Applying Science of Learning in Education: Infusing Psychological Science Into the Curriculum

Total Page:16

File Type:pdf, Size:1020Kb

Applying Science of Learning in Education: Infusing Psychological Science Into the Curriculum University of New Hampshire University of New Hampshire Scholars' Repository Psychology Scholarship College of Liberal Arts (COLA) 2014 Applying science of learning in education: Infusing psychological science into the curriculum Victor A. Benassi University of New Hampshire, [email protected] Catherine Overson University of New Hampshire, [email protected] Christopher M. Hakala Western New England University Follow this and additional works at: https://scholars.unh.edu/psych_facpub Recommended Citation Benassi, V. A., Overson, C. E., & Hakala, C. M. (2014). Applying science of learning in education: Infusing psychological science into the curriculum. Retrieved from the Society for the Teaching of Psychology web site: http://teachpsych.org/ebooks/asle2014/index.php This Book is brought to you for free and open access by the College of Liberal Arts (COLA) at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Psychology Scholarship by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Feedback Feedback regarding the editorial content of this book or any of its essays should be directed toward the individual authors or the book's editors. They (authors and editors) are solely responsible for the substance of the text. Feedback regarding technical matters of formatting or accessibility of this text via the online environment of the Internet should be directed to the Internet Editor. If you have any complaints or difficulties in accessing these materials, be sure to provide as detailed a description of your problem(s) as you can; you should include information about the browser you are using (e.g., Firefox, Safari) and its version number well as the type of computer you are using and its operating system. Copyright and Other Legal Notices The individual essays and chapters contained within this collection are Copyright © 2014 by their respective authors. This collection of essays and chapters as a compendium is Copyright © 2014 Society for the Teaching of Psychology. You may print multiple copies of these materials for your own personal use, including use in your classes and/or sharing with individual colleagues as long as the author's name and institution, and a notice that the materials were obtained from the website of the Society for the Teaching of Psychology (STP) <http://teachpsych.org/> appear on the copied document. For research and archival purposes, public libraries and libraries at schools, colleges, universities and similar educational institutions may print and store in their research or lending collections multiple copies of this compendium as a whole without seeking further permission of STP (the editors would appreciate receiving a pro forma notice of any such library use). No other permission is granted to you to print, copy, reproduce, or distribute additional copies of these materials. Anyone who wishes to print, copy, reproduce, or distribute copies for other purposes must obtain the permission of the individual copyright owners. Particular care should be taken to seek permission from the respective copyright holder(s) for any commercial or "for profit" use of these materials. Suggested Reference Format We suggest that the overall text be referenced in this fashion: Benassi, V. A., Overson, C. E., & Hakala, C. M. (2014). Applying science of learning in education: Infusing psychological science into the curriculum. Retrieved from the Society for the Teaching of Psychology web site: http://teachpsych.org/ebooks/asle2014/index.php Individual chapters may be referenced in this fashion: Ambrose, S. A., & Lovett, M. C. (2014). Prior knowledge is more important than content: Skills and beliefs also impact learning. In V. A. Benassi, C. E. Overson, & C. M. Hakala (Eds.). Applying science of learning in education: Infusing psychological science into the curriculum. Retrieved from the Society for the Teaching of Psychology web site: http://teachpsych.org/ebooks/asle2014/index.php 1 Acknowledgments and Dedication We thank William Buskist, Editor-in-Chief of the STP e-Books series, for suggesting that we prepare this book, and for his support and encouragement throughout the process. We also thank Jeffrey R. Stowell, STP Internet Editor, for his production of the final copy of the book. Preparation of this book and the work presented in several chapters in the book were supported in part by a grant from the Davis Educational Foundation. The Foundation was established by Stanton and Elisabeth Davis after Mr. Davis's retirement as chairman of Shaw’s Supermarkets, Inc. We are appreciative of the confidence the Foundation has shown toward our work. Our