Electroporation Versus Natural Transformation

Total Page:16

File Type:pdf, Size:1020Kb

Electroporation Versus Natural Transformation Transformation of the filamentous Cyanobacterium Phormidium lacuna Electroporation versus Natural Transformation Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) von der KIT-Fakultät für Chemie- und Biowissenschaften des Karlsruher Instituts für Technologie (KIT) genehmigte DISSERTATION von M. Sc. Fabian Nies 1. Referent/Referentin: Prof. Dr. Tilman Lamparter 2. Referent/Referentin: Prof. Dr. Peter Nick Tag der mündlichen Prüfung: 05.02.2019 Die vorliegende Dissertation wurde am Botanischen Institut des Karlsruher Instituts für Technologie (KIT) in der Abteilung Allgemeine Botanik im Zeitraum vom Januar 2015 bis Januar 2019 angefertigt. II III Hiermit bestätige ich, Fabian Nies, dass diese Arbeit selbstständig angefertigt wurde und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt wurden. Alle Stellen, die wörtlich und inhaltlich aus anderen Arbeiten übernommen worden sind, wurden als solche gekennzeichnet. Die Dissertation wurde in dieser oder ähnlicher Form noch nicht an anderer Stelle zur Prüfung eingereicht. ________________________ Fabian Nies (Karlsruhe, 05.01.2019) IV Danksagung An dieser Stelle möchte in mich bei allen Personen bedanken, die mich bei der Anfertigung dieser Arbeit unterstützt haben und ohne die diese Arbeit nicht zur Stande gekommen wäre: Mein besonderer Dank gilt Professor Dr. Tilman Lamparter, der es mir ermöglicht hat meine Promotion in seiner Arbeitsgruppe durchzuführen. Für das entgegengebrachte Vertrauen möchte ich mich an dieser Stelle bedanken. Professor Dr. Tilman Lamparter gab mir den nötigen Freiraum mein Projekt selbstständig zu bearbeiten und stand mir dennoch immer mit Rat und Anregungen unterstützend zur Seite. Besonders schätzte ich in den vergangen Jahren den freundlichen und vertrauten Umgang miteinander. Mein herzlicher Dank gilt außerdem Professor Dr. Peter Nick, in dessen Arbeitsgruppe ich viele Arbeiten durchführen konnte und der netterweise bereit war, die Zweitkorrektur dieser Arbeit zu übernehmen. Auch bei den weiteren Mitgliedern des Prüfungskomitees möchte ich mich an dieser Stelle bedanken. Mein besonderer Dank geht an die Stiftung Nagelschneider, die mich während eines Großteils der Promotion finanziell unterstützt hat und diese Arbeit damit erst ermöglicht hat. Außerdem möchte ich vielmals den technischen Assistenten und auszubildenden Laboranten danken, die einen unverzichtbaren Beitrag dazu leisten das Labor am Laufen zu halten. Insbesondere gilt mein Dank Nadja Wunsch, Ronja Kammerichs, Katrin Wöhrle und Natascha Würges, mit denen ich direkt zusammen arbeiten durfte. Ich möchte außerdem herzlich bei Ernst Heene und der Abteilung für Lebensmittelchemie bedanken, die mir die Analysen mit der Gaschromatographie ermöglicht haben. Außerdem möchte ich mich bei allen Mitarbeitern und Studenten bedanken, mit denen ich die Freude hatte in den letzten Jahren zusammen arbeiten zu dürfen und durch die diese Zeit erst so schön geworden ist, wie sie tatsächlich war. Zuletzt möchte ich mich herzlich bei meinen Freunden und meiner Familie bedanken, die mich während meiner Promotion und auf dem Weg dorthin unterstützt haben. Mein besonderer Dank gilt meinem Vater, Dr. Berthold Nies, der mir mit vielen Ratschlägen stets zur Seite stand. V Zusammenfassung Der Großteil der aktuellen, auf Kohlenstoff basierenden Waren wird entweder aus pflanzlichen Rohstoffen oder aus Erdöl gewonnen. Die damit verbundene Nachfrage nach Ressourcen steigt auf Grund der wachsenden Erdbevölkerung und den allgemeinen Bestrebungen zur Verbesserung des Lebensstandards. Im Gegensatz dazu sind die Verfügbarkeit von Agrarflächen und fossilen Energiereserven