A Provisional Checklist of the Continental African Orchidaceae. 3

Total Page:16

File Type:pdf, Size:1020Kb

A Provisional Checklist of the Continental African Orchidaceae. 3 Polish Botanical Journal 48(2): 99–125, 2003 A provisional checklist of the continental African Orchidaceae. 3. Orchidoideae. 2. Diseae-Huttonaeeae TOMASZ S. OLSZEWSKI & DARIUSZ L. SZLACHETKO Abstract: A checklist of continental African Diseae and Huttonaeeae is provided. 185 species in 7 genera are listed. Six new combinations in Amphigena Rolfe in Dyer, Herschelianthe Rauschert and Monadenia Lindl. are proposed. Key words: Magnoliophyta, Orchidaceae, Orchidoideae, Diseae, Huttonaeeae, checklist, continental Africa Tomasz S. Olszewski, Dariusz L. Szlachetko, Department of Plant Taxonomy and Nature Conservation, Gdan´sk University, Al. Legionów 9, PL-80-441 Gdan´sk, Poland, e-mail: [email protected], [email protected] The orchids of Diseae and Huttonaeeae tribes in Africa. Linder (1981c) includes this genus to Disa continental Africa comprise 7 genera and 185 Bergius as a section. species. The genera listed in alphabetical order are: Amphigena Rolfe in Dyer, Brownleea Harv. 1. Amphigena cochlearis (S. D. Johnson & Lil- ex Lindl., Disa Bergius, Herschelianthe Rau- tved) Szlach., comb. nov. schert, Huttonaea Harv., Monadenia Lindl. and Basionym: Disa cochlearis S. D. Johnson & Liltved, Schizodium Lindl. Six new combinations in Am- S. African J. Bot. 63(5): 291. 1997. phigena Rolfe in Dyer, Herschelianthe Rauschert and Monadenia Lindl. are proposed. DISTRIBUTION. R.S.A. (W Cape) (Johnson & Liltved 1997; Linder 1999b). LIST OF GENERA AND SPECIES 2. Amphigena esterhuyseniae (Schelpe ex H. P. Linder) Szlach., comb. nov. Basionym: Disa esterhuyseniae Schelpe ex H. P. Linder, Tribe DISEAE Dressler Contr. Bolus Herb. 9: 161. 1981. Selbyana 5(2): 204. 1979. DISTRIBUTION. R.S.A. (W Cape) (Linder A monotypic tribe including five, exclusively 1981c, 1999b; Stewart et al. 1982; Reid 1993). African, genera (Szlachetko 1995). 3. Amphigena salteri (G. J. Lewis) Szlach., comb. nov. Subtribe DISINAE Benth. Basionym: Disa salteri G. J. Lewis, J. S. African Bot. 7: J. Linn. Soc., Bot. 18: 288. 1881. 78. 1941. DISTRIBUTION. R.S.A. (W Cape) (Lewis 1950; Amphigena Rolfe in Dyer Linder 1981c, 1999b; Stewart et al. 1982). Fl. Cap. 5(3): 197. 1913. Disa Bergius sect. Amphigena Bolus, Trans. S. African 4. Amphigena tenuis (Lindl.) Rolfe Phil. Soc. 5: 139. 1888. Fl. Cap. 5(3): 197. 1913. A small genus with 4 species endemic to South Disa tenuis Lindl., Gen. Sp. Orchid. Pl.: 354. 1838. 100 POLISH BOTANICAL JOURNAL 48(2). 2003. Disa leptostachys Sond., Linnaea 19: 89. 1847. Zulu-Natal, Mpumalanga) (Linder 1981a, 1999c; Monadenia tenuis (Lindl.) Kraenzl., Orchid. Gen. Sp. 1: Stewart et al. 1982; Reid 1993). 819. 1900. Amphigena leptostachys (Sond.) Rolfe, Fl. Cap. 5(3): – subsp. major (Bolus) H. P. Linder 198. 1913. J. S. African Bot. 47(1): 41. 1981. DISTRIBUTION. R.S.A. (W Cape) (Durand & Brownleea galpinii Bolus var. major Bolus, Icon. Or- Schinz 1895; Bolus 1913; Lewis 1950; Linder chid. Austro-Afr. 1: t. 42. 1893. 1981c, 1999b; Stewart et al. 1982). Brownleea fanniniae Rolfe, Bull. Misc. Inform. Kew 1920: 131. 1920. Brownleea Harv. ex Lindl. Bonatea leucantha Schltr., Ann. Transvaal Mus. 10: 249. 1924. London J. Bot. 1: 16. 