special thanks go to Leanne Greeley Bond, our grant program officer. We also acknowledge the support and resources that have been provided by the Office of the Provost and Vice President for Academic Affairs, University of New Hampshire. We dedicate this book to the many teachers who participated in the University of New Hampshire’s Cognition Toolbox project (2009 – 2013). e-book cover: Catherine E. Overson. ii About the Editors Victor A Benassi Victor Benassi is professor of psychology at the University of New Hampshire (UNH) and currently Faculty Director of the Center for Excellence in Teaching and Learning. He is a fellow of the Society for the Teaching of Psychology (APA, Division 2), and was its 2013 President. He was principal investigator of a Davis Educational Foundation (DEF) grant--The Cognition Toolbox: Implementing Cognitive Principles and Assessing Student Learning in College Courses. He is currently principal investigator of a DEF grant: Teaching and Learning with Multimedia (2012 – 2015). Victor is co-editor (with William Buskist) of Effective College and University Teaching: Strategies and Tactics for the New Professoriate (2012, Sage Publications). In 2003, he received the American Psychological Foundation’s Charles L. Brewer Distinguished Teaching of Psychology award. Earlier in his career, his research interests centered on judgment and psychology of belief. His current research focuses teaching and learning, including the application of science of learning principles to teaching in colleges and universities. Catherine E. Overson Catherine Overson, University of New Hampshire, is Project Director of the Center for Excellence in Teaching and Learning’s Teaching and Learning with Multimedia grant (funded by the Davis Educational Foundation). She was previously a research associate on the Center’s Cognition Toolbox grant (also funded by the Davis foundation). She is an experienced teacher of university courses in psychology, statistics, and the science of learning. She is a member of Division 2 of the Society for the Teaching of Psychology (American Psychological Association) and has presented her research on teaching and learning at annual APA and other national conventions. She has published in the same area (Overson & Goldstein), in Your graduate training in psychology: Effective strategies for success, Sage Publications, 2011; Stiegler-Balfour & Overson, in Effective University and College Teaching, Sage Publications, 2012). Her research has focused applications of the science of learning in college and university courses. Christopher M. Hakala Christopher Hakala is Professor of Psychology at Western New England University. He received his Ph.D. at the University of New Hampshire in 1995 and had previously taught at Gettysburg College and Lycoming College, both in Pennsylvania. His areas of expertise are reading comprehension and psycholinguistics. Over the past three years, Chris has split his time between teaching, research and developing the Western New England University Center for Teaching and Learning, and serving as its director. Chris has also served as Associate Editor of Teaching of Psychology and Associate Director of the Office of Teaching Resources in Psychology for the Society for Teaching of Psychology (Society for the Teaching of Psychology, APA Division 2). iii Table of Contents Acknowledgments and Dedication ............................................................................................................... ii About the Editors ......................................................................................................................................... iii Table of Contents ......................................................................................................................................... iv Introduction Victor A. Benassi, Catherine E. Overson, and Christopher M. Hakala ........................................................... 1 Part 1: Science of Learning - Principles and Approaches Prior Knowledge is More Than Content: Skills and Beliefs Also Impact Learning Susan A. Ambrose and Marsha C. Lovett ...................................................................................................... 7 When and Why Introducing Difficulties and Errors Can Enhance Instruction Courtney M. Clark and Robert A. Bjork ....................................................................................................... 20 Expertise Reversal Effect and Its Instructional Implications Chee Ha Lee and Slava Kalyuga .................................................................................................................. 31 Using Feedback to Promote Learning John A. C. Hattie and Gregory C. R. Yates ..................................................................................................