begrenzt. Außerdem wird der Anstieg von CO2 in der Atmosphäre seit dem Beginn der industriellen Revolution im 19. Jahrhundert als Hauptbeitrag des Menschen zur globalen Erwärmung angesehen. Es gibt einige Strategien um die Abhängigkeit von fossilen Kohlenstoffquellen zu reduzieren, wie etwa die Entwicklung von regenerativen Energien oder erhöhte Energieeffizienz. Der Einsatz von Cyanobakterien in der Biotechnologie ist eine weitere Strategie, die das Potential besitzt Landwirtschaft und Erdölindustrie als Quelle für kohlenstoffbasierte Produkte zu ersetzen. Produkte, die sich von Cyanobakterien oder Pflanzen ableiten, führen nicht zur Erhöhung des CO2 Gehalts in der Atmosphäre. Im Vergleich zu Landpflanzen ist die Kultivierung von Cyanobakterien nicht abhängig von fruchtbarem Land und viele Arten der Cyanobakterien weisen höhere Wachstumsraten als Pflanzen auf. Außerdem sind einige Cyanobakterien genetisch manipulierbar, wodurch die Synthese natürlicher Produkte verstärkt werden kann oder die rekombinante Produktion von neuen Stoffen möglich ist. Die mögliche Produktpalette reicht von preiswerten Verbindungen, wie Biokraftstoffen, bis hin zu hochwertigen Produkten, wie pharmazeutischen Wirkstoffen. Auch wenn es im Bereich der rekombinanten Biotechnologie mit Cyanobakterien schon kommerzielle Anwendung gibt, befindet sich das gesamte Feld dennoch in seinen Kinderschuhen. Während im Bereich der metabolischen Optimierung, der molekularen Werkzeuge und der Bioreaktorentwicklung in den letzten Jahren und Jahrzehnten deutliche Fortschritte gemacht wurden, ist die Etablierung von neuen Organismen nach wie vor eine Herausforderung. Die Forschung konzentriert sich größtenteils auf wenige, leicht transformierbare Modelorganismen der Ordnungen Synechococcales und Nostocales, da die Etablierung von Transformationsprotokollen für neue Stämme und Arten oft eine Herausforderung darstellt. Allerdings wird die rekombinante Biotechnologie mit Cyanobakterien ohne ein breites Spektrum an nutzbaren Stämmen möglicherweise hinter ihrem Potential zurück bleiben, da vorteilhafte Eigenschaften von vielversprechenden Kandidaten nicht genutzt werden können. Diese Arbeit setzt sich mit der beschriebenen Limitierung auseinander, indem ein verlässliches und effizientes Transformationsprotokoll für Phormidium lacuna etabliert wurde. Diese Art wurde kürzlich von unserer Arbeitsgruppe als vielversprechend für die cyanobakterielle Biotechnologie charakterisiert. Da die Gattung Phormidium bislang noch nicht für genetische Manipulation zugänglich war, war es das Ziel dieser Arbeit ein Transformationsprotokoll zu entwickeln und das Potential für die Biotechnologie an Hand der rekombinanten Ethanolsynthese zu charakterisieren. Die rekombinante Produktion von Ethanol ist gut charakterisiert innerhalb der cyanobakteriellen Biotechnologie und ermöglicht den Vergleich mit anderen Cyanobakterien hinsichtlich Produktivität. VI Bei der Etablierung eines Protokolls zur Elektroporation wurde deutlich, dass Phormidium lacuna natürlich transformierbar ist. Natürliche Transformation ist bislang nur für wenige Stämme der Cyanobakterien beschrieben und dies ist der erste Bericht für die Ordnung Oscillatoriales. Natürliche Transformation erlaubt verlässlichen und effizienten Gentransfer mittels homologer Rekombination in Phormidium lacuna. Die Integration des Selektionsmarkers kanR ins Genom von Phormidium lacuna vermittelt eine deutliche Resistenz gegenüber Kanamycin (bis zu 14,3 mg/ml). Die kanR Sequenz verteilt sich sehr schnell in allen Genomkopien: Nach zwei Kulturzyklen nach der ersten Kultivierung der entsprechenden Transformanten war die kanR Sequenz in allen Genomkopien einer Zelle vorhanden. Phormidium lacuna Transformaten für die rekombinante Ethanolproduktion