant Physiology with Wisconsin Fast Plants™ Table of Contents Introduction to Investigating Plant Physiology with Wisconsin Fast Plants™ . .4 Investigating Nutrition with Wisconsin Fast Plants™ . .4 Investigating Plant Nutrition Activity . .7 Introduction to Tropisms . .10 Investigating Tropisms with Wisconsin Fast Plants™ . .10 Materials in the Wisconsin Fast Plants™ Hormone Kit • 1 pack of Standard Wisconsin Fast Plants™ • 1 packet anti-algal square (2 squares per packet) Seeds • 8 watering pipettes • 1 pack of Rosette-Dwarf Wisconsin Fast • 1 L potting soil Plants™ Seeds • 1 package of dried bees • 100-ppm Gibberellic Acid (4 oz) • four 4-cell quads • 1oz pelleted fertilizer • 16 support stakes • 2 watering trays • 16 support rings • 2 watering mats • Growing Instructions • wicks (package of 70) For additional activities, student pages and related resources, please visit the Wisconsin Fast Plants’ website at www.fastplants.org Investigating Plant Physiology with Wisconsin Fast Plants™ Plant physiology is the study of how plants individual is the result of the genetic makeup function. The activities and background (genotype) of that organism being expressed in information in this booklet are designed to the environment in which the organism exists. support investigations into three primary areas Components of the environment are physical of plant physiology: Nutrition, Tropism, and (temperature, light, gravity), chemical (water, Hormone Response (using gibberellin). elements, salts, complex molecules), and biotic (microbes, animals and other plants). Fundamental to the study of physiology is Environmental investigations in this booklet understanding the role that environment plays focus on the influence of nutrients, gravity, and in the functioning and appearance (phenotype) a growth-regulating hormone. -
Tropism Flip Book Unit 8
Name ____________________________________________________________ Period _______ 7th Grade Science Tropism Flip Book Unit 8 Directions: You are going to create a quick reference chart for the various types of Tropism . Tropism is a term that refers to how an organism grows due to an external stimulus. For each type of tropism, you will need to provide a definition and a picture/example of that type of tropism. Below is a list of terms that you will include in your “Flip Book”. Flip Book Terms: Internal Stimuli External Stimuli Gravitropism Phototropism Geotropism Hydrotropism Thigmatropism How Do You Create a Flip Book? Step 1: Obtain 4 half sheets of paper. Stack the sheets of paper on top of each other. They should be staggered about a 2 cm. See the picture below. 2 cm 2 cm 2 cm Step 2: Now fold the top half of the 4 pieces of paper forward. Now all of the pieces of paper are staggered 2 cm. You should have 8 tabs. Place two staples at the very top. Staples Tab #1 Tab #2 Tab #3 Tab #4 Tab #5 Tab #6 Tab #7 Tab #8 Step 3: On the very top tab (Tab #1) you are going to write/draw the words " Tropism Flip Book ". You may use markers or colored pencils throughout this project to color and decorate your flip book. Also write your name and period. See the example below. Tropism Flip Book Your Name Period Step 4: At the bottom of each tab you are going to write each of the flip book terms (Internal Stimuli, External Stimuli, Gravitropism, Phototropism, Geotropism, Hydrotropism, and Thigmatropism ). -
Chemical Reactions and Equations 01
Chapter Chemical Reactions 01 and Equations WORKSHEET - 1 Introduction to Chemical Reactions I. 1. b) 2. a) 3. a) 4. a) 5. c) II. 1. exothermic 2. iron oxide 3. reactants 4. precipitate 5. hydrogen gas III. 1. 2NH3 + 3CuO 3Cu + N2 + 3H2O 2. Al2(SO4)3 + 6NaOH 2Al(OH)3 + 3Na2SO4 3. 4Fe + 3O2 2Fe2O3 4. 2NaOH + H2SO4 Na2SO4 + 2H2O 5. MnO2 + 4HCl MnCl2 + Cl2 + 2H2O I V. 1. It is because sunlight is absorbed in this process. 2. a) Precipitate formation b) Evolution of gas 3. a) Hydrogen gas is evolved. b) It is an exothermic reaction. 4. a) Reaction of iron with copper sulphate: Fe + CuSO4 FeSO4 + Cu (Blue) (Green) b) Reaction of quicklime with water: CaO + H2O Ca(OH)2 + Heat V. 1. • By writing the state symbols of each component. • By indicating evolution of gas (↑) or precipitate formation (↓). • By writing the number of molecules of each component in a balanced equation. • By indicating colour change. • By indicating the release or absorption of heat. 2. a) BaCl2(aq) + Na2SO4(aq) BaSO4(s) + 2NaCl(aq) b) 2Fe + 3H2O(g) Fe2O3(s) + 3H2(g) 3. a) Large amount of heat is released. b) The gas evolved (CO2) turns lime water milky. c) The solution will change colour from purple to colourless. TM A DDITION LA PR CTICEA SCIENCE-10 1 WORKSHEET - 2 Types of Chemical Reactions I. 1. Decomposition reaction 2. Catalyst 3. Platinum 4. Potassium 5. Slaked lime II. 1. Yes 2. No 3. Yes 4. Yes 5. No III. 1. CO2 2. Fe 2O3 3. Cl2 4.