Causative Analysis on a Nearshore Bloom of Oscillatoria Erythraea (Trichodesmium) in the Northern Gulf of Mexico

Total Page:16

File Type:pdf, Size:1020Kb

Causative Analysis on a Nearshore Bloom of Oscillatoria Erythraea (Trichodesmium) in the Northern Gulf of Mexico Gulf of Mexico Science Volume 5 Number 1 Number 1 Article 1 10-1981 Causative Analysis on a Nearshore Bloom of Oscillatoria erythraea (trichodesmium) in the Northern Gulf of Mexico Lionel Eleuterius Gulf Coast Research Laboratory Harriet Perry Gulf Coast Research Laboratory Charles Eleuterius Gulf Coast Research Laboratory James Warren Gulf Coast Research Laboratory John Caldwell Gulf Coast Research Laboratory Follow this and additional works at: https://aquila.usm.edu/goms DOI: 10.18785/negs.0501.01 Recommended Citation Eleuterius, L., H. Perry, C. Eleuterius, J. Warren and J. Caldwell. 1981. Causative Analysis on a Nearshore Bloom of Oscillatoria erythraea (trichodesmium) in the Northern Gulf of Mexico. Northeast Gulf Science 5 (1). Retrieved from https://aquila.usm.edu/goms/vol5/iss1/1 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Eleuterius et al.: Causative Analysis on a Nearshore Bloom of Oscillatoria erythraea Northeast Gulf Science Vol5, No.1, p. 1-11 October 1981 CAUSATIVE ANALYSIS ON A NEARSHORE BLOOM OF Oscillator/a erythraea (TRICHODESMIUM) IN THE NORTHERN GULF OF MEXICO Lionel Eleuterius, Harriet Perry, Charles Eleuterius James Warren, and John Caldwell Gulf Coast Research Laboratory Ocean Springs, MS 39564 ABSTRACT: Physical, chemical, and biological characteristics which preceded and caused a bloom of Osclllatorla erythraea commonly known as trlchodesmlum In coastal waters of Mississippi and adjacent waters of the Gulf of Mexico are described. This Is the first report of the blue-green alga occurring in high density near the mainland and In a predominantly estuarine area of the northern Gulf of Mexico. Environmental conditions Immediately prior to and during the bloom were characterized by low rainfall, calm sea, a homogeneous water column, low nitrate-nitrogen (0-5 N03-N pg-atom/1), no measurable nitrite-nitrogen (0 N02-N pg-atom/ I), high water temperatures (29-30° C), high salinity (270/100), and a basic pH (8.3 to 8.4). Total phosphorus and orthophosphate& were also low prior to the bloom (0.1 P pg­ atom/1), but increased slightly during the later stages of the bloom (0.7 to 1.5 P pg-atom/ 1). The alga disappeared with the return of well-mixed sea water, lower salinity, lower temperature and acidic pH, and an increase in combined nitrogen content. Osclllatorla erythraea occurred in bundles of 10 to 25 trichomes or as a single filament, ranging from 8 to 15pm In diameter and about 0.3 mm in length. The alga occurred in patches with the greatest concentration near the surface. Some entrapment of zooplankton in the dense algal mass was observed, but most of the zooplankton was diverse and unharmed. Harmful effects of the algal bloom on larger animals were not observed nor believed to have occurred. ' Blooms of the planktonf6,blue-green Antarctic waters. alga Oscillatoria erythraea (Ehrenberg) Experimental evidence indicates that Kutzing commonly known as tricho­ trichodesmium is capable of nitrogen desmium are common in tropical seas fixation (Dugdale et a/., 1961; Dugdale, around the world. This organism has et a/., 1964; Goering et a/., 1966; been reported frequently from the Indian Ramamurthy and Krishnamurthy, 1967; Ocean, especially the Bay of Bengal, the Carpenter, 1973; Taylor, et a/., 1973; Red and Arabian seas and the tropical Carpenter and McCarthy, 1975). Stewart Atlantic Ocean including the coastal and Bottomly (1976) review the literature waters of South America, the Sargasso and point out that many morphological Sea and the Strait of Florida (Moseley, types of blue-green algae show nitro- 1879; Brongersma-Sanders, 1957; 'genase activity. In some regions tricho­ Dugdale, eta/., 1961; Dugdaleeta/., 