26. Textural and Fluid Inclusion Evidence for Hydrothermal Activity in the Volcaniclastic Apron of Gran Canaria1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Washington State Minerals Checklist
Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite -
Adamsite-(Y), a New Sodium–Yttrium Carbonate Mineral
1457 The Canadian Mineralogist Vol. 38, pp. 1457-1466 (2000) ADAMSITE-(Y), A NEW SODIUM–YTTRIUM CARBONATE MINERAL SPECIES FROM MONT SAINT-HILAIRE, QUEBEC JOEL D. GRICE§ and ROBERT A. GAULT Research Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada ANDREW C. ROBERTS Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario K1A 0E8, Canada MARK A. COOPER Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada ABSTRACT Adamsite-(Y), ideally NaY(CO3)2•6H2O, is a newly identified mineral from the Poudrette quarry, Mont Saint-Hilaire, Quebec. It occurs as groups of colorless to white and pale pink, rarely pale purple, flat, acicular to fibrous crystals. These crystals are up to 2.5 cm in length and form spherical radiating aggregates. Associated minerals include aegirine, albite, analcime, ancylite-(Ce), calcite, catapleiite, dawsonite, donnayite-(Y), elpidite, epididymite, eudialyte, eudidymite, fluorite, franconite, gaidonnayite, galena, genthelvite, gmelinite, gonnardite, horváthite-(Y), kupletskite, leifite, microcline, molybdenite, narsarsukite, natrolite, nenadkevichite, petersenite-(Ce), polylithionite, pyrochlore, quartz, rhodochrosite, rutile, sabinaite, sérandite, siderite, sphalerite, thomasclarkite-(Y), zircon and an unidentified Na–REE carbonate (UK 91). The transparent to translucent mineral has a vitreous to pearly luster and a white streak. It is soft (Mohs hardness 3) and brittle with perfect {001} and good {100} and {010} cleav- ␣  ␥ ° ° ages. Adamsite-(Y) is biaxial positive, = V 1.480(4), = 1.498(2), = 1.571(4), 2Vmeas. = 53(3) , 2Vcalc. = 55 and is nonpleochroic. Optical orientation: X = [001], Y = b, Z a = 14° (in  obtuse). It is triclinic, space group P1,¯ with unit-cell parameters refined from powder data: a 6.262(2), b 13.047(6), c 13.220(5) Å, ␣ 91.17(4),  103.70(4), ␥ 89.99(4)°, V 1049.1(5) Å3 and Z = 4. -
Structural Diagenesis in Carbonate Rocks As Identified in Fault
minerals Article Structural Diagenesis in Carbonate Rocks as Identified in Fault Damage Zones in the Northern Tarim Basin, NW China Guanghui Wu 1,2,*, En Xie 3, Yunfeng Zhang 1, Hairuo Qing 2, Xinsheng Luo 3 and Chong Sun 3 1 School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China; [email protected] 2 Department of Geology, University of Regina, Regina, SK S4S 0A2, Canada; [email protected] 3 PetroChina Tarim Oilfield Company, Korla 841000, China; [email protected] (E.X.); [email protected] (X.L.); [email protected] (C.S.) * Correspondence: [email protected] Received: 5 May 2019; Accepted: 22 May 2019; Published: 13 June 2019 Abstract: The identification of structural diagenesis and the reconstruction of diagenetic paragenesis in fault damage zones is important for understanding fault mechanisms and fluid flow in the subsurface. Based on the examination of core and sample thin section data, we deciphered the diagenetic parasequence and their fault controls for Ordovician carbonates in the northern Tarim intracratonic basin in NW China (Halahatang area). In contrast to the uniform nature of diagenesis observed in country rocks, there is a relatively complicated style of compaction and pressure solution, multiple fracturing, and cementation and dissolution history along the carbonate fault damage zones. The relative paragenetic sequence of the structure related diagenesis suggests three cycles of fracture activities, following varied fracture enlargement and dissolution, and progressively weaker calcite cementation. These processes of structure related diagenesis are constrained to the fault damage zones, and their variation is affected by the fault activities. -
