Science Awakening B.L.Van Der Waerden Science Awakening

Total Page:16

File Type:pdf, Size:1020Kb

Science Awakening B.L.Van Der Waerden Science Awakening SCIENCE AWAKENING B.L.VAN DER WAERDEN SCIENCE AWAKENING I English translation by A rnold Dresden with additions of the author Fourth edition KLUWER ACADEMIC PUBLISHERS, DORDRECHT, THE NETHERLANDS SCHOLAR'S BOOKSHELF, PRINCETON JUNCTION, NEW JERSEY, U.S.A. Hardcover edition published throughout the world, exclusive of North America, by Kluwer Academic Publishers, Spuilboulevard 50, P.O. Box 17, 3300 AA Dordrecht, The Netherlands Paperback edition published throughout the world by The Scholar's Bookshelf, 51 Everett Drive, P.O. Box 179, Princeton Junction, New Jersey 08550, United States of America Hardcover edition published in North America by The Scholar's Bookshelf Copyright © 1975 by Noordhoff International Softcover reprint ofthe hardcover 4th edition 1975 Publishing, a division of Kluwer Academic Publishers, Dordrecht, The Netherlands All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the copyright owner. First edition 1954 Second edition 1%1 Third edition 1969 Fourth edition 1975 Fifth edition 1988 Kluwer Academic Publishers ISBN-13: 978-94-010-7115-4 ~ISBN-13: 978-94-009-1379-0 DOl: 10.1007/978-94-009-1379-0 First Scholar's Bookshelf hardcover printing, 1988 First Scholar's Bookshelf paperback printing, 1988 PREFACE TO THE ENGLISH EDITION Soon after the publication of my"Ontwakende W etenschap"the need for an English translation was felt. We were very glad to find a translator fully familiar with the English and Dutch languages and with mathematical terminol· ogy. The publisher, Noordhoff, had the splendid idea to ask H. G. Beyen, professor of archeology, for his help in choosing a nice set of illustrations. It was a difficult task. The illustrations had to be both instructive and attractive, and they had t~ illustrate the history of science as well as the general background of ancient civilization. The publisher encouraged us to find better and still better illustrations, and he ordered photographs from all over the world, with never failing energy and enthusiasm. Mr. Beyen's highly instructive subscripts will help the reader to see the inter· relation between way of living, art, and science of the ancient world. Thanks are due to many correspondents, who have suggested additions and pointed out errors. Sections on Astrolabes and Stereographte Projection and on Archimedes' construction of the heptagon have been added. The sections on Perspective and on the Anaphorai of Hypsicles have been enlarged. In the second English edition I have incorporated an important discovery of P. Huber, which sheds new light upon the role of geometry In Babylonian algebra (see p. 73). The section on Heron's Metrics (see p. 277) was written anew, follOWing a suggestion of E. M. Bruins. Zurich. 1961 B. L. VAN DER WAERDEN PREFACE Why History of Mathematics? Every one knows that we are living in a technological era. But it is not often realized that our technology is based entirely on mathematics and physics. When we ride home on the streetcar in the evening, when we turn on the electric light and the radio, everything depends on cleverly constructed physical mechanisms based on mathematical calculations. But more than that! We owe to physics not only these pleasant articles of luxury, but, to a large extent, even our daily bread. Apart from the fact that our grains come to us, chiefly by steamer from overseas, our own agriculture would be far less productive without artificial fertilizers. Such fertilizers are chemical products, and chemistry depends on physics. l But science has not brought us blessings only. The destructive armaments which mankind uses at the present time to knock its own civilization to pieces are also products to which the development of mathematics and physics have inevitably led. Our spiritual life is also influenced hy science and technology, in a measure but rarely fully understood. The unprecedented growth of natural science in the 17th century was followed ineluctably by the rationalism of the 18th, by the deification of reason and the decline of religion; an analogous development had taken place earlier, in Greek times. In a similar manner, the triumphs of technology in the 19th century were followed in the 20th by the deification of technology. Unfor­ tunately, man seems to be overly inclined to deify whatever is powerful and successful. These considerations indicate that science has put its stamp on the whole of our life, material and spiritual, in its beneficent and in its evil aspects. Science is the most significant phenomenon of modern times, the principal ingredient of our civilization - alas! But if this be true, then the most important question for the history of culture is: How did our modern natural science come about? It will be conceded that most historical writings either do not consider this question at all, or else deal with it in a very