1842. DISTRIBUTION. R.S.A. (Natal Drakensberg) A genus of 7 species widely distributed in and Lesotho (Bolus 1893; Linder 1981a, 1999c; South and tropical Africa and Madagascar (Linder Stewart et al. 1982; Reid 1993). 1999c). 3. Brownleea macroceras Sond. 1. Brownleea coerulea Harv. ex Lindl. Linnaea 19: 106. 1847. London J. Bot. 1: 16. 1842. Disa macroceras (Sond.) Rchb. f., Otia Bot. Hamburg. Disa coerulea (Harv. ex Lindl.) Rchb. f., Otia Bot. 2: 119. 1881. Hamburg. 2: 119. 1881. Brownleea coerulea sensu Bolus, J. Linn. Soc., Bot. 25: Brownleea madagascarica Ridl., J. Linn. Soc., Bot. 22: 204. 1889. 126. 1885. Brownleea monophylla Schltr., Bot. Jahrb. Syst. 31: Brownleea nelsonii Rolfe, Fl. Cap. 5(3): 262. 1913. 307. 1901. Brownleea woodii Rolfe, Fl. Cap. 5(3): 262. 1913. DISTRIBUTION. R.S.A. (E Cape, KwaZulu- DISTRIBUTION. R.S.A. (E Cape, KwaZulu- Natal, Free State) and Lesotho (Linder 1981a, Natal, Mpumalanga, Northern Province), Swazi- 1999c; Stewart et al. 1982; Reid 1993). land and Madagascar (Bolus 1893; Durand & Schinz 1895; Perrier de la Bathie 1939; Comp- 4. Brownleea maculata P. J. Cribb ton 1976; Linder 1981a, 1999c; Stewart et al. Kew Bull. 32(1): 147. 1977. 1982; Kemp 1983; Reid 1993; Du Puy et al. 1999). DISTRIBUTION. Mozambique, Malawi and Zimbabwe (Cribb 1977; Linder 1981a; la Croix et al. 1991; la Croix & Cribb 1995). 2. Brownleea galpinii Bolus Icon. Orchid. Austro-Afr. 1: t. 42. 1893. 5. Brownleea mulanjiensis H. P. Linder Bonatea flavescens Schltr., Ann. Transvaal Mus. 10: Kew Bull. 40(1): 125, fig. 1. 1985. 249. 1924. DISTRIBUTION. Malawi (Linder 1985; la Croix DISTRIBUTION. Zimbabwe, R.S.A. (KwaZulu- et al. 1991; la Croix & Cribb 1995). Natal, Mpumalanga, Northern Province) and Lesotho (Bolus 1893; Linder 1981a, 1999c; Ste- wart et al. 1982; Reid 1993; la Croix & Cribb 6. Brownleea parviflora Lindl. 1995). London J. Bot. 1: 16. 1842. Disa preussii Kraenzl., Bot. Jahrb. Syst. 17: 64. 1863. – subsp. galpinii Disa alpina Hook. f., J. Linn. Soc., Bot. 7: 220. 1864. Disa parviflora (Harv. ex Lindl.) Rchb. f., Otia Bot. DISTRIBUTION. Zimbabwe and R.S.A. (Kwa- Hamburg. 2: 119. 1881. T. S. OLSZEWSKI & D. L. SZLACHETKO: THE CONTINENTAL AFRICAN ORCHIDACEAE. 3 101 Disa apetala Kraenzl., Bot. Jahrb. Syst. 22: 21. 1896. 1. Disa aconitoides Sond. Brownleea alpina (Hook. f.) N. E. Br., F.T.A. 7: 287. Linnaea 19: 91. 1847. 1897. Brownleea apetala (Kraenzl.) N. E. Br., F.T.A. 7: 287. DISTRIBUTION. Ethiopia, D.R.C. (Haut-Katan- 1897. ga, Lac Albert, Lacs Edouard et Kivu), Burundi, Brownleea gracilis Schltr., Bot. Jahrb. Syst. 53: 545. Rwanda, Uganda, Kenya, Tanzania, Zambia, Ma- 1915. lawi, Mozambique, Zimbabwe and R.S.A. (W and Brownleea perrieri Schltr., Feddes Repert. Beih. 33: E Cape, KwaZulu-Natal, Mpumulanga, Gauteng, 102. 1924. Northern Province) (Durand & Schinz 1895; Brownleea transvaalensis Schltr., Ann. Transvaal Mus. Bolus 1896; Rolfe 1897; Summerhayes 1968a; 10: 250. 1924. Cufodontis 1972; Schelpe 1976b; Williamson 1977; Linder 1981c, 1999b; Stewart et al. 1982; DISTRIBUTION. Cameroun, D.R.C. (Haut-Ka- Geerinck 1984, 1988; la Croix et al. 1991; Reid tanga), Kenya, Tanzania, Zambia, Malawi, Mo- 1993; la Croix & Cribb 1995; Delepierre & Lebel zambique, Zimbabwe, R.S.A. (E Cape, KwaZulu- 2001). Natal, Mpumalanga, Gauteng, Northern Prov- ince), Swaziland, Lesotho and Madagascar (Bolus – subsp. aconitoides 1893; Durand & Schinz 1895; Rolfe 1897; Sum- merhayes 1966, 1968a, b; Jacot Guillarmod 