1964; desmium blooms become so intense and Sieburth and Conover, 1965; Goering, et widespread that they may make a major a/., 1966; Qasim, 1970; Yentsch, et a/., contribution to the nitrogen budget of the 1972; Carpenter, 1973). Blooms in the sea (Eppley and Thomas, 1969; Thomas, Pacific Ocean have been reported by 1971; Carpenter, 1973; Carpenter and Wood (1965) and Bowman and Lancaster Price, 1976). Trichodesmium may be de­ (1965).There are fewer reports of the alga trimental to certain plants and animals from temperate seas, indicating that (Bowman and Lancaster, 1965; Qasim, blooms occur less frequently northward 1970), while favoring the growth of others and southward from the tropics. Farran (Calef and Grive, 1966). Ramamurthy (1932) found trichodesmium off the (1970) reported no fish mortality in coast of Ireland and Wood (1965) reports dense concentrations of the alga, how­ it south of New Zealand and even in ever the diversity of fishes was decreased, Published by The Aquila Digital Community, 1981 1 1 Gulf of Mexico Science, Vol. 5 [1981], No. 1, Art. 1 2 L. Eleuterius, H. Perry, C. Eleuterius, J. Warren, and J. Caldwell f· suggesting bloom avoidance by certain initiated on 13 August 1974, approximate­ species. He also reported that 80 to 90% ly three days after initial reports of the of the gut content, of fish taken within the bloom, to determine its extent and in­ bloom, contained trichodesmium. tensity. Clarke-Bumpus samplers fitted There are no detailed reports on with 157 pm mesh nets were used for blooms of trichodesmium of temperate plankton collections at the surface and seas, especially nearshore, estuarine bottom. Tows were made at a constant areas. Thomas (1960) and Simmons and speed for intervals of ten minutes. The Thomas (1962) report trichodesmium tow interval for surface samples taken in from the eastern Mississippi Delta. the nearshore waters of Ship Island was Gunter et a/., 1948; Curl (1959); Humm three minutes, because of the great den­ and Caylor (1957); and Oppenheimer sity of the alga in the water column. Many (1970) report it from off the Florida, Mis­ samples were also taken from the surface sissippi and Texas coasts, respectively. and subsurface waters by bucket and Davis (1954) and Van Baalen and Brown subsamples made on a volume basis. (1969) report it from the Gulf of Mexico. Samples were preserved in the field in a Trichodesmium is known to the present 5% solution of formalin buffered with authors to be an ephemeral component of methenamine. the Mississippi Sound phytoplankton. Although hydrological data were However, some biological and ecological taken with each plankton sample, the characteristics of a large bloom of trich­ description of the physical conditions odesmium occurring in Mississippi occurring during the bloom is based on Sound and in the immediately adjacent unpublished data from a concurrent waters of the Gulf of Mexic.o during the oceanographic survey of Mississippi \ late summer of 1974 are evaluated and Sound described by Eleuterius (1976a,). analyzed here to determine the cause of Conductivity, temperature; pH and dis­ the bloom. solved oxygen were measured in situ by a Mississippi Sound is separated from Martek water quality analyzer with an ac­ the Gulf of Mexico by a chain of barrier curacy of± 0.5° C. Conductivity was later islands, which lie from 12.9 to 19.3 kilo­ converted to salinity in ppt by an empiri­ meters (8 to 12 miles) off the mainland cal relationship. Transparency was de­ shore. Four rivers discharge fresh water termined by Spectronic 20 Perkin-Elmer into Mississippi Sound from the north and Spectrophotometer set at a wavelength of sea water enters Mississippi Sound 580 nanometers (nm). Distilled water was through the island passes; thus the water used as a standard and the instrument generally exhibits an increasing salinity adjusted to 100%. A sample of seawater g.~~c;l.ient from the mainland toward the was read as a percentage of light trans­ sea.