unsatisfactory manner. For example, which are the histories of Greek culture that mention the names of Theaetetus and of Eudoxus, two of the greatest mathematicians of all times? Who realizes that, from the historical point of view, Newton is the most important figure of the 17th century? Every physicist will admit that the mechanics of Newton are the foundation of modern physics. Every astronomer knows that modern astronomy begins with Kepler and Newton. And every mathematician knows that the largest domain of 1 The ruder should bur in mind that this book was addressed originally to the public of the N,·thcrl.nds. 4 PREFACE modern mathematics, the part most important for physics, is Analysis, which has its roots in the Differential and Integral Calculus of Newton. Thus the work of Newton constitutes the foundation for by far the greater part of modern exact science. It was Newton who discovered the fundamental laws of motion, to which terrestrial as well as celestial objects are subject. He placed the crown on the task of renovating antique astronomy, begun by Copernicus and Kepler. He discovered a general method for solving all problems of differentiation and integration, whereas Archimedes, the greatest genius of antiquity, had not progressed beyond special methods for particular problems. The work of Newton can not be understood without a knowledge of antique science. Newton did not create in a void. Without the stupendous work of Ptole­ my, which completed and closed antique astronomy, Kepler's Astronomia Nova, and hence the mechanics of Newton, would have been impossible. Without the conic sectIOns of Apollonius, which Newton knew thoroughly, his deVelopment of the law of gravitation is equally unthinkable. And Newton's integral calculus can be understood only as a continuation of Archimedes' determination of areas and volumes. The history of mechanics as an exact science begins '.vith the laws of the lever, the laws of hydrostatics and the determinatIOn of mass centers by Archimedes. In short, all the developments which converge in the work of Newton,"1hose of mathematics, of mechanics and of astronomy, begin in Greece. The History of Greek Mathematics, from fhales to Apollonius, covers the four centuries from 600 B.C. to 200 B.C. Until recently, the first three of these four centuries were enveloped in twilight, because we possess only two original texts from this period: the fragment con­ cerning the lunules of Hippocrates and that of Archytas on the duplication of the cube. To this can be added two brief fragments of Archytas, a number of scattered communications of Plato, Aristotle, Pappus, Proclus and Eutocius, and a self­ contradictory set of Pythagorean legends. For this reason, the older works, such a~ Cantor's Geschichte der Mathematik, contain little more about this period than speculations concerning things of which we really do not know anything, such as, for example, the "Theorem of Pythagoras" In recent times however more light has penetrated into the darkness. In the first place, as a result of the indefatigable industry of Otto Neugebauer and his collaborators, we know now the mathematical cuneiform texts, which have thrown an entirely new light not only on the Theorem of Pythagoras, but especially on the earliest history of arithmetic and of algebra. Neugebauer, following in the tracks of Zeuthen, succeeded in discovering the hidden algebraic element in Greek mathematics and in demonstrating its connection with Babylonian algebra. No PREFACE 5 longer does the history of algebra begin with Diophantus; it starts 2000 years earlier in Mesopotamia. And, as to arithmetic, in 1937 Neugebauer wrote: "What is called Pythagorean in the Greek tradition, had probably better be called Babylonian"; and, a cuneiform text, concerning "Pythagorean numbers", dis­ covered in 1943, showed that he was entirely right. A second new impulse came from philosophically oriented philology. In 1927, Stenzel and Toeplitz, with Neugebauer, established the penodical "~ellen und Studien zur Geschichte der Mathematik, Astronomie und Physik". It was their purpose to get to know more about the philosophy of Plato by an analysis of the fundamental concepts of Greek mathematics, and, reciprocally, to learn more about Greek mathematics by means of an analysis of Plato. This method has enabled Becker, Reidemeister and others to obtain highly important results. At an earlier date, Eva Sachs had rescued the excellent mathematician Theaetetus from oblivion. Another very fertile method was the analysis of the Elements of Euclid. This work, written about 300 B.C., proves to be largely a compilation of mathematical fragments, quite diverse in calibre and quite varied in age. By carefully taking these fragments apart, by dusting them off and then replacing them in the mathe­ matical historical environment from which they had originally come, it has become possible to obtain a considerably clearer picture of Greek mathematICS of the years 500---300 B.C.