wurden generiert indem die codierenden Sequenzen für die Enzyme Pyruvatdecarboxylase und Alkoholdehydrogenase ins Genom integriert wurden. Die Ethanolproduktion wurde über die Ethanolkonzentration im Kulturüberstand mittels Gaschromatographie nachgewiesen. Allerdings konnte keine erhöhte Ethanolproduktion von Transformanten im Vergleich zum Wildtyp von Phormidium lacuna nachgewiesen werden. Mögliche Gründe hierfür und geeignete Schritte in Richtung einer biotechnologischen Anwendung von Phormidium lacuna wurden diskutiert. Der unerwartete Fund der natürlichen Transformation für Phormidium lacuna ist möglicherweise ein Hinweis darauf, dass die Fähigkeit zu natürlicher Transformation weiter unter den Cyanobakterien verbreitet ist, als bislang angenommen wurde. Um diese Fragestellung zu adressieren wurden der Fund der natürlichen Transformation in dieser Arbeit und die weiteren Beispiele, die in der Literatur beschrieben sind, mit den Cyanobakterien im Allgemeinen verglichen. Basierend auf der Homologie zu Proteinen, die an der natürlichen Transformation beteiligt sind, wurden cyanobakterielle Stämme vorgeschlagen, die potentiell transformierbar sind. Der Fund der natürlichen Transformation in dieser Arbeit hat viele Implikationen. Erstens: Phormidium lacuna ist nun effizient natürlich transformierbar, was eine essentielle Voraussetzung für die weiteren Arbeitsschritte mit diesem Organismus in Bereich der rekombinanten Biotechnologie darstellt. Zweitens: Da Phormidium lacuna leicht transformierbar ist und homozygote Transformanten in kurzer Zeit generiert werden können, bietet sich dieses Bakterium als vielversprechender Modellorganismus der filamentösen Cyanobakterien ohne Heterocysten an. Drittens: Der Fund von natürlicher Transformation in einer neuen Ordnung der Cyanobakterien weiß vermutlich daraufhin, dass natürliche Kompetenz eine weit verbreitete Eigenschaft innerhalb der Cyanobakterien ist und dass möglicherweise deutlich mehr Stämme zugängliche für rekombinante Biotechnologie sind. VII Abstract Our present consumption of organic commodities mostly relies on plant material or mineral
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Causative Analysis on a Nearshore Bloom of Oscillatoria Erythraea (Trichodesmium) in the Northern Gulf of Mexico
    Gulf of Mexico Science Volume 5 Number 1 Number 1 Article 1 10-1981 Causative Analysis on a Nearshore Bloom of Oscillatoria erythraea (trichodesmium) in the Northern Gulf of Mexico Lionel Eleuterius Gulf Coast Research Laboratory Harriet Perry Gulf Coast Research Laboratory Charles Eleuterius Gulf Coast Research Laboratory James Warren Gulf Coast Research Laboratory John Caldwell Gulf Coast Research Laboratory Follow this and additional works at: https://aquila.usm.edu/goms DOI: 10.18785/negs.0501.01 Recommended Citation Eleuterius, L., H. Perry, C. Eleuterius, J. Warren and J. Caldwell. 1981. Causative Analysis on a Nearshore Bloom of Oscillatoria erythraea (trichodesmium) in the Northern Gulf of Mexico. Northeast Gulf Science 5 (1). Retrieved from https://aquila.usm.edu/goms/vol5/iss1/1 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Eleuterius et al.: Causative Analysis on a Nearshore Bloom of Oscillatoria erythraea Northeast Gulf Science Vol5, No.1, p. 1-11 October 1981 CAUSATIVE ANALYSIS ON A NEARSHORE BLOOM OF Oscillator/a erythraea (TRICHODESMIUM) IN THE NORTHERN GULF OF MEXICO Lionel Eleuterius, Harriet Perry, Charles Eleuterius James Warren, and John Caldwell Gulf Coast Research Laboratory Ocean Springs, MS 39564 ABSTRACT: Physical, chemical, and biological characteristics which preceded and caused a bloom of Osclllatorla erythraea commonly known as trlchodesmlum In coastal waters of Mississippi and adjacent waters of the Gulf of Mexico are described.