Vigrishinite
Vigrishinite Zn2Ti4-xSi4O14(OH,H2O, 8 (x < 1) - Crystal Data: Triclinic. Point Group: 1 . As split and blocky rectangular or irregular plates flattened on (001), to 3 cm. Physical Properties: Cleavage: Perfect on {001}. Tenacity: Brittle. Fracture: Stepped. Hardness = 2.5-3 D(meas.) = 3.03(2) D(calc.) = 2.97 Optical Properties: Transparent to translucent. Color: Pale pink, yellowish pink, colorless. Streak: White. Luster: Vitreous. Optical Class: Biaxial (-). α = 1.755(5) β = 1.820(10) γ = 1.835(8) 2V(meas.) = 45(10)° 2V(calc.) = 50° Dispersion: r < v, strong. Pleochroism: None. - Cell Data: Space Group: P1 . a = 8.743(9) b = 8.698(9) c = 11.581(11) α = 91.54(8)° β = 98.29(8)° γ = 105.65(8)° Z = 2 X-ray Powder Pattern: Lovozero alkaline massif, Kola Peninsula, Russia. (similar to murmanite) 2.861 (100), 11.7 (67), 4.17 (65), 5.73 (54), 8.27 (50), 6.94 (43), 2.609 (30) Chemistry: (1) (1) Na2O 0.98 Al2O3 0.36 K2O 0.30 SiO2 32.29 CaO 0.56 TiO2 29.14 SrO 0.05 ZrO2 2.08 BaO 0.44 Nb2O5 7.34 MgO 0.36 F 0.46 MnO 2.09 H2O 9.1 ZnO 14.39 –O=F2 0.19 Fe2O3 2.00 Total 101.75 (1) Lovozero alkaline massif, Kola Peninsula, Russia; average of 9 electron microprobe analyses, H2O by modified Penfield method, corresponds to H7.42(Zn1.30Na0.23Mn0.22Ca0.07Mg0.07K0.05 3+ Ba0.02)Σ=1.96(Ti2.68Nb0.41Fe 0.18Zr0.12)Σ=3.39(Si3.95Al0.05)Σ=4O20.31F0.18. -
Zeolites in Tasmania
Mineral Resources Tasmania Tasmanian Geological Survey Record 1997/07 Tasmania Zeolites in Tasmania by R. S. Bottrill and J. L. Everard CONTENTS INTRODUCTION ……………………………………………………………………… 2 USES …………………………………………………………………………………… 2 ECONOMIC SIGNIFICANCE …………………………………………………………… 2 GEOLOGICAL OCCURRENCES ………………………………………………………… 2 TASMANIAN OCCURRENCES ………………………………………………………… 4 Devonian ………………………………………………………………………… 4 Permo-Triassic …………………………………………………………………… 4 Jurassic …………………………………………………………………………… 4 Cretaceous ………………………………………………………………………… 5 Tertiary …………………………………………………………………………… 5 EXPLORATION FOR ZEOLITES IN TASMANIA ………………………………………… 6 RESOURCE POTENTIAL ……………………………………………………………… 6 MINERAL OCCURRENCES …………………………………………………………… 7 Analcime (Analcite) NaAlSi2O6.H2O ……………………………………………… 7 Chabazite (Ca,Na2,K2)Al2Si4O12.6H2O …………………………………………… 7 Clinoptilolite (Ca,Na2,K2)2-3Al5Si13O36.12H2O ……………………………………… 7 Gismondine Ca2Al4Si4O16.9H2O …………………………………………………… 7 Gmelinite (Na2Ca)Al2Si4O12.6H2O7 ……………………………………………… 7 Gonnardite Na2CaAl5Si5O20.6H2O ………………………………………………… 10 Herschelite (Na,Ca,K)Al2Si4O12.6H2O……………………………………………… 10 Heulandite (Ca,Na2,K2)2-3Al5Si13O36.12H2O ……………………………………… 10 Laumontite CaAl2Si4O12.4H2O …………………………………………………… 10 Levyne (Ca2.5,Na)Al6Si12O36.6H2O ………………………………………………… 10 Mesolite Na2Ca2(Al6Si9O30).8H2O ………………………………………………… 10 Mordenite K2.8Na1.5Ca2(Al9Si39O96).29H2O ………………………………………… 10 Natrolite Na2(Al2Si3O10).2H2O …………………………………………………… 10 Phillipsite (Ca,Na,K)3Al3Si5O16.6H2O ……………………………………………… 11 Scolecite CaAl2Si3O10.3H20 ……………………………………………………… -
JAERI-Data/Code 99-001
JAERI-Data/Code 99-001 Consideration on Thermodynamic Data for Predicting Solubility and Chemical Species of Elements in Groundwater Part 1: Tc, U, Am Tetsuji YAMAGUCHI and Seiji TAKEDA Department of Environmental Safety Research Nuclear safety Research Center Tokai Research Establishment Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken (Received January 5, 1999) The solubility determines the release of radionuclides from waste form and is used as a source term in radionuclide migration analysis in performance assessment of radioactive waste repository. Complexations of radionuclides by ligands in groundwater affect the interaction between radionuclides and geologic media, thus affect their migration behavior. Thermodynamic