~.Additionally, Mississippi Sound is mitted. Concentrations of the inorganic influenced by freshwater discharge from nitrogenous compounds, nitrate, nitrite Mobile Bay on the east and occasionally, and ammonium, were determined from during flood years, by the Bonnet Carre unfiltered seawater using standard sea Spillway of the Mississippi River on the water methods (Strickland and Parsons, west. 1972). Total phosphorus and orthophos­ phate of unfiltered seawater were deter­ METHODS AND MATERIALS mined using methods 11.3 and method 11.2.1 described by Strickland and Par­ Field procedure sons (1972), with no appreciable dif­ https://aquila.usm.edu/goms/vol5/iss1/1Surveys by boat and airplane were ferences found using filtered and unfilter- DOI: 10.18785/negs.0501.01 2 ----- - ---------- Eleuterius et al.: Causative Analysis on a Nearshore Bloom of Oscillatoria erythraea Estuarine Trichodesmium bloom 3 ed seawater samples. Regardless of the surface, and the air was permeated by a presence of phytoplankton or detritus in strong chlorine or iodine-like odor. Some the samples, for purposes of our analysis fishermen discribed the odor as that of it can only be regarded as an estimate or freshly-mowed grass or fresh tea. The approximation and not an absolute value scum formed great rafts on the water of the total nutrient budget of the sea­ surface and patches of dark brown or water. Sample analyses were carried out reddish water without rafts on the surface consistently and are the only chemical were easily delineated by aerial flights on data available which correspond to the 16 August. development of the bloom. Algal samples The sea was very calm during the were taken near Horn and Ship Islands by week prior to the bloom, the sunshine Gulf Coast Research Laboratory staff brilliant, and a gentle breeze prevailed. personnel and biologists of the Gulf Is­ These environmental conditions ac­ lands National Seashore, U.S. Park companied the bloom for about a week Service. after the onset, the bloom probably reaching peak development on the fourth Laboratory procedure or fifth day after it was first observed.
Recommended publications
  • Akashiwo Sanguinea
    Ocean ORIGINAL ARTICLE and Coastal http://doi.org/10.1590/2675-2824069.20-004hmdja Research ISSN 2675-2824 Phytoplankton community in a tropical estuarine gradient after an exceptional harmful bloom of Akashiwo sanguinea (Dinophyceae) in the Todos os Santos Bay Helen Michelle de Jesus Affe1,2,* , Lorena Pedreira Conceição3,4 , Diogo Souza Bezerra Rocha5 , Luis Antônio de Oliveira Proença6 , José Marcos de Castro Nunes3,4 1 Universidade do Estado do Rio de Janeiro - Faculdade de Oceanografia (Bloco E - 900, Pavilhão João Lyra Filho, 4º andar, sala 4018, R. São Francisco Xavier, 524 - Maracanã - 20550-000 - Rio de Janeiro - RJ - Brazil) 2 Instituto Nacional de Pesquisas Espaciais/INPE - Rede Clima - Sub-rede Oceanos (Av. dos Astronautas, 1758. Jd. da Granja -12227-010 - São José dos Campos - SP - Brazil) 3 Universidade Estadual de Feira de Santana - Departamento de Ciências Biológicas - Programa de Pós-graduação em Botânica (Av. Transnordestina s/n - Novo Horizonte - 44036-900 - Feira de Santana - BA - Brazil) 4 Universidade Federal da Bahia - Instituto de Biologia - Laboratório de Algas Marinhas (Rua Barão de Jeremoabo, 668 - Campus de Ondina 40170-115 - Salvador - BA - Brazil) 5 Instituto Internacional para Sustentabilidade - (Estr. Dona Castorina, 124 - Jardim Botânico - 22460-320 - Rio de Janeiro - RJ - Brazil) 6 Instituto Federal de Santa Catarina (Av. Ver. Abrahão João Francisco, 3899 - Ressacada, Itajaí - 88307-303 - SC - Brazil) * Corresponding author: [email protected] ABSTRAct The objective of this study was to evaluate variations in the composition and abundance of the phytoplankton community after an exceptional harmful bloom of Akashiwo sanguinea that occurred in Todos os Santos Bay (BTS) in early March, 2007.