    [Show full text]
  • Akashiwo Sanguinea
    Ocean ORIGINAL ARTICLE and Coastal http://doi.org/10.1590/2675-2824069.20-004hmdja Research ISSN 2675-2824 Phytoplankton community in a tropical estuarine gradient after an exceptional harmful bloom of Akashiwo sanguinea (Dinophyceae) in the Todos os Santos Bay Helen Michelle de Jesus Affe1,2,* , Lorena Pedreira Conceição3,4 , Diogo Souza Bezerra Rocha5 , Luis Antônio de Oliveira Proença6 , José Marcos de Castro Nunes3,4 1 Universidade do Estado do Rio de Janeiro - Faculdade de Oceanografia (Bloco E - 900, Pavilhão João Lyra Filho, 4º andar, sala 4018, R. São Francisco Xavier, 524 - Maracanã - 20550-000 - Rio de Janeiro - RJ - Brazil) 2 Instituto Nacional de Pesquisas Espaciais/INPE - Rede Clima - Sub-rede Oceanos (Av. dos Astronautas, 1758. Jd. da Granja -12227-010 - São José dos Campos - SP - Brazil) 3 Universidade Estadual de Feira de Santana - Departamento de Ciências Biológicas - Programa de Pós-graduação em Botânica (Av. Transnordestina s/n - Novo Horizonte - 44036-900 - Feira de Santana - BA - Brazil) 4 Universidade Federal da Bahia - Instituto de Biologia - Laboratório de Algas Marinhas (Rua Barão de Jeremoabo, 668 - Campus de Ondina 40170-115 - Salvador - BA - Brazil) 5 Instituto Internacional para Sustentabilidade - (Estr. Dona Castorina, 124 - Jardim Botânico - 22460-320 - Rio de Janeiro - RJ - Brazil) 6 Instituto Federal de Santa Catarina (Av. Ver. Abrahão João Francisco, 3899 - Ressacada, Itajaí - 88307-303 - SC - Brazil) * Corresponding author: [email protected] ABSTRAct The objective of this study was to evaluate variations in the composition and abundance of the phytoplankton community after an exceptional harmful bloom of Akashiwo sanguinea that occurred in Todos os Santos Bay (BTS) in early March, 2007.
    [Show full text]
  • Detection and Study of Blooms of Trichodesmium Erythraeum and Noctiluca Miliaris in NE Arabian Sea S
    Detection and study of blooms of Trichodesmium erythraeum and Noctiluca miliaris in NE Arabian Sea S. G. Prabhu Matondkar 1*, R.M. Dwivedi 2, J. I. Goes 3, H.do.R. Gomes 3, S.G. Parab 1and S.M.Pednekar 1 1National Institute of Oceanography, Dona-Paula 403 004, Goa, INDIA 2Space Application Centre, Ahmedabad, Gujarat, INDIA 3Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, Maine, 04575, USA Abstract The Arabian Sea is subject to semi-annual wind reversals associated with the monsoon cycle that result in two periods of elevated phytoplankton productivity, one during the northeast (NE) monsoon (November-February) and the other during the southwest (SW) monsoon (June- September). Although the seasonality of phytoplankton biomass in these offshore waters is well known, the abundance and composition of phytoplankton associated with this distinct seasonal cycle is poorly understood. Monthly samples were collected from the NE Arabian Sea (offshore) from November to May. Phytoplankton were studied microscopically up to the species level. Phytoplankton counts are supported by Chl a estimations and chemotaxonomic studies using HPLC. Surface phytoplankton cell counts varied from 0.1912 (Mar) to 15.83 cell x104L-1 (Nov). In Nov Trichodesmium thiebautii was the dominant species. It was replaced by diatom and dinoflagellates in the following month. Increased cell counts during Jan were predominantly due to dinoflagellates Gymnodinium breve , Gonyaulax schilleri and Amphidinium carteare . Large blooms of Noctiluca miliaris were observed in Feb a direct consequence of the large populations of G. schilleri upon which N. miliaris is known to graze. In Mar and April, N. miliaris was replaced by blooms of Trichodesmium erythraeum .