data for Tc, Am and U were reviewed and compiled to be used for predicting the solubility and chemical species in groundwater. Thermodynamic data were reviewed with emphasis on the hydrolysis and carbonate complexation that can dominate the speciation in typical groundwater. Thermodynamic data for other species were selected based on existing databases. Thermodynamic data for other important elements are under investigation, thus shown in an appendix for temporary use. Keywords: Technetium, Uranium, Americium, Thermodynamic Data, Solubility, Aqueous Species, Solid Species, Equilibrium Constant JAERI-Data/Code 99-001 Table A-l. Carbon thermodynamic data. Equilibrium constants at 298.15 K and I = 0 are taken from HATCHES DATABASE, NEA RELEASE 9, 13th March 1996 (available with a floppy disk from Bond, K. A. and Tweed, C. J., Direct line 01235 433867, Direct facsimile 01235 436579) . 0 species reaction logK 2 COs " + 2H* + H20 = CH,° + 2O2 (g) -128.04 H2CO30 CO32" + 2H* = H2CO30 16.68 HCO3" CO32" + H* = HCO3" 10.33 CO32" master species NaHCO3° Na* + CO32" + H* = NaHC03° 10.08 NaCC>3~ Na* + CO32" = NaCOs" 1.27 2 2 MgHCO-T Mg * + CO3 ' + H* = MgHCO3* 11.4 Mg'" + CO32" = . -
Zeolite Minerals from the North Shore of the Minas Basin, Nova Scotia Georgia Pe-Piper and Lisa Miller
Atlantic Geology 11 Zeolite minerals from the North Shore of the Minas Basin, Nova Scotia Georgia Pe-Piper and Lisa Miller Department of Geology, Saint Mary’s University, Halifax, Nova Scotia, B3H 3C3, Canada Date received: August 9, 2002 ¶ Date accepted: December 2, 2002 ABSTRACT X-ray diffraction and electron microprobe analyses show the following assemblages to be present in basalt fl ows and overlying siliciclastic sedimentary rocks along the North Shore of the Minas Basin: Five Islands – chabazite and stilbite are dominant, also “heulandite” and bar- rerite; Two Islands – analcime is dominant, gmelinite, chabazite, stilbite, and natrolite; Wasson Bluff – chabazite, stilbite and “heulandite” are dominant, also herschelite, barrerite, stellerite, analcime, wairakite, natrolite, clinoptilolite, and thomsonite; Partridge Island – chabazite and stilbite are dominant, also analcime, epistilbite, natrolite, barrerite, and “heulandite”; Cape Sharp – chabazite, stilbite, barrerite, stellerite, and “heulandite”; Horseshoe Cove – “heulandite” and stilbite; Western Cape d’Or – analcime, stilbite, natrolite, and mesolite are domi- nant, also stellerite, ?epistilbite, barrerite, scolecite, chabazite, “heulandite”, wairakite, tetranatrolite and laumontite. Comparison is made with assemblages at Arlington Quarry on North Mountain, where the dominant zeolite minerals are heulandite (sensu stricto) and stilbite. Elsewhere on North Mountain, mordenite, natrolite, and laumontite have been confi rmed. Chemical composition of hydrothermal fl uids was likely different between North Mountain and the North Shore, with fl uids in the latter area less sodic. The temperature of zeolite crystal- lization appears to have been high at Arlington Quarry, where “heulandite” and stilbite crystallised with little Na in their crystal structure. With falling temperature the crystallizing solution became enriched in Na, and sodic zeolite minerals, such as natrolite, began to crystallize. -
Sedimentary Rock Alteration in the Slick Rock District, San Miguel and Dolores Counties, Colorado