    [Show full text]
  • Detection and Study of Blooms of Trichodesmium Erythraeum and Noctiluca Miliaris in NE Arabian Sea S
    Detection and study of blooms of Trichodesmium erythraeum and Noctiluca miliaris in NE Arabian Sea S. G. Prabhu Matondkar 1*, R.M. Dwivedi 2, J. I. Goes 3, H.do.R. Gomes 3, S.G. Parab 1and S.M.Pednekar 1 1National Institute of Oceanography, Dona-Paula 403 004, Goa, INDIA 2Space Application Centre, Ahmedabad, Gujarat, INDIA 3Bigelow Laboratory for Ocean Sciences, West Boothbay Harbor, Maine, 04575, USA Abstract The Arabian Sea is subject to semi-annual wind reversals associated with the monsoon cycle that result in two periods of elevated phytoplankton productivity, one during the northeast (NE) monsoon (November-February) and the other during the southwest (SW) monsoon (June- September). Although the seasonality of phytoplankton biomass in these offshore waters is well known, the abundance and composition of phytoplankton associated with this distinct seasonal cycle is poorly understood. Monthly samples were collected from the NE Arabian Sea (offshore) from November to May. Phytoplankton were studied microscopically up to the species level. Phytoplankton counts are supported by Chl a estimations and chemotaxonomic studies using HPLC. Surface phytoplankton cell counts varied from 0.1912 (Mar) to 15.83 cell x104L-1 (Nov). In Nov Trichodesmium thiebautii was the dominant species. It was replaced by diatom and dinoflagellates in the following month. Increased cell counts during Jan were predominantly due to dinoflagellates Gymnodinium breve , Gonyaulax schilleri and Amphidinium carteare . Large blooms of Noctiluca miliaris were observed in Feb a direct consequence of the large populations of G. schilleri upon which N. miliaris is known to graze. In Mar and April, N. miliaris was replaced by blooms of Trichodesmium erythraeum .
    [Show full text]
  • Bloom of Trichodesmium Erythraeum (Ehr.) and Its Impact on Water Quality and Plankton Community Structure in the Coastal Waters of Southeast Coast of India
    Indian Journal of Marine Science Vol. 39(3), September 2010, pp. 323-333 Bloom of Trichodesmium erythraeum (Ehr.) and its impact on water quality and plankton community structure in the coastal waters of southeast coast of India A K Mohanty 1, K K Satpathy 1, G Sahu 1, K J Hussain 1, M V R Prasad 1 & S K Sarkar 2 1 Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu- 603 102 India 2 Department of Marine Science, University of Calcutta, Kolkata- 700 019 India [Email : [email protected]] Received 14 September 2009; revised 11 January 2010 An intense bloom of Trichodesmium erythraeum was observed in the coastal waters (about 600 m away from the shore) of southeast coast of India during the post-northeast monsoon period. The bloom appeared during a relatively high temperature condition with coastal water salinity > 31 psu. A significant reduction in nitrate concentration was noticed during the bloom period, whereas, relatively high concentration of phosphate and total phosphorous was observed. An abrupt increase in ammonia concentration to the tune of 284.36 µmol l -1 was observed which coincided with the highest Trichodesmium density (2.88 × 10 7 cells l -1). Contribution of Trichodesmium to the total phytoplankton density ranged from 7.79% to 97.01%. A distinct variation in phytoplankton species number and phytoplankton diversity indices was noticed. The lowest diversity indices coincided with the observed highest Trichodesmium density. Concentrations of chlorophyll-a (maximum 42.15 mg m -3) and phaeophytin (maximum 46.23 mg m -3) increased abnormally during the bloom.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Indicators of Iron
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Indicators of Iron Metabolism in Marine Microbial Genomes and Ecosystems A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Oceanography by Shane Lahman Hogle Committee in charge: Katherine Barbeau, Chair Eric Allen Bianca Brahamsha Christopher Dupont Brian Palenik Kit Pogliano 2016 Copyright Shane Lahman Hogle, 2016 All rights reserved . The Dissertation of Shane Lahman Hogle is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2016 iii DEDICATION Mom, Dad, Joel, and Marie thank you for everything iv TABLE OF CONTENTS Signature Page ................................................................................................................... iii Dedication .......................................................................................................................... iv Table of Contents .................................................................................................................v List of Figures ................................................................................................................... vii List of Tables ..................................................................................................................... ix Acknowledgements ..............................................................................................................x Vita ..................................................................................................................................