    [Show full text]
  • Bloom of Trichodesmium Erythraeum (Ehr.) and Its Impact on Water Quality and Plankton Community Structure in the Coastal Waters of Southeast Coast of India
    Indian Journal of Marine Science Vol. 39(3), September 2010, pp. 323-333 Bloom of Trichodesmium erythraeum (Ehr.) and its impact on water quality and plankton community structure in the coastal waters of southeast coast of India A K Mohanty 1, K K Satpathy 1, G Sahu 1, K J Hussain 1, M V R Prasad 1 & S K Sarkar 2 1 Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu- 603 102 India 2 Department of Marine Science, University of Calcutta, Kolkata- 700 019 India [Email : [email protected]] Received 14 September 2009; revised 11 January 2010 An intense bloom of Trichodesmium erythraeum was observed in the coastal waters (about 600 m away from the shore) of southeast coast of India during the post-northeast monsoon period. The bloom appeared during a relatively high temperature condition with coastal water salinity > 31 psu. A significant reduction in nitrate concentration was noticed during the bloom period, whereas, relatively high concentration of phosphate and total phosphorous was observed. An abrupt increase in ammonia concentration to the tune of 284.36 µmol l -1 was observed which coincided with the highest Trichodesmium density (2.88 × 10 7 cells l -1). Contribution of Trichodesmium to the total phytoplankton density ranged from 7.79% to 97.01%. A distinct variation in phytoplankton species number and phytoplankton diversity indices was noticed. The lowest diversity indices coincided with the observed highest Trichodesmium density. Concentrations of chlorophyll-a (maximum 42.15 mg m -3) and phaeophytin (maximum 46.23 mg m -3) increased abnormally during the bloom.
    [Show full text]
  • Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
    Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae
    [Show full text]
  • Characteristic Microbiomes Correlate with Polyphosphate Accumulation of Marine Sponges in South China Sea Areas
    microorganisms Article Characteristic Microbiomes Correlate with Polyphosphate Accumulation of Marine Sponges in South China Sea Areas 1 1, 1 1 2, 1,3, Huilong Ou , Mingyu Li y, Shufei Wu , Linli Jia , Russell T. Hill * and Jing Zhao * 1 College of Ocean and Earth Science of Xiamen University, Xiamen 361005, China; [email protected] (H.O.); [email protected] (M.L.); [email protected] (S.W.); [email protected] (L.J.) 2 Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA 3 Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen 361005, China * Correspondence: [email protected] (J.Z.); [email protected] (R.T.H.); Tel.: +86-592-288-0811 (J.Z.); Tel.: +(410)-234-8802 (R.T.H.) The author contributed equally to the work as co-first author. y Received: 24 September 2019; Accepted: 25 December 2019; Published: 30 December 2019 Abstract: Some sponges have been shown to accumulate abundant phosphorus in the form of polyphosphate (polyP) granules even in waters where phosphorus is present at low concentrations. But the polyP accumulation occurring in sponges and their symbiotic bacteria have been little studied. The amounts of polyP exhibited significant differences in twelve sponges from marine environments with high or low dissolved inorganic phosphorus (DIP) concentrations which were quantified by spectral analysis, even though in the same sponge genus, e.g., Mycale sp. or Callyspongia sp. PolyP enrichment rates of sponges in oligotrophic environments were far higher than those in eutrophic environments.
    [Show full text]
  • 50 Annual Meeting of the Phycological Society of America
    50th Annual Meeting of the Phycological Society of America August 10-13 Drexel University Philadelphia, PA The Phycological Society of America (PSA) was founded in 1946 to promote research and teaching in all fields of Phycology. The society publishes the Journal of Phycology and the Phycological Newsletter. Annual meetings are held, often jointly with other national or international societies of mutual member interest. PSA awards include the Bold Award for the best student paper at the annual meeting, the Lewin Award for the best student poster at the annual meeting, the Provasoli Award for outstanding papers published in the Journal of Phycology, The PSA Award of Excellence (given to an eminent phycologist to recognize career excellence) and the Prescott Award for the best Phycology book published within the previous two years. The society provides financial aid to graduate student members through Croasdale Fellowships for enrollment in phycology courses, Hoshaw Travel Awards for travel to the annual meeting and Grants-In-Aid for supporting research. To join PSA, contact the membership director or visit the website: www.psaalgae.org LOCAL ORGANIZERS FOR THE 2015 PSA ANNUAL MEETING: Rick McCourt, Academy of Natural Sciences of Drexel University Naomi Phillips, Arcadia University PROGRAM DIRECTOR FOR 2015: Dale Casamatta, University of North Florida PSA OFFICERS AND EXECUTIVE COMMITTEE President Rick Zechman, College of Natural Resources and Sciences, Humboldt State University Past President John W. Stiller, Department of Biology, East Carolina University Vice President/President Elect Paul W. Gabrielson, Hillsborough, NC International Vice President Juliet Brodie, Life Sciences Department, Genomics and Microbial Biodiversity Division, Natural History Museum, Cromwell Road, London Secretary Chris Lane, Department of Biological Sciences, University of Rhode Island, Treasurer Eric W.