Sedimentary Rock Alteration in the Slick Rock District, San Miguel and Dolores Counties, Colorado GEOLOGICAL SURVEY PROFESSIONAL PAPER 576-D Prepared on behalf of the U.S. Atomic Energy Commission Sedimentary Rock Alteration in the Slick Rock District, San Miguel and Dolores Counties, Colorado By DANIEL R. SHAWE GEOLOGIC INVESTIGATIONS IN THE SLICK ROCK DISTRICT, SAN MIGUEL AND DOLORES COUNTIES, COLORADO GEOLOGICAL SURVEY PROFESSIONAL PAPER 576-D Prepared on behalf of the U.S. Atomic Energy Commission Epigenetic alteration of sedimentary rocks was spatially and temporally related to deposition of uranium-vanadium ores. Mineralogic and chemical characteristics and distribution of altered rocks suggest that uranium- and vanadium-bearing pore waters that were expelled from compacted Upper Cretaceous Mancos Shale in early Tertiary time accounted for the alteration of sedimentary rocks and formation of the ores in the Upper Jurassic Morrison Formation UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1976 UNITED STATES DEPARTMENT OF THE INTERIOR THOMAS S. KLEPPE, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Shawe, Daniel R. 1925- Sedimentary rock alteration in the Slick Rock district, San Miguel and Dolores Counties, Colorado. (Geologic investigations in the Slick Rock district, San Miguel and Dolores Counties, Colorado) (Geological Survey Professional Paper 576-D) Bibliography: p. Supt. of Docs, no.: I 19.16:576-D 1. Rocks, Sedimentary. 2. Metamorphism (Geology) Colorado San Miguel Co. 3. Metamorphism (Geology) Colorado- Dolores Co. 4. Petrology Colorado San Miguel Co. 5. Petrology Colorado Dolores Co. I. United States Atomic Energy Commission. II. Title. III. Series. IV. Series: United States Geological Survey Professional Paper 576-D. -
The CMS Tumbler
the CMS September Tumbler 2017 The monthly newsletter of the Cascade Mineralogical Society, Inc. Kent, Washington Next Meeting: September 14, 2017 7:00 p.m. This month remember American Legion Hall to wish a 25406 97th Pl S Happy Birthday to Kent, WA Jody Flores on September 3, Angie Bayer on September 4, Bill Flores on September 15, The Program will be speaker Vicki Ruegg on September 22, Karissa Smith, Emergency Betty Swift on September 25, Management Coordinator for the City of Renton will speak and also remember on the Geology of Cascadia. to wish a The geology of our area affects Happy Anniversary to us all who live here. It should Paul & Shirley Stewart be a very interesting presentation. on September 17 (56 years) The Show & Tell Theme is a Washington rock or mineral. This publication is an official bulletin of the Cascade Mineralogical Society Inc. (CMS). Except where otherwise noted, material from The Tumbler may be reprinted for non-commercial purposes, provided that the author(s) and source are acknowledged. For commercial use, the author(s) must be contacted for permission; if no contact information is given, contact them via the editor. Tips, suggestions, recipes and experiments printed in this newsletter are the experiences and/or opinions of the individuals submitting them. We are not responsible for their authenticity, safety, or reliability. Caution and safety should always be practiced when trying out any new idea. CMS Club Address Editor’s Mailing Address: Postal, or Email, Exchange Rich Russell Keith Alan Morgan, Editor Bulletins are welcome. 14431 SE 254th St. -
A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates
U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY A Partial Glossary of Spanish Geological Terms Exclusive of Most Cognates by Keith R. Long Open-File Report 91-0579 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1991 Preface In recent years, almost all countries in Latin America have adopted democratic political systems and liberal economic policies. The resulting favorable investment climate has spurred a new wave of North American investment in Latin American mineral resources and has improved cooperation between geoscience organizations on both continents. The U.S. Geological Survey (USGS) has responded to the new situation through cooperative mineral resource investigations with a number of countries in Latin America. These activities are now being coordinated by the USGS's Center for