1971; DISTRIBUTION. D.R.C. (Haut-Katanga, Lac Schelpe 1976b; Williamson 1977; Linder 1981a, Albert, Lacs Edouard et Kivu), Burundi, Rwanda 1999c; Stewart et al. 1982; Kemp 1983; Geerinck and R.S.A. (W and E Cape, KwaZulu-Natal, Mpu- 1984; la Croix et al. 1991; Reid 1993; la Croix & malanga, Gauteng, Northern Province) (Bolus Cribb 1995; Szlachetko & Olszewski 1998; Du 1896; Linder 1981c, 1999b; Geerinck 1984; Dele- Puy et al. 1999). pierre & Lebel 2001). – subsp. concinna (N. E. Br.) H. P. Linder 7. Brownleea recurvata Sond. Contr. Bolus Herb. 9: 91. 1981. Linnaea 19: 107. 1847. Disa concinna N. E. Br., F.T.A. 7: 284. 1897. Disa recurvata (Sond.) Rchb. f., Otia Bot. Hamburg. 2: Disa equestris Rchb. f. var. concinna (N. E. Br.) 119. 1881. Kraenzl., Orchid. Gen. Sp. 1: 949. 1901, excl. syn. D. Brownleea natalensis Rolfe, Fl. Cap. 5(3): 262. 1913. aperta and D. goetzeana. Disa bisetosa Kraenzl., Bot. Jahrb. Syst. 51: 379. 1914. DISTRIBUTION. R.S.A. (W and E Cape, Kwa- Zulu-Natal, Mpumalanga) and Lesotho (Bolus DISTRIBUTION. Uganda, Kenya, Tanzania, 1893; Durand & Schinz 1895; Jacot Guillarmod Zambia, Malawi, Mozambique and Zimbabwe 1971; Linder 1981a, 1999c; Stewart et al. 1982; (Rolfe 1897; Summerhayes 1968a; Schelpe Reid 1993). 1976b; Williamson 1977; Linder 1981c; la Croix & Cribb 1995). Disa Bergius – subsp. gotzeana (Kraenzl.) H. P. Linder Fl. Cap.: 348. 1767. Contr. Bolus Herb. 9: 92. 1981. A genus of ca. 125 species, widespread mostly Disa goetzeana Kraenzl., Bot. Jahrb. Syst. 28: 178. 1900. in tropical Africa and Madagascar, with few repre- Disa vaginata Chiov., Ann. Bot. (Rome) 9: 138. 1911, sentatives in Yemen and Réunion Island (Linder non Lindl. 1842. 1981d). Linder (1999b) includes here also 3 an- Disa chiovendaei Schltr., Feddes Repert. 16: 1920. other genera – Amphigena Rolfe, Herschelianthe Rauschert and Monadenia Lindl. – as sections. DISTRIBUTION. Ethiopia, Uganda, Kenya and 102 POLISH BOTANICAL JOURNAL 48(2). 2003. Tanzania (Cufodontis 1972; Linder 1981c; Cribb 8. Disa aristata H. P. Linder & Thomas 1997; Cribb et al. 2002). Contr. Bolus Herb. 9: 237. 1981. NOTE. Geerinck (1984) does not distinguish DISTRIBUTION. R.S.A. (Northern Province) subsp. concinna and includes here D. dichroa so (Linder 1981c, 1999b; Stewart et al. 1982; Reid distribution in central Africa needs verification. 1993). 2. Disa aequiloba Summerh. 9. Disa atricapilla (Harv. ex Lindl.) Bolus Bull. Misc. Inform. Kew 1927(10): 419. 1927. J. Linn. Soc., Bot. 19: 344. 1882. DISTRIBUTION. D.R.C. (Haut-Katanga), Tan- Penthea atricapilla Harv. ex Lindl., London J. Bot. 1: zania, Angola and Zambia (Summerhayes 1927, 17. 1842. Disa bivalvata atricapil- 1968a; Geerinck 1974, 1984; Williamson 1977; (L. f.) T. Durand & Schinz var. la (Lindl.) Schltr., Bot. Jahrb. Syst. 31: 280. 1901. Linder 1981d; la Croix & Cribb 1995). Orthopenthea atricapilla (Lindl.) Rolfe, Fl. Cap. 5(3): 181. 1913. 3. Disa alinae Szlach. DISTRIBUTION. R.S.A. (W Cape) (Durand & Fragm. Florist. Geobot. 39(2): 543, fig. 1. 1994. Schinz 1895; Bolus 1913; Lewis 1950; Linder DISTRIBUTION. D.R.C. (Haut-Shaba) (Szla- 1981c, 1999b; Stewart et al. 1982; Reid 1993). chetko 1994). 10. Disa aurata (Bolus) L. T. Parker & Koop. 4. Disa alticola H. P. Linder Biochem. Syst. & Ecol. 21: 807. 1993. Contr. Bolus Herb. 9: 252, fig. 77: 1–5. 1981. Disa tripetaloides (L. f.) N. E. Br. var. aurata Bolus, Icon.