    [Show full text]
  • Additional Analysis of Cyanobacterial Polyamines Distributions Of
    Microb. Resour. Syst. Dec.32(2 ):1792016 ─ 186, 2016 Vol. 32, No. 2 Additional analysis of cyanobacterial polyamines ─ Distributions of spermidine, homospermidine, spermine, and thermospermine within the phylum Cyanobacteria ─ Koei Hamana1)*, Takemitsu Furuchi2), Hidenori Hayashi1) and Masaru Niitsu2) 1)Faculty of Engineering, Maebashi Institute of Technology 460-1 Kamisadori-machi, Maebashi, Gunma 371-0816, Japan 2)Faculty of Pharmaceutical Sciences, Josai University, 1-1, Keyakidai, Sakado, Saitama 350-0295, Japan To further catalogue the distribution of cyanobacterial cellular polyamines, we used HPLC and HPGC to newly analyze the acid-extracted polyamines from 14 cyanobacteria. The colony-forming Nostoc verrucosum (“Ashitsuki”) and Nostoc commune (“Ishikurage”), as well as Anabaena species (Nostocales), contained homospermidine. The thermo-halotolerant Spirulina subsalsa var. salina (Spirulinales), as well as freshwater Spirulina strains, contained spermidine. Putrescine, spermidine, and homospermidine were found in freshwater colony-forming Aphanothece sacrum (“Suizenji-nori”), whereas the halotolerant Aphanothece halophytica and Microcystis species (Chroococcales) contained spermidine alone. In addition to putrescine, spermidine, homospermidine and agmatine, thermospermine was found as a major polyamine in haloalkaliphilic Arthrospira platensis (“Spirulina”) (Oscillatoriales). In the Synechococcales, chlorophyll b-containing Prochlorococcus marina contained spermidine, and chlorophyll d-containing Acaryochloris marina contained
    [Show full text]
  • Photosymbiosis for Biomedical Applications
    fbioe-08-577204 October 3, 2020 Time: 17:45 # 1 REVIEW published: 06 October 2020 doi: 10.3389/fbioe.2020.577204 Photosymbiosis for Biomedical Applications Myra N. Chávez1†, Nicholas Moellhoff2†, Thilo L. Schenck2, José Tomás Egaña3* and Jörg Nickelsen1* 1 Molecular Plant Science, Department Biology I, Ludwig-Maximilians-Universität München, Munich, Germany, 2 Division of Hand, Plastic and Aesthetic Surgery, University Hospital, Ludwig Maximilian Universität München, Munich, Germany, 3 Institute for Biological and Medical Engineering, Schools of Engineering, Biological Sciences and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile Without the sustained provision of adequate levels of oxygen by the cardiovascular system, the tissues of higher animals are incapable of maintaining normal metabolic activity, and hence cannot survive. The consequence of this evolutionarily suboptimal design is that humans are dependent on cardiovascular perfusion, and therefore highly susceptible to alterations in its normal function. However, hope may be at hand. Edited by: “Photosynthetic strategies,” based on the recognition that photosynthesis is the source Bruce Alan Bunnell, University of North Texas Health of all oxygen, offer a revolutionary and promising solution to pathologies related to Science Center, United States tissue hypoxia. These approaches, which have been under development over the past Reviewed by: 20 years, seek to harness photosynthetic microorganisms as a local and controllable Matjaž Jeras, source of oxygen to circumvent the need for blood perfusion to sustain tissue survival. University of Ljubljana, Slovenia Kar Wey Yong, To date, their applications extend from the in vitro creation of artificial human tissues to University of Alberta, Canada the photosynthetic maintenance of oxygen-deprived organs both in vivo and ex vivo, *Correspondence: while their potential use in other medical approaches has just begun to be explored.