    [Show full text]
  • No Carbon Dioxide Enhancement of Trichodesmium Community Nitrogen
    Diversity trumps acidification: Lack of evidence for carbon dioxide enhancement of Trichodesmium community nitrogen or carbon fixation at Station ALOHA Gradoville, M. R., White, A. E., Böttjer, D., Church, M. J., & Letelier, R. M. (2014). Diversity trumps acidification: Lack of evidence for carbon dioxide enhancement of Trichodesmium community nitrogen or carbon fixation at Station ALOHA. Limnology and Oceanography, 59(3), 645-659. doi:10.4319/lo.2014.59.3.0645 10.4319/lo.2014.59.3.0645 American Society of Limnology and Oceanography, Inc. Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Limnol. Oceanogr., 59(3), 2014, 645–659 E 2014, by the Association for the Sciences of Limnology and Oceanography, Inc. doi:10.4319/lo.2014.59.3.0645 Diversity trumps acidification: Lack of evidence for carbon dioxide enhancement of Trichodesmium community nitrogen or carbon fixation at Station ALOHA Mary R. Gradoville,1,* Angelicque E. White,1 Daniela Bo¨ttjer,2 Matthew J. Church,2 and Ricardo M. Letelier 1 1 Oregon State University, College of Earth, Ocean, and Atmospheric Sciences, Corvallis, Oregon 2 University of Hawaii at Manoa, Department of Oceanography, Honolulu, Hawaii Abstract We conducted 11 independent short-term carbon dioxide (CO2) manipulation experiments using colonies of the filamentous cyanobacteria Trichodesmium isolated on three cruises in the North Pacific Subtropical Gyre (NPSG). Dinitrogen (N2) and carbon (C) fixation rates of these colonies were compared over CO2 conditions ranging from , 18 Pa (equivalent to last glacial maximum atmospheric PCO2 )to, 160 Pa (predicted for , year 2200). Our results indicate that elevated PCO2 has no consistent significant effect on rates of N2 or C fixation by Trichodesmium colonies in the NPSG under present environmental conditions.
    [Show full text]
  • Structure, Morphogenesis of Calyptra and Nomenclatural Identity of Trichodesmium Erythraeum Ehr
    Bangladesh J. Plant Taxon. 27(2): 273-282, 2020 (December) © 2020 Bangladesh Association of Plant Taxonomists STRUCTURE, MORPHOGENESIS OF CALYPTRA AND NOMENCLATURAL IDENTITY OF TRICHODESMIUM ERYTHRAEUM EHR. (CYANOBACTERIA) NEWLY RECORDED OFF THE SOUTH-WEST COAST OF BANGLADESH ABDUL AZIZ*AND MAHIN MOHID Department of Botany, University of Dhaka, Dhaka 1000, Bangladesh Keywords: Trichodesmium erythraeum Ehr., Microcoleaceae, Calyptra morphogenesis, Cyanobacteria, Bangladesh Abstract Trichodesmium erythraeum Ehrenberg 1830 (Cyanobacteria) has been described and newly recorded from three km off the west coast of the St. Martin’s Island (SMI), Cox’s Bazar, Bangladesh. The Red Sea algal bloom was narrowly elliptical raft-like loose aggregates 20-40 cm long, 4-8 cm wide and 2-3 cm thick. Volume of small and large Sea sawdust were 160×10-6 to 960×10-6 m3 consisting of 25-153 millions flat tuft or spindle- like colonies measured 830-1500 µm long and 155-260 µm wide with 13-16 filaments laterally in the median region. Sheath was present around each trichome even covering the tip cell wall the feature has so far not been reported for the Trichodesmium spp. Because of most likely sticky nature of the sheath 300-600 µm long filaments of 195-450 formed compact colonies without colonial sheath around. In interior filaments cells were rectangular 7-10 µm long and 6.3-10 µm wide with abundant gas vacuoles, bluish-green red, no diazocyte developed and without calyptra. Cells of peripheral filaments were without gas vacuoles, cytoplasm disorganized, appearing necrotic with glycogen granules, and produced convex to sickle-shaped four-layered calyptra consisting of outermost sheath followed by outer extra thick wall, tip cell wall and inner extra thick wall on the tip cell.