Recommended publications
  • The Structure of the Perennial Growth of Disa Un/Flora Berg
    THE STRUCTURE OF THE PERENNIAL GROWTH OF DISA UN/FLORA BERG. ( ORCHIDACEAE) HONOURS SYSTEMATICS PROJECT JANET THOMAS OCTOBER 1990 SUPERVISOR: DR . .H.P. LINDER University of Cape Town The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town BOLUS LIBRARY 1 ABSTRACT The perennation of orchids is poorly understood, in particular that of the Orchidoidae. The understanding of perennation in the Orchidoidae is important because the root-stem tuberoid .is used as the one character defining the Orchidoidae as a monophyletic group. The root-stem tuberoid has never been examined for variation before. This project focuses on perennial growth in the Diseae in order to study the structbre and function of the root stem tuberoid in relation tp other organs and to contribute to the understanding of Orchidoid phylogeny. , INTRODUCTION Host te1perate monocotyledons have evolved underground resting or perennating organs for the climatically unfavourable season (Holttum 1955). A period of underground existence may allow a plant to escape unfavourable conditions, to counter environmental uncertainty, and to build reserves for flowering episodes (Calvo 1990). This is especially evident in the temperate members of the Orchidaceae and is made possible through sympodial growth· (Withnerj1974). Not .all temperate orchids have a resting period although they do have sympodial growth and do perennate.
    [Show full text]
  • Identification of Anoectochilus Based on Rdna ITS Sequences Alignment and SELDI-TOF-MS Chuan Gao1, 3, Fusheng Zhang1, Jun Zhang4, Shunxing Guo1 , Hongbo Shao2,5
    Int. J. Biol. Sci. 2009, 5 727 International Journal of Biological Sciences 2009; 5(7):727-735 © Ivyspring International Publisher. All rights reserved Research Paper Identification of Anoectochilus based on rDNA ITS sequences alignment and SELDI-TOF-MS Chuan Gao1, 3, Fusheng Zhang1, Jun Zhang4, Shunxing Guo1 , Hongbo Shao2,5 1. Institute of Medicinal Plant Development, Beijing Union Medical College/Chinese Academy of Medicinal Sciences, Beijing 100193, China; 2. Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China; 3. Institute of Beijing Pharmacochemistry, Beijing 102205, China; 4. Central Laboratory of 306 Hospital of PLA, Beijing 100083, China; 5. Yantai Institute of Costal Zone Research, Chinese Academy of Sciences (CAS), Yantai 264003, China. Corresponding authors: [email protected] (Guo SX); [email protected] (Shao HB). Posting address: Dr. Professor Shao Hongbo, Yantai Institute of Costal Zone Research, Chinese Academy of Sciences (CAS), Yantai 264003, China. Received: 2009.08.28; Accepted: 2009.11.26; Published: 2009.12.02 Abstract The internal transcribed spacer (ITS) sequences alignment and proteomic difference of Anoectochilus interspecies have been studied by means of ITS molecular identification and surface enhanced laser desorption ionization time of flight mass spectrography. Results showed that variety certification on Anoectochilus by ITS sequences can not determine spe- cies, and there is proteomic difference among Anoectochilus interspecies. Moreover, pro- teomic finger printings of five Anoectochilus species have been established for identifying spe- cies, and genetic relationships of five species within Anoectochilus have been deduced ac- cording to proteomic differences among five species. Key words: Anoectochilus, ITS, proteomic finger printing, SELDI sterile condition.