Recommended publications
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Squaring the Circle a Case Study in the History of Mathematics the Problem
    Squaring the Circle A Case Study in the History of Mathematics The Problem Using only a compass and straightedge, construct for any given circle, a square with the same area as the circle. The general problem of constructing a square with the same area as a given figure is known as the Quadrature of that figure. So, we seek a quadrature of the circle. The Answer It has been known since 1822 that the quadrature of a circle with straightedge and compass is impossible. Notes: First of all we are not saying that a square of equal area does not exist. If the circle has area A, then a square with side √A clearly has the same area. Secondly, we are not saying that a quadrature of a circle is impossible, since it is possible, but not under the restriction of using only a straightedge and compass. Precursors It has been written, in many places, that the quadrature problem appears in one of the earliest extant mathematical sources, the Rhind Papyrus (~ 1650 B.C.). This is not really an accurate statement. If one means by the “quadrature of the circle” simply a quadrature by any means, then one is just asking for the determination of the area of a circle. This problem does appear in the Rhind Papyrus, but I consider it as just a precursor to the construction problem we are examining. The Rhind Papyrus The papyrus was found in Thebes (Luxor) in the ruins of a small building near the Ramesseum.1 It was purchased in 1858 in Egypt by the Scottish Egyptologist A.
    [Show full text]
  • Mathematicians
    MATHEMATICIANS [MATHEMATICIANS] Authors: Oliver Knill: 2000 Literature: Started from a list of names with birthdates grabbed from mactutor in 2000. Abbe [Abbe] Abbe Ernst (1840-1909) Abel [Abel] Abel Niels Henrik (1802-1829) Norwegian mathematician. Significant contributions to algebra and anal- ysis, in particular the study of groups and series. Famous for proving the insolubility of the quintic equation at the age of 19. AbrahamMax [AbrahamMax] Abraham Max (1875-1922) Ackermann [Ackermann] Ackermann Wilhelm (1896-1962) AdamsFrank [AdamsFrank] Adams J Frank (1930-1989) Adams [Adams] Adams John Couch (1819-1892) Adelard [Adelard] Adelard of Bath (1075-1160) Adler [Adler] Adler August (1863-1923) Adrain [Adrain] Adrain Robert (1775-1843) Aepinus [Aepinus] Aepinus Franz (1724-1802) Agnesi [Agnesi] Agnesi Maria (1718-1799) Ahlfors [Ahlfors] Ahlfors Lars (1907-1996) Finnish mathematician working in complex analysis, was also professor at Harvard from 1946, retiring in 1977. Ahlfors won both the Fields medal in 1936 and the Wolf prize in 1981. Ahmes [Ahmes] Ahmes (1680BC-1620BC) Aida [Aida] Aida Yasuaki (1747-1817) Aiken [Aiken] Aiken Howard (1900-1973) Airy [Airy] Airy George (1801-1892) Aitken [Aitken] Aitken Alec (1895-1967) Ajima [Ajima] Ajima Naonobu (1732-1798) Akhiezer [Akhiezer] Akhiezer Naum Ilich (1901-1980) Albanese [Albanese] Albanese Giacomo (1890-1948) Albert [Albert] Albert of Saxony (1316-1390) AlbertAbraham [AlbertAbraham] Albert A Adrian (1905-1972) Alberti [Alberti] Alberti Leone (1404-1472) Albertus [Albertus] Albertus Magnus
    [Show full text]
  • Plato As "Architectof Science"