    [Show full text]
  • ORIGIN and FATE of ODOROUS METABOLITES, 2-METHYLISOBORNEOL and GEOSMIN, in a EUTROPHIC RESERVOIR Nicolas André Clercin Submit
    ORIGIN AND FATE OF ODOROUS METABOLITES, 2-METHYLISOBORNEOL AND GEOSMIN, IN A EUTROPHIC RESERVOIR Nicolas André Clercin Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Department of Earth Sciences, Indiana University June 2019 Accepted by the Graduate Faculty of Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Doctoral Committee ______________________________________ Gregory K. Druschel, PhD, Chair ______________________________________ Pierre-André Jacinthe, PhD November 13, 2018 ______________________________________ Gabriel Filippelli, PhD ______________________________________ Max Jacobo Moreno-Madriñán, PhD ______________________________________ Sarath Chandra Janga, PhD ii © 2019 Nicolas André Clercin iii DEDICATION I would like to dedicate this work to my family, my wife Angélique and our three sons Pierre-Adrien, Aurélien and Marceau. I am aware that the writing of this manuscript has been an intrusion into our daily life and its achievement now closes the decade-long ‘Indiana’ chapter of our family. Another dedication to my parents and my young brother who have always been supportive and respectful of my choices even if they never fully understood the content of my research. A special thought to my dad (†2005) who loved so much sciences and technologies but never got the chance to study as a kid. Him who idolized his own father, a WWII resistant but became head of the family upon his father’s death when he was only 8. Him who had to work to support his widowed mother and his two younger brothers. Him who decided to join the French navy at the age of 16 as a seaman recruit in order to finally reach his personal goal and study, learn diesel engine mechanics, a skill that served him later in the civilian life.
    [Show full text]
  • The Trichodesmium Consortium: Conserved Heterotrophic Co-Occurrence and Genomic Signatures of Potential Interactions
    The ISME Journal (2017) 11, 1813–1824 © 2017 International Society for Microbial Ecology All rights reserved 1751-7362/17 www.nature.com/ismej ORIGINAL ARTICLE The Trichodesmium consortium: conserved heterotrophic co-occurrence and genomic signatures of potential interactions Michael D Lee1, Nathan G Walworth1, Erin L McParland1, Fei-Xue Fu1, Tracy J Mincer2, Naomi M Levine1, David A Hutchins1 and Eric A Webb1 1Marine Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA and 2Woods Hole Oceanographic Institute, Department of Marine Chemistry and Geochemistry, Woods Hole, MA, USA The nitrogen (N)-fixing cyanobacterium Trichodesmium is globally distributed in warm, oligotrophic oceans, where it contributes a substantial proportion of new N and fuels primary production. These photoautotrophs form macroscopic colonies that serve as relatively nutrient-rich substrates that are colonized by many other organisms. The nature of these associations may modulate ocean N and carbon (C) cycling, and can offer insights into marine co-evolutionary mechanisms. Here we integrate multiple omics-based and experimental approaches to investigate Trichodesmium-associated bacterial consortia in both laboratory cultures and natural environmental samples. These efforts have identified the conserved presence of a species of Gammaproteobacteria (Alteromonas macleodii), and enabled the assembly of a near-complete, representative genome. Interorganismal comparative genomics between A. macleodii and Trichodesmium reveal potential interactions that may contribute to the maintenance of this association involving iron and phosphorus acquisition, vitamin B12 exchange, small C compound catabolism, and detoxification of reactive oxygen species. These results identify what may be a keystone organism within Trichodesmium consortia and support the idea that functional selection has a major role in structuring associated microbial communities.