    [Show full text]
  • Orchids: 2017 Global Ex Situ Collections Assessment
    Orchids: 2017 Global Ex situ Collections Assessment Botanic gardens collectively maintain one-third of Earth's plant diversity. Through their conservation, education, horticulture, and research activities, botanic gardens inspire millions of people each year about the importance of plants. Ophrys apifera (Bernard DuPon) Angraecum conchoglossum With one in five species facing extinction due to threats such (Scott Zona) as habitat loss, climate change, and invasive species, botanic garden ex situ collections serve a central purpose in preventing the loss of species and essential genetic diversity. To support the Global Strategy for Plant Conservation, botanic gardens create integrated conservation programs that utilize diverse partners and innovative techniques. As genetically diverse collections are developed, our collective global safety net against plant extinction is strengthened. Country-level distribution of orchids around the world (map data courtesy of Michael Harrington via ArcGIS) Left to right: Renanthera monachica (Dalton Holland Baptista ), Platanthera ciliaris (Wikimedia Commons Jhapeman) , Anacamptis boryi (Hans Stieglitz) and Paphiopedilum exul (Wikimedia Commons Orchi ). Orchids The diversity, stunning flowers, seductiveness, size, and ability to hybridize are all traits which make orchids extremely valuable Orchids (Orchidaceae) make up one of the largest plant families to collectors, florists, and horticulturists around the world. on Earth, comprising over 25,000 species and around 8% of all Over-collection of wild plants is a major cause of species flowering plants (Koopowitz, 2001). Orchids naturally occur on decline in the wild. Orchids are also very sensitive to nearly all continents and ecosystems on Earth, with high environmental changes, and increasing habitat loss and diversity found in tropical and subtropical regions.
    [Show full text]
  • Phylogeny, Character Evolution and the Systematics of Psilochilus (Triphoreae)
    THE PRIMITIVE EPIDENDROIDEAE (ORCHIDACEAE): PHYLOGENY, CHARACTER EVOLUTION AND THE SYSTEMATICS OF PSILOCHILUS (TRIPHOREAE) A Dissertation Presented in Partial Fulfillment of the Requirements for The Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Erik Paul Rothacker, M.Sc. ***** The Ohio State University 2007 Doctoral Dissertation Committee: Approved by Dr. John V. Freudenstein, Adviser Dr. John Wenzel ________________________________ Dr. Andrea Wolfe Adviser Evolution, Ecology and Organismal Biology Graduate Program COPYRIGHT ERIK PAUL ROTHACKER 2007 ABSTRACT Considering the significance of the basal Epidendroideae in understanding patterns of morphological evolution within the subfamily, it is surprising that no fully resolved hypothesis of historical relationships has been presented for these orchids. This is the first study to improve both taxon and character sampling. The phylogenetic study of the basal Epidendroideae consisted of two components, molecular and morphological. A molecular phylogeny using three loci representing each of the plant genomes including gap characters is presented for the basal Epidendroideae. Here we find Neottieae sister to Palmorchis at the base of the Epidendroideae, followed by Triphoreae. Tropidieae and Sobralieae form a clade, however the relationship between these, Nervilieae and the advanced Epidendroids has not been resolved. A morphological matrix of 40 taxa and 30 characters was constructed and a phylogenetic analysis was performed. The results support many of the traditional views of tribal composition, but do not fully resolve relationships among many of the tribes. A robust hypothesis of relationships is presented based on the results of a total evidence analysis using three molecular loci, gap characters and morphology. Palmorchis is placed at the base of the tree, sister to Neottieae, followed successively by Triphoreae sister to Epipogium, then Sobralieae.