Recommended publications
  • A Test of the Effects of Overlearning and Skill Retention Interval on Maintenance of Infrequently Used Complex Skills
    Skill retention: A test of the effects of overlearning and skill retention interval on maintenance of infrequently used complex skills A Thesis Submitted to the Faculty of Graduate Studies and Research In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In Experimental and Applied Psychology University of Regina By Gregory Paul Krätzig Regina, Saskatchewan April 2016 Copyright 2016: G.K. Krätzig UNIVERSITY OF REGINA FACULTY OF GRADUATE STUDIES AND RESEARCH SUPERVISORY AND EXAMINING COMMITTEE Gregory Paul Kratzig, candidate for the degree of Doctor of Philosophy in Experimental and Applied Psychology, has presented a thesis titled, Skill retention: A test of the effects of overlearning and skill retention interval on maintenance of infrequently used complex skills, in an oral examination held on December 21, 2015. The following committee members have found the thesis acceptable in form and content, and that the candidate demonstrated satisfactory knowledge of the subject material. External Examiner: *Dr. Bryan Vila, Washington State University Supervisor: Dr. Katherine Arbuthnott, Department of Psychology Committee Member: ***Dr. Richard MacLennan, Department of Psychology Committee Member: Dr. Tom Phenix, Department of Psychology Committee Member: **Dr. Craig Chamberlin, Faculty of Kinesiology and Health Studies Chair of Defense: Dr. Randal Rogers, Faculty of Graduate Studies & Research *Via Skype **Via Teleconference **Not present at defense Abstract While researchers have suggested that overlearning increases the likelihood of skill retention, there is little consensus or evidence as to how much overlearning is required, and how such overlearning interacts with distributed practice schedules. Additionally, most research has measured skill retention based on relatively short re-testing intervals of 56 days or less; however, little is known about whether overlearning can mitigate skill degradation when the retention interval is 6 or 12 months in duration.
    [Show full text]
  • ED305329.Pdf
    DOCUMENT RESUME ED 305 329 SP 030 956 AUTHOR Sarvimaki, Anneli TITLE Knowledge in Interactive Practice Disciplines. An Analysis of Knowledge in Education and Health Care. Research Bulletin 68. INSTITUTION Helsinki Univ. (Finland). Dept. of Education. REPORT NO ISBN-951-45-4787-X PUB DATE 88 NOTE 292p. PUB TYPE Reports - Research/Technical (143) EDRS PRICE MF01/PC12 Plus Postage. DESCRIPTORS *Educational Objectives; Educational Philosophy; Educational Practices; *Educational Principles; Health Promotion; *Interaction; Sociolinguistics; *Theory Practice Relationship; Values ABSTRACT This study formulates a conception of knowledge in interactive practice disciplines such as education and health care and clarifies different types of knowledge in these disciplines. Focus is on the relationship between practical and theoretical knowledge. Four theses are discussed: (1) the role of knowledge in an interactive practice is to guide practice; (2) different types of knowledge in an interactive practice consist of value-knowledge, factual knowledge and procedural knowledge, parts of which are unarticulated, parts articulated; (3) science is a way of articulating and creating knowledge that can be used as internal action determinants in the practice concerned; and (4) theories in an interactive practice can have both a theoretical and a practical purpose but the theoretical purpose is also indirectly linked to the practical. (Author/JD) "t***************************************************2****************** * Reproductions supplied by EDRS are the
    [Show full text]
  • Science Education (SCIED) 1
    Science Education (SCIED) 1 to other non-science majors. Throughout the course, students engage SCIENCE EDUCATION (SCIED) in a series of investigations that lead towards the development of evidence-based explanations for patterns observed in the current SCIED 110: Introduction to Engineering for Educators Solar System. Investigations will include computer-based simulations, night-sky observations, and use of simple laboratory equipment. 3 Credits These investigations lead students towards an understanding of how This course focuses on physics content, engineering design principles, observations of the current Solar System can be explained by the model and elementary science education pedagogy. of its formation. The course is designed to build from students' own personal observations of the day and night sky towards developing Cross-listed with: ENGR 110 increasingly sophisticated explanations for those phenomena and beyond. Conducting these astronomy investigations will help students SCIED 112: Climate Science for Educators understand fundamental aspects of physics, thus broadly preparing them for future science teaching in these domains. The course models 3 Credits evidence-based pedagogy, thus helping to prepare students for future Concepts of climate sciences highlighted by evidence-based teaching careers as they learn effective strategies for teaching science. explanations and scientific discourse in preparation for K-6 science Cross-listed with: ASTRO 116 teaching. This introductory, multidisciplinary course will focus on the interactions among physical science concepts, earth science concepts, SCIED 118: Field Natural History for Teachers and scientific practices to develop understandings about Earth's climate system. The course is primarily intended for prospective elementary 3 Credits school teachers (Childhood and Early Adolescent Education, PK-4 and 4-8 majors), although it is available to other non-science majors.