    [Show full text]
  • Redalyc.The Phytoplankton Biodiversity of the Coast of the State
    Biota Neotropica ISSN: 1676-0611 [email protected] Instituto Virtual da Biodiversidade Brasil Villac, Maria Célia; Aparecida de Paula Cabral-Noronha, Valéria; Oliveira Pinto, Thatiana de The phytoplankton biodiversity of the coast of the state of São Paulo, Brazil Biota Neotropica, vol. 8, núm. 3, julio-septiembre, 2008, pp. 151-173 Instituto Virtual da Biodiversidade Campinas, Brasil Available in: http://www.redalyc.org/articulo.oa?id=199114295015 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Biota Neotrop., vol. 8, no. 3, Jul./Set. 2008 The phytoplankton biodiversity of the coast of the state of São Paulo, Brazil Maria Célia Villac1,2, Valéria Aparecida de Paula Cabral-Noronha1 & Thatiana de Oliveira Pinto1 1Departamento de Biologia, Universidade de Taubaté – UNITAU, Av. Tiradentes, 500, CEP12030-180, Taubaté, SP, Brazil 2Corresponding author: Maria Célia Villac, e-mail: [email protected] VILLAC, M.C., CABRAL-NORONHA, V.A.P. & PINTO, T.O. 2008. The phytoplankton biodiversity of the coast of the state of São Paulo, Brazil. Biota Neotrop. 8(3): http://www.biotaneotropica.org.br/v8n3/en/ abstract?article+bn01908032008. Abstract: The objective of this study is to compile the inventory of nearly 100 years of research about the phytoplankton species cited for the coast of the state of São Paulo, Brazil. A state-of-the-art study on the local biodiversity has long been needed to provide a baseline for future comparisons.
    [Show full text]
  • The Northern Most Venezuelan Territory FITOPLANCTON DEL REFUGI
    Ciencia, Ambiente y Clima, Vol. 1, No. 1, julio-diciembre, 2018 • ISSN: 2636-2317 (impreso) | 2636-2333 (en línea) DOI: https://doi.org/10.22206/cac.2018.v1i1.pp45-59 FITOPLANCTON DEL REFUGIO DE FAUNA SILVESTRE ISLA DE AVES: EL TERRITORIO VENEZOLANO MÁS SEPTENTRIONAL Phytoplankton of the Wildlife Refuge Isla de Aves: the northern most Venezuelan territory Carlos Pereira Vanessa Hernández Dirección Ejecutiva de Ambiente, Petróleos de Dirección Ejecutiva de Ambiente, Petróleos de Venezuela, S.A., Caracas. Venezuela Venezuela, S.A., Caracas. Venezuela Rubén Quiñones Servicio de Hidrografía y Navegación, Armada Bolivariana de Venezuela, Caracas. Venezuela Recibido: Agosto 20, 2018 Aprobado: Septiembre 24, 2018 Cómo citar: Pereira, C., Quiñones, R., & Hernández, V. (2018). Fitoplancton del Refugio de Fauna Silvestre Isla de Aves: el territorio venezolano más septentrional. Ciencia, Ambiente Y Clima, 1(1), 45-59. https://doi.org/10.22206/ cac.2018.v1i1.pp45-59 Resumen Abstract Como parte de una estrategia de conservación del Refugio As part of a conservation strategy for the Wildlife Refuge de Fauna Silvestre Isla de Aves, el cual representa una zona “Isla de Aves”, which represents a geostrategic zone for geoestratégica para la República Bolivariana de Venezuela, the Bolivarian Republic of Venezuela, several research las instituciones de investigación del país realizan cam- institutions conduct studies every year to learn about the pañas anuales para conocer la biodiversidad de la isla. island’s biodiversity. One of the most important biological Uno de los componentes biológicos más importantes es components is phytoplankton, since although it sustains el fitoplancton, ya que, a pesar de que sustenta las redes marine pelagic trophic networks and is an essential part of tróficas pelágicas marinas y es parte esencial del ciclo de the nutrient cycles; it has not been studied in this area, so los nutrientes, no ha sido estudiado en esta zona, por lo an inventory of marine phytoplankton was accomplished.