    [Show full text]
  • Oil Plant Pollination Systems
    BIONOMY AND HOST PLANT FINDING IN OIL COLLECTING BEES Dissertation zur Erlangung des Doktorgrades Dr. rer. nat. an der Fakultät Biologie/Chemie/Geowissenschaften der Universität Bayreuth vorgelegt von Irmgard Schäffler Bayreuth, 2012 Die vorliegende Arbeit wurde von August 2008 bis Januar 2012 am Lehrstuhl Pflanzensystematik der Universität Bayreuth unter Betreuung von Herrn PD Dr. Stefan Dötterl angefertigt. Sie wurde von der Deutschen Forschungsgemeinschaft gefördert (DO 1250/3-1). Dissertation eingereicht am: 8. Februar 2012 Zulassung durch die Prüfungskommission: 16. Februar 2012 Wissenschaftliches Kolloquium: 16. Mai 2012 Amtierende Dekanin: Prof. Dr. Beate Lohnert Prüfungsausschuss: PD Dr. Stefan Dötterl (Erstgutachter) PD Dr. Gregor Aas (Zweitgutachter) PD Dr. Ulrich Meve (Vorsitz) Prof. Dr. Konrad Dettner Prof. Dr. Karlheinz Seifert Prof. Dr. Klaus H. Hoffmann This dissertation is submitted as a ‘Cumulative Thesis’ that includes four publications: two published articles, one submitted article, and one article in preparation for submission. List of Publications 1) Schäffler I., Dötterl S. 2011. A day in the life of an oil bee: phenology, nesting, and foraging behavior. Apidologie, 42: 409-424. 2) Dötterl S., Milchreit K., Schäffler I. 2011. Behavioural plasticity and sex differences in host finding of a specialized bee species. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 197: 1119-1126. 3) Schäffler I., Balao F., Dötterl S. Floral and vegetative cues in oil-secreting and non-oil secreting Lysimachia species. Annals of Botany, doi: 10.1093/aob/mcs101. In preparation for submission to Proceedings of the National Academy of Sciences: 4) Schäffler I., Steiner K. E., Haid M., Gerlach G., Johnson S.
    [Show full text]
  • Thesis for Library
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2006 Macro-evolutionary studies in the orchid genus Satyrium Sw. and other genera from the Cape Floristic Region (South Africa) van der Niet, Timotheüs Abstract: Satyrium ist eine Orchideen-Gattung mit 90 Arten, die in Süd-, Ost-, und Westafrika sowie auf Madagaskar und in Südostasien vorkommt. Die Gattung ist morphologisch sehr vielfältig und tax- onomisch komplex. In der vorliegenden Arbeit wurden DNA-Sequenzen benutzt, um einen evolutionären Stammbaum von Satyrium zu erstellen. Dieser Stammbaum zeigt, dass die traditionelle Taxonomie nicht mit den Verwandtschaftsverhältnissen übereinstimmt. Ferner wird gezeigt, dass einige Arten durch Hy- bridisierung entstanden sein könnten. Durch Beobachten der Bestäubung von Satyrium wurde eine enge Verbindung zwischen Blütenmerkmalen und den jeweiligen Bestäubern gefunden. Es konnte gezeigt wer- den, dass die Pflanzen ihre Bestäuber im Verlaufe der Evolution häufig wechselten. Abschliessend wurde untersucht, wie dieser Bestäuberwechsel mit der Artbildung zusammenhängt. Satyrium is an orchid genus with 90 species that is distributed throughout southern, eastern, and western Africa, Madagascar, and south-east Asia. It harbours a great deal of morphological diversity which has complicated traditional taxonomy. Here we use DNA sequences to reconstruct a species-level phylogeny. This phylogeny reveals that previous taxonomy was incongruent with evolutionary relationships. Furthermore I demonstrate that some taxa may have originated through hybridization. Using pollinator observations for about one third of the species, I show the link between morphology and being pollinated by a certain pollinator, as well as that there have been frequent shifts between pollinators throughout evolutionary history.
    [Show full text]
  • Orchidoideae: Orchidaceae) Author(S): H
    The Phylogeny and Classification of the Diseae (Orchidoideae: Orchidaceae) Author(s): H. P. Linder and H. Kurzweil Source: Annals of the Missouri Botanical Garden, Vol. 81, No. 4 (1994), pp. 687-713 Published by: Missouri Botanical Garden Press Stable URL: http://www.jstor.org/stable/2399916 Accessed: 27-07-2016 11:10 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Missouri Botanical Garden Press is collaborating with JSTOR to digitize, preserve and extend access to Annals of the Missouri Botanical Garden This content downloaded from 137.158.114.36 on Wed, 27 Jul 2016 11:10:19 UTC All use subject to http://about.jstor.org/terms THE PHYLOGENY AND H. P. Linder2 and H. Kurzweil2'3 CLASSIFICATION OF THE DISEAE (ORCHIDOIDEAE: ORCHIDACEAE)l ABSTRACT The subtribal classification of the Diseae (Orchidoideae) is reviewed in light of the available morphological, leaf anatomical, and palynological data. These data are critically assessed, and the more prominent features are illustrated. The data are analyzed cladistically, and the robustness of the various components of the most parsimonious tree is assessed by a bootstrap analysis. Based on the cladistic analysis and the bootstrap analysis, a new classification is proposed for the Diseae.