    [Show full text]
  • Boundary-Work and the Demarcation of Science from Non-Science: Strains and Interests in Professional Ideologies of Scientists Author(S): Thomas F
    Boundary-Work and the Demarcation of Science from Non-Science: Strains and Interests in Professional Ideologies of Scientists Author(s): Thomas F. Gieryn Source: American Sociological Review, Vol. 48, No. 6 (Dec., 1983), pp. 781-795 Published by: American Sociological Association Stable URL: http://www.jstor.org/stable/2095325 . Accessed: 20/10/2014 20:34 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Sociological Association is collaborating with JSTOR to digitize, preserve and extend access to American Sociological Review. http://www.jstor.org This content downloaded from 128.173.127.127 on Mon, 20 Oct 2014 20:34:19 PM All use subject to JSTOR Terms and Conditions BOUNDARY-WORK AND THE DEMARCATION OF SCIENCE FROM NON-SCIENCE: STRAINS AND INTERESTS IN PROFESSIONAL IDEOLOGIES OF SCIENTISTS* THOMAS F. GIERYN Indiana University The demarcation of science from other intellectual activities-long an analytic problemfor philosophersand sociologists-is here examinedas a practicalproblem for scientists. Construction of a boundary between science and varieties of non-science is useful for scientists' pursuit of professional goals: acquisition of intellectual authority and career opportunities; denial of these resources to "pseudoscientists"; and protection of the autonomy of scientific research from political interference.
    [Show full text]
  • Procedural and Declarative Knowledge an Evolutionary Perspective
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DSpace at Open Universiteit Nederland Procedural and Declarative Knowledge An Evolutionary Perspective Timon ten Berge Ren´e van Hezewijk Vrije Universiteit Utrecht University Abstract. It appears that there are resemblances in the organization of memory and the visual system, although the functions of these faculties differ considerably. In this article, the principles behind this organization are discussed. One important principle regards the distinction between declarative and procedural knowledge, between knowing that and knowing how. Declarative knowledge is considered here not as an alternative kind of knowledge, as is usually the case in theories of memory, but as part of procedural knowledge. In our view this leads to another approach with respect to the distinction. Declarative knowledge has occupied more attention in (cognitive) psychological research than can be justified on the basis of the importance of procedural knowledge for behavior. We also discuss the question whether there are other brain faculties that reflect the same organizational characteristics. We conclude with some speculations about the consequent role of consciousness in such a tentative model. KEY WORDS: declarative knowledge, evolutionary psychology, memory, procedural knowledge, vision Introduction: Modularity in the Human Brain Traditionally, cognitive psychology has viewed the human mind as a general information-processing device. On this view, a human being is born with a set of general reasoning capacities that can be used when confronted with any problem. A growing number of researchers are supporting a view of the human brain as an organized collection of specialized modules, each with its own domain-specific knowledge and responses.
    [Show full text]
  • Mapping the Meaning of Knowledge in Design Research Kristina Niedderer University of Hertfordshire
    V.2:2 April 2007 www.designresearchsociety.org Design Research Society ISSN 1752-8445 Mapping the Meaning of Knowledge in Design Research Kristina Niedderer University of Hertfordshire Knowledge plays a vital role in our life This question has arisen for design in Table of Contents: in that it reflects how we understand the UK, as well as more generally for the world around us and thus deter- creative and practice-led disciplines Articles: 1 Mapping the Meaning of Knowledge mines how we act upon it. In this sense, (CPDs), because research regulations in Design Research knowledge is of particular importance and requirements in the UK remain Kristina Niedderer for designers because they act to shape silent about what knowledge and our world. Conventionally, knowledge understanding mean in the context of 3 Call for Papers: Design Research creation has been assumed by (design) their specifications while implicitly pri- Quarterly research. However developments of oritising propositional knowledge over Case Studies in Research: Knowledge using practice within research have knowledge that cannot be expressed in and Inquiry pointed to knowledge creation within that form (Niedderer 2007). and through practice. This has raised This has led to a number of prob- Listings: the question of the meaning, role and lems concerning the role and format 14 Current Research in Design: format of knowledge in both research of knowledge in research and practice ToCs from Leading Design Journals and practice, and about the compatibil- in the UK. For example, because of the ity between knowledge of research and language-based mode of proposition- 21 Upcoming Events Worldwide practice.