Inter-American Mineral Resource Investigations (CIMRI), recently established in Tucson, Arizona. In the course of CIMRI's work, we have found a need for a compilation of Spanish geological and mining terminology that goes beyond the few Spanish-English geological dictionaries available. Even geologists who are fluent in Spanish often encounter local terminology oijerga that is unfamiliar. These terms, which have grown out of five centuries of mining tradition in Latin America, and frequently draw on native languages, usually cannot be found in standard dictionaries. There are, of course, many geological terms which can be recognized even by geologists who speak little or no Spanish. -
The Surface Structure and Growth of Natural Zeolites
A thesis submitted for the degree of Doctor of Philosophy The Surface Structure and Growth of Natural Zeolites by Manisha Mistry University College London 2005 Davy Faraday Research Laboratory, The Royal Institution of Great Britain. Centre for Theoretical and Computational Chemistry, Department of Chemistry, University College London 1 UMI Number: U592160 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U592160 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 A b s t r a c t A systematic study has been carried out in order to investigate two aspects o f zeolite chemistry: to determine the external surface structure and to establish the mechanism of crystal growth. The natural zeolite edingtonite (EDI) was chosen as a model material and the surface structures were studied by finding the most stable termination for each face. For each of the four morphologically important faces the surface structure was found to minimise the number of broken bonds created upon cleaving the surface. In the absence of experimental data, the crystal morphologies were used as a proxy indicator of relative growth rate of different faces. -
CASSITERITE.IN SAN DIEGO COUNTY, CALIFORNIA. Wer,Rnuan T. Scner,R,En. U. S. Geological Survey Bu.Ll. 820 P, 351-354, R916. Note
THE AMERICAN MINEBALOGIST 49 zinc phosphates-hopeite, parahopeite, and tarbuttite. It is named after Mr. L. J. Spencer, of the British N,Iuseum. E. L. Bruce: Magnesian tou,rtnaline from Renfrew, Ontario. Brown crystals oceur at the contact between crystalline lime- stone and gneiss in a limestone quarry at the torvn of Renfrew. Analysis showed the presenceof 14.53 /6 of magnesia.-Abstd. from l{ature,97r 374, 1916. REVIEWS AND ABSTRACTS MINERALOGIC NOTES, SERIES 3. Wer,rnu-rn T. Scrrer,- LER. U. S. GeologicalSurvey BulI. 8101164 pp., 1916. Contents: Koechlinite (bismuth molybclate), a new minelal. Inyoite and meyerhofferite, two new calcium borates. Lucinite, a new mineral,-a dimorphous form of variscite. Schneebergite. Romeite. The natural antimonites and antimonates. Velalden- ite, a new member of the melilite group. The melilite group. The composition of cebollite. The crystallography of thaumasite. The chemical composition of tremolite. Nerv occurrencesof some rare minerals. Gigantic crystals of spodumene. The probable identity of mariposite and alurgite. The amblygonite group of minerals-fremontite: (natramblygonite). The clystallography of fremontite. The chemical composition of nephelite. Large crystals of bloedite. Alunite from Marysvale, Utah. The corn- position and relations of custerite. The composition of hodgkin- sonite. Crystals of pisanite from Ducktown, Tenn. The refrac- tive indices of strengite. The calculation of a mineral folmula. S. G. G. CASSITERITE.IN SAN DIEGO COUNTY, CALIFORNIA. Wer,rnuan T. Scner,r,en. U. S. GeologicalSurvey Bu.ll. 820 P, 351-354,r916. Note describingan occurrenceof cassiteritein the pegmatites of California, with quartz, feldspar, lepidolite, colurnbite and transparentblue tourmaline. S. G. G. XANTHOPHYLLITE IN CRYSTALLINE LIN{ESTONE.