    [Show full text]
  • Redalyc.Conservation of Madagascar's Granite Outcrop Orchids
    Lankesteriana International Journal on Orchidology ISSN: 1409-3871 [email protected] Universidad de Costa Rica Costa Rica Whitman, Melissa; Medler, Michael; Randriamanindry, Jean Jacques; Rabakonandrianina, Elisabeth Conservation of Madagascar’s granite outcrop orchids: the influence of fire and moisture Lankesteriana International Journal on Orchidology, vol. 11, núm. 1, abril, 2011, pp. 55-67 Universidad de Costa Rica Cartago, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44339820007 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative LANKESTERIANA 11(1): 55—67. 2011. CONSERVatION OF MADAGASCAr’S GRANITE OUTCROP ORCHIDS: THE INFLUENCE OF FIRE AND MOISTURE¹ MELISSA WHITMAN1,5, MICHAEL MEDLER2, JEAN JACQUES RANDRIAMANINDRY3 & ELISABETH RABAKONANDRIANINA4 1 School of Biological Sciences, University of Nebraska, 208 Manter Hall, Lincoln, Nebraska 68588, U.S.A. 2 Huxley College of the Environment, Western Washington University, 516 High Street, Bellingham, Washington, 98225, U.S.A. 3 BP 1571, Antananarivo 101, Madagascar. 4 Département de Biologie et Ecologie Végetale. Faculté des Sciences, Université d’Antananarivo: BP 906, Antananarivo 101, Madagascar 5 Corresponding author: [email protected] ABSTRACT. Is there a difference in response to disturbance, or resource limitation, by similar taxa based on micro-site habitat heterogeneity? For this study we examined how fire and moisture availability influences the distribution of terrestrial and lithophytic orchids specific to Madagascar’s granite outcrops (inselbergs). We compared orchid density in an area with a complex mosaic of burned and non-burned vegetation patches (three years after the event).
    [Show full text]
  • Using the Checklist N W C
    Using the checklist • The arrangement of the checklist is alphabetical by family followed by genus, grouped under Pteridophyta, Gymnosperms, Monocotyledons and Dicotyledons. • All species and synonyms are arranged alphabetically under genus. • Accepted names are in bold print while synonyms or previously-used names are in italics. • In the case of synonyms, the currently used name follows the equals sign (=), and only refers to usage in Zimbabwe. • Distribution information is included under the current name. • The letters N, W, C, E, and S, following each listed taxon, indicate the known distribution of species within Zimbabwe as reflected by specimens in SRGH or cited in the literature. Where the distribution is unknown, we have inserted Distr.? after the taxon name. • All species known or suspected to be fully naturalised in Zimbabwe are included in the list. They are preceded by an asterisk (*). Species only known from planted or garden specimens were not included. Mozambique Zambia Kariba Mt. Darwin Lake Kariba N Victoria Falls Harare C Nyanga Mts. W Mutare Gweru E Bulawayo GREAT DYKEMasvingo Plumtree S Chimanimani Mts. Botswana N Beit Bridge South Africa The floristic regions of Zimbabwe: Central, East, North, South, West. A checklist of Zimbabwean vascular plants A checklist of Zimbabwean vascular plants edited by Anthony Mapaura & Jonathan Timberlake Southern African Botanical Diversity Network Report No. 33 • 2004 • Recommended citation format MAPAURA, A. & TIMBERLAKE, J. (eds). 2004. A checklist of Zimbabwean vascular plants.
    [Show full text]
  • Phylogenetic Analysis of Cuban Pinguicula (Lentibulariaceae) Based on Internal Transcribed Spacer (ITS) Region
    Chromosome Botany (2007) 2: 151-158 © Copyright 2007 by the International Society of Chromosome Botany Phylogenetic analysis of Cuban Pinguicula (Lentibulariaceae) based on internal transcribed spacer (ITS) region Hiro Shimai1, Yu Masuda2, Cristina M. Panfet Valdés3 and Katsuhiko Kondo2, 4 1Takamori Orchid Museum, 512-73 Izuhara, Takamori, Nagano 399-3107, Japan; 2Laboratory of Plant Chromosome and Gene Stock, Graduate School of Science, Hiroshima University, l-4-3 Kagamiyama, Higashi-Hiroshima City 739-8526, Japan; 3Cuba National Botanical Garden and University of Habana, Carretera El Rocio, Km 3.5, Calabazar Boyeros, Habana City, C.P. 19230, Cuba 4Author for correspondence: ([email protected]) Received April 23, 2007; accepted September 10, 2007 ABSTRACT. The internal transcribed spacer (ITS) region of 18S-26S nuclear ribosomal DNA (nrDNA) in seven species and one variety of Pinguicula (Lentibulariaceae) in Cuba has been sequenced. Although the eight taxa have been taxonomically divided into two subgenera such as Isoloba and Pinguicula with the other species grown in the other regions, and further they are divided into three sections such as Agnata, Discoradix and Homophyllum. The taxa of Pinguicula in Cuba formed a single clade, and it was not consistent with the current taxonomy based on morphology. Six taxa of Pinguicula in Cuba studied have been classified in section Agnata together with MexicanPinguicula agnata and P. ibarrae, however, they were not ITS-phylogenetically, fully or partially supported by the data. Although the Cuban taxa of Pinguicula were quite different in morphology and life form from each other, they were ITS-phylogenetically close relatives to each other.