    [Show full text]
  • Cognitive Psychology
    COGNITIVE PSYCHOLOGY PSYCH 126 Acknowledgements College of the Canyons would like to extend appreciation to the following people and organizations for allowing this textbook to be created: California Community Colleges Chancellor’s Office Chancellor Diane Van Hook Santa Clarita Community College District College of the Canyons Distance Learning Office In providing content for this textbook, the following professionals were invaluable: Mehgan Andrade, who was the major contributor and compiler of this work and Neil Walker, without whose help the book could not have been completed. Special Thank You to Trudi Radtke for editing, formatting, readability, and aesthetics. The contents of this textbook were developed under the Title V grant from the Department of Education (Award #P031S140092). However, those contents do not necessarily represent the policy of the Department of Education, and you should not assume endorsement by the Federal Government. Unless otherwise noted, the content in this textbook is licensed under CC BY 4.0 Table of Contents Psychology .................................................................................................................................................... 1 126 ................................................................................................................................................................ 1 Chapter 1 - History of Cognitive Psychology ............................................................................................. 7 Definition of Cognitive Psychology
    [Show full text]
  • Learning How to Do Science Education: Four Waves of Reform
    Learning how to do science education: Four waves of reform Roy Pea Allan Collins Stanford University Northwestern University To appear in Kali, Y., Linn, M.C., & Roseman, J. E. (Eds.). (in press, 2008). Designing coherent science education. New York: Teachers College Press. In the modern era of the past half-century, we have seen four waves of science education reform activity. Our view is that these waves are building toward cumulative improvement of science education as a learning enterprise. Each wave has been: (1) distinguished by a different focus of design, (2) led by different primary proponents, and (3) contributed to new learning about what additional emphases will be necessary to achieve desirable outcomes for science education – and a consequent new wave of activity and design. Consideration of these four waves will help contextualize the contributions represented in this volume. The first wave occurred in the 1950s and 1960s in response to a sense that our schools were not providing the challenging education in science needed to maintain America’s edge as a center of scientific research in the post-WWII period. This era of science reform was spawned in significant measure by the creation of the National Science Foundation (NSF) in 1950 and its dramatically accelerated funding following the Soviet Union’s 1957 launch of the first man-made space satellite, Sputnik. Scientists in major research universities were leading proponents of new science curricula in this wave, which aimed to introduce students to advances in recent scientific findings and to expose them to uses of the scientific method. Teachers' needs to learn this new content, and a focus on all students, not only the elite, were relatively neglected factors, as implementations of these curricula evidenced.
    [Show full text]
  • Progressive Education: Why It's Hard to Beat, but Also Hard to Find
    Bank Street College of Education Educate Progressive Education in Context College History and Archives 2015 Progressive Education: Why it's Hard to Beat, But Also Hard to Find Alfie ohnK Follow this and additional works at: https://educate.bankstreet.edu/progressive Part of the Curriculum and Instruction Commons, Curriculum and Social Inquiry Commons, Educational Methods Commons, and the Social and Philosophical Foundations of Education Commons Recommended Citation Kohn, A. (2015). Progressive Education: Why it's Hard to Beat, But Also Hard to Find. Bank Street College of Education. Retrieved from https://educate.bankstreet.edu/progressive/2 This Book is brought to you for free and open access by the College History and Archives at Educate. It has been accepted for inclusion in Progressive Education in Context by an authorized administrator of Educate. For more information, please contact [email protected]. Progressive Education Why It’s Hard to Beat, But Also Hard to Find By Alfie Kohn If progressive education doesn’t lend itself to a single fixed definition, that seems fitting in light of its reputation for resisting conformity and standardization. Any two educators who describe themselves as sympathetic to this tradition may well see it differently, or at least disagree about which features are the most important. Talk to enough progressive educators, in fact, and you’ll begin to notice certain paradoxes: Some people focus on the unique needs of individual students, while oth- ers invoke the importance of a community of learners; some describe learning as a process, more journey than destination, while others believe that tasks should result in authentic products that can be shared.[1] What It Is Despite such variations, there are enough elements on which most of us can agree so that a common core of progressive education emerges, however hazily.