    [Show full text]
  • Biomass and Primary Productivity of the Cyanobacterium Trichodesmium Spp
    ARTICLE IN PRESS Deep-Sea Research I 51 (2004) 173–203 Biomass and primary productivity of the cyanobacterium Trichodesmium spp. in the tropical N Atlantic ocean Edward J. Carpentera,*, Ajit Subramaniamb,c, Douglas G. Caponeb a Romberg Tiburon Center, San Francisco State University, 3152 Paradise Drive, Tiburon, CA 94920, USA b Wrigley Institute of Environmental Studies and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA c Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA Received 7 August 2002; received in revised form 15 April 2003; accepted 6 October 2003 Abstract Primary production and standing crop, as chlorophyll-a (chl-a), of Trichodesmium spp., and other phytoplankton as well as the abundance and depth distribution of Trichodesmium were measured on three cruises to the tropical North Atlantic Ocean. Trichodesmium abundance was greatest on a cruise in May–June 1994, with average surface densities of 2250 trichomes lÀ1 and depth integrated abundance of 91 Â 106 trichomes mÀ2. Average surface densities were 292 and 222 trichomes lÀ1 and depth integrated abundance 21 and 8.6 Â 106 trichomes mÀ2 for the April 1996 and October 1996 cruises, respectively. Total (phytoplankton plus Trichodesmium) chl-a standing crop and the percentage as Trichodesmium averaged 47 (62%), 22 (13%) and 30 (11%) mg chl-a mÀ2 for May–June 1994 and April and October 1996. On the May–June 1994 and April and October 1996 cruises 89%, 93% and 92% of the trichomes were in colonies, and the remainder occurred as free trichomes. Peak abundances of Trichodesmium were generally in the upper water column, with an average biomass maximum at 12 m on the May–June 94 and October 96 cruises and at 40 m during the April 96 cruise.
    [Show full text]
  • Role of Trichodesmium Spp. in the Productivity of the Subtropical North Pacific Ocean
    MARINE ECOLOGY PROGRESS SERIES Vol. 133: 263-273, 1996 Published March 28 1 Mar Ecol Prog Ser Role of Trichodesmium spp. in the productivity of the subtropical North Pacific Ocean Ricardo M. Letelierl.*, David M. ~arl~ 'college of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331-5503, USA 'School of Ocean and Earth Science and Technology, University of Hawaii. Honolulu, Hawaii 96822, USA ABSTRACT. The concentrations of filamentous diazotroph Trichodesmium spp., present as free tri- chomes and In colonial assemblages, were measured at approximately monthly intervals at Stn ALOHA (22"45'N, 158°00'W) between October 1989 and December 1992. The average abundance of filaments in the upper 45 m of the water column was highly variable ranging from 1.1 to 7.4 X 10"tri- chomes m-3 and from 0.02 to 1.4 X 102 colonies m-? Colonies were composed, on average, of 182 fila- ments accounting for 12% of total (free filament plus colonies) Trichodesmium biomass. Low densities of single trlchomes were associated with, but not restricted to, deep mixing events and winter periods. During 1991 and 1992 the concentration of Trichodesmium spp. present in the water column increased relative to the pre 1991 observations. This increase coincided with increases in photosynthetic carbon assimilation and in the molar ratio of N:P of suspended particulate matter in the upper 45 m of the water column. However, the change in Trlchodesmium biomass alone does not account for the change ob- served in autotrophic carbon assimilation and elemental biomass composition Tricliodesniium spp. comprised, on average, 18":~of the chlorophyll a, 4'' of the photosynthetic carbon assimilation, 1OCtbof the particulate nitrogen and 5% of the part~culatephosphorus.
    [Show full text]