    [Show full text]
  • A Molecular Phylogeny Reveals Widespread Floral
    Molecular Phylogenetics and Evolution 51 (2009) 100–110 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Pollinators underestimated: A molecular phylogeny reveals widespread floral convergence in oil-secreting orchids (sub-tribe Coryciinae) of the Cape of South Africa Richard J. Waterman a,b,*, Anton Pauw c, Timothy G. Barraclough a, Vincent Savolainen a,b a Division of Biology, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK b Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK c Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa article info abstract Article history: The oil-secreting orchids of southern Africa belong to the sub-tribe Coryciinae within Diseae. A phylogeny Received 18 December 2007 of Diseae is inferred using sequence data from all genera in the tribe, with an emphasis on resolving gen- Revised 2 May 2008 eric classifications within Coryciinae. Nuclear (ITS) and plastid (trnLF and matK) gene region sequences Accepted 13 May 2008 were analysed for 79 ingroup taxa and three outgroup taxa. Coryciinae is confirmed to be diphyletic, with Available online 24 May 2008 Disperis and Coryciinae sensu stricto (s.s.) forming separate monophyletic clades. The current genera Cory- cium and Pterygodium are not monophyletic according to our analysis and we propose a subdivision of Keywords: Coryciinae s.s. into 10 monophyletic clades including three monotypic groups. Previous generic classifi- Ceratandra cations of Coryciinae s.s. have been hampered by convergent evolution of floral parts, a consequence of Convergent evolution Corycium few pollinator species and limited pollinia attachment sites in the oil-bee pollination system common Disperis to this group.
    [Show full text]
  • Zimbabwe-Mozambique)
    A peer-reviewed open-access journal PhytoKeys 145: 93–129 (2020) Plant checklist for the Bvumba Mountains 93 doi: 10.3897/phytokeys.145.49257 RESEARCH ARTICLE http://phytokeys.pensoft.net Launched to accelerate biodiversity research Mountains of the Mist: A first plant checklist for the Bvumba Mountains, Manica Highlands (Zimbabwe-Mozambique) Jonathan Timberlake1, Petra Ballings2,3, João de Deus Vidal Jr4, Bart Wursten2, Mark Hyde2, Anthony Mapaura4,5, Susan Childes6, Meg Coates Palgrave2, Vincent Ralph Clark4 1 Biodiversity Foundation for Africa, 30 Warren Lane, East Dean, E. Sussex, BN20 0EW, UK 2 Flora of Zimbabwe & Flora of Mozambique projects, 29 Harry Pichanick Drive, Alexandra Park, Harare, Zimbabwe 3 Meise Botanic Garden, Bouchout Domain, Nieuwelaan 38, 1860, Meise, Belgium 4 Afromontane Research Unit & Department of Geography, University of the Free State, Phuthaditjhaba, South Africa 5 National Her- barium of Zimbabwe, Box A889, Avondale, Harare, Zimbabwe 6 Box BW53 Borrowdale, Harare, Zimbabwe Corresponding author: Vincent Ralph Clark ([email protected]) Academic editor: R. Riina | Received 10 December 2019 | Accepted 18 February 2020 | Published 10 April 2020 Citation: Timberlake J, Ballings P, Vidal Jr JD, Wursten B, Hyde M, Mapaura A, Childes S, Palgrave MC, Clark VR (2020) Mountains of the Mist: A first plant checklist for the Bvumba Mountains, Manica Highlands (Zimbabwe- Mozambique). PhytoKeys 145: 93–129. https://doi.org/10.3897/phytokeys.145.49257 Abstract The first comprehensive plant checklist for the Bvumba massif, situated in the Manica Highlands along the Zimbabwe-Mozambique border, is presented. Although covering only 276 km2, the flora is rich with 1250 taxa (1127 native taxa and 123 naturalised introductions).
    [Show full text]