    [Show full text]
  • Gene Content and Organization
    Photosynth Res DOI 10.1007/s11120-006-9122-4 REGULAR PAPER Complete nucleotide sequence of the freshwater unicellular cyanobacterium Synechococcus elongatus PCC 6301 chromosome: gene content and organization Chieko Sugita Æ Koretsugu Ogata Æ Masamitsu Shikata Æ Hiroyuki Jikuya Æ Jun Takano Æ Miho Furumichi Æ Minoru Kanehisa Æ Tatsuo Omata Æ Masahiro Sugiura Æ Mamoru Sugita Received: 30 August 2006 / Accepted: 6 December 2006 Ó Springer Science+Business Media B.V. 2006 Abstract The entire genome of the unicellular of the potential protein-coding genes showed cyanobacterium Synechococcus elongatus PCC 6301 sequence similarities to experimentally identified and (formerly Anacystis nidulans Berkeley strain 6301) predicted proteins of known function, and the prod- was sequenced. The genome consisted of a circular ucts of 35% of the genes showed sequence similarities chromosome 2,696,255 bp long. A total of 2,525 to the translated products of hypothetical genes. The potential protein-coding genes, two sets of rRNA remaining 9% of genes lacked significant similarities genes, 45 tRNA genes representing 42 tRNA species, to genes for predicted proteins in the public DNA and several genes for small stable RNAs were databases. Some 139 genes coding for photosynthesis- assigned to the chromosome by similarity searches and related components were identified. Thirty-seven computer predictions. The translated products of 56% genes for two-component signal transduction systems were also identified. This is the smallest number of such genes identified in cyanobacteria, except for marine cyanobacteria, suggesting that only simple signal transduction systems are found in this strain. The gene arrangement and nucleotide sequence of Synechococcus elongatus PCC 6301 were nearly & C.
    [Show full text]
  • DOMAIN Bacteria PHYLUM Cyanobacteria
    DOMAIN Bacteria PHYLUM Cyanobacteria D Bacteria Cyanobacteria P C Chroobacteria Hormogoneae Cyanobacteria O Chroococcales Oscillatoriales Nostocales Stigonematales Sub I Sub III Sub IV F Homoeotrichaceae Chamaesiphonaceae Ammatoideaceae Microchaetaceae Borzinemataceae Family I Family I Family I Chroococcaceae Borziaceae Nostocaceae Capsosiraceae Dermocarpellaceae Gomontiellaceae Rivulariaceae Chlorogloeopsaceae Entophysalidaceae Oscillatoriaceae Scytonemataceae Fischerellaceae Gloeobacteraceae Phormidiaceae Loriellaceae Hydrococcaceae Pseudanabaenaceae Mastigocladaceae Hyellaceae Schizotrichaceae Nostochopsaceae Merismopediaceae Stigonemataceae Microsystaceae Synechococcaceae Xenococcaceae S-F Homoeotrichoideae Note: Families shown in green color above have breakout charts G Cyanocomperia Dactylococcopsis Prochlorothrix Cyanospira Prochlorococcus Prochloron S Amphithrix Cyanocomperia africana Desmonema Ercegovicia Halomicronema Halospirulina Leptobasis Lichen Palaeopleurocapsa Phormidiochaete Physactis Key to Vertical Axis Planktotricoides D=Domain; P=Phylum; C=Class; O=Order; F=Family Polychlamydum S-F=Sub-Family; G=Genus; S=Species; S-S=Sub-Species Pulvinaria Schmidlea Sphaerocavum Taxa are from the Taxonomicon, using Systema Natura 2000 . Triochocoleus http://www.taxonomy.nl/Taxonomicon/TaxonTree.aspx?id=71022 S-S Desmonema wrangelii Palaeopleurocapsa wopfnerii Pulvinaria suecica Key Genera D Bacteria Cyanobacteria P C Chroobacteria Hormogoneae Cyanobacteria O Chroococcales Oscillatoriales Nostocales Stigonematales Sub I Sub III Sub
    [Show full text]