    [Show full text]
  • Estimation of Nearshore Wave Transmission for Submerged Breakwaters Using a Data-Driven Predictive Model
    Estimation of nearshore wave transmission for submerged breakwaters using a data-driven predictive model Amir Sharif Ahmadian a*, Richard R. Simons b a Assistant Professor, Department of Civil Engineering, Khajeh Nasir Building, b Hormozgan University, Minab Road, Bandar Abbas, Iran Professor, Department of Civil, Environmental and Geomatic Engineering, Chadwick Building, UCL, Gower Street, London WC1E 6BT, UK Abstract The functional design of submerged breakwaters is still developing, particularly with respect to modelling of the nearshore wave field behind the structure. This paper describes a method for predicting the wave transmission coefficients behind submerged breakwaters using machine learning algorithms. An artificial neural network using the radial-basis function approach has been designed and trained using laboratory experimental data expressed in terms of non-dimensional parameters. A wave transmission coefficient calculator is presented, based on the proposed radial-basis function model. Predictions obtained by the radial-basis function model were verified by experimental measurements for a two dimensional breakwater. Comparisons reveal good agreement with the experimental results and encouraging performance from the proposed model. Applying the proposed neural network model for predictions, guidance is given to appropriately calculate wave transmission coefficient behind two dimensional submerged breakwaters. It is concluded that the proposed predictive model offers potential as a design tool to predict wave transmission coefficients behind submerged breakwaters. A step-by-step procedure for practical applications is outlined in a user-friendly form with the intention of providing a simplified tool for preliminary design purposes. Results demonstrate the model's potential to be extended to three dimensional, rough, permeable structures. Keywords: Submerged breakwater; Nearshore wave transmission; Numerical modeling; Artificial neural network; Radial-basis function; Predictive model.
    [Show full text]
  • Aviation Psychology and Human Factors, Second Edition
    Aviation Psychology and Human Factors Second Edition Aviation Psychology and Human Factors Second Edition Monica Martinussen and David R. Hunter CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2018 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed on acid-free paper International Standard Book Number-13: 978-1-4987-5752-2 (Hardback) 978-1-3151-5297-4 (Master eBook) This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made to publish reliable data and information, but the author and publisher can- not assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copy- right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc.
    [Show full text]
  • Science Education Graduate Program Department of Curriculum and Instruction Purdue University
    Science Education Graduate Program Department of Curriculum and Instruction Purdue University Brief Description of Program The science education graduate program offers K-12 teachers, curriculum specialists, scientists and other education professionals the opportunity to investigate contemporary issues related to science learning, teaching, assessment, curriculum, and teacher professional development. The science education faculty are internationally known and are engaged in fundamental and applied research, and curriculum and teacher professional development. The faculty also hold joint and courtesy appointments in the Departments of Biology; Chemistry; Physics and Astronomy; Earth, Atmospheric, and Planetary Science; Agricultural Sciences Education and Communication; Technology Leadership and Innovation; and the School of Engineering Education. Graduate students may specialize in the following areas within the science education program: biology, chemistry, earth/space science, elementary science education, geoenvironmental, physics and astronomy, and K-12 integrated STEM. The Graduate Program The master’s program is designed primarily for the continued preparation of school teachers. The program is comprised of coursework in science education, science content, and curriculum and instruction (see table below). The PhD program is designed primarily for students who want to specialize in science teacher education and science education research (see table below). The doctoral program is research-oriented, and graduates provide leadership
    [Show full text]