    Plato as "Architectof Science" LEONID ZHMUD ABSTRACT The figureof the cordialhost of the Academy,who invitedthe mostgifted math- ematiciansand cultivatedpure research, whose keen intellectwas able if not to solve the particularproblem then at least to show the methodfor its solution: this figureis quite familiarto studentsof Greekscience. But was the Academy as such a centerof scientificresearch, and did Plato really set for mathemati- cians and astronomersthe problemsthey shouldstudy and methodsthey should use? Oursources tell aboutPlato's friendship or at leastacquaintance with many brilliantmathematicians of his day (Theodorus,Archytas, Theaetetus), but they were neverhis pupils,rather vice versa- he learnedmuch from them and actively used this knowledgein developinghis philosophy.There is no reliableevidence that Eudoxus,Menaechmus, Dinostratus, Theudius, and others, whom many scholarsunite into the groupof so-called"Academic mathematicians," ever were his pupilsor close associates.Our analysis of therelevant passages (Eratosthenes' Platonicus, Sosigenes ap. Simplicius, Proclus' Catalogue of geometers, and Philodemus'History of the Academy,etc.) shows thatthe very tendencyof por- trayingPlato as the architectof sciencegoes back to the earlyAcademy and is bornout of interpretationsof his dialogues. I Plato's relationship to the exact sciences used to be one of the traditional problems in the history of ancient Greek science and philosophy.' From the nineteenth century on it was examined in various aspects, the most significant of which were the historical, philosophical and methodological. In the last century and at the beginning of this century attention was paid peredominantly, although not exclusively, to the first of these aspects, especially to the questions how great Plato's contribution to specific math- ematical research really was, and how reliable our sources are in ascrib- ing to him particular scientific discoveries.
    [Show full text]
  • The Geodetic Sciences in Byzantium
    The geodetic sciences in Byzantium Dimitrios A. Rossikopoulos Department of Geodesy and Surveying, Aristotle University of Thessaloniki [email protected] Abstract: Many historians of science consider that geodeasia, a term used by Aristotle meaning "surveying", was not particularly flourishing in Byzantium. However, like “lo- gistiki” (practical arithmetic), it has never ceased to be taught, not only at public universi- ties and ecclesiastical schools, as well as by private tutors. Besides that these two fields had to do with problems of daily life, Byzantines considered them necessary prerequisite for someone who wished to study philosophy. So, they did not only confine themselves to copying and saving the ancient texts, but they also wrote new ones, where they were ana- lyzing their empirical discoveries and their technological achievements. This is the subject of this paper, a retrospect of the numerous manuscripts of the Byzantine period that refer to the development of geodesy both in teaching and practices of surveying, as well as to mat- ters relating to the views about the shape of the earth, the cartography, the positioning in travels and generally the sciences of mapping. Keywords: Geodesy, geodesy in Byzantium, history of geodesy, history of surveying, history of mathematics. Περίληψη: Πολλοί ιστορικοί των επιστημών θεωρούν ότι η γεωδαισία, όρος που χρησι- μοποίησε ο Αριστοτέλης για να ορίσει την πρακτική γεωμετρία, την τοπογραφία, δεν είχε ιδιαίτερη άνθιση στο Βυζάντιο. Ωστόσο, όπως και η “λογιστική”, δεν έπαψε ποτέ να διδά- σκεται όχι μόνο στα κοσμικά πανεπιστήμια, αλλά και στις εκκλησιαστικές σχολές, καθώς επίσης και από ιδιώτες δασκάλους. Πέρα από το ότι οι δύο αυτοί κλάδοι είχαν να κάνουν με προβλήματα της καθημερινής ζωής των ανθρώπων, οι βυζαντινοί θεωρούσαν την διδα- σκαλία τους απαραίτητη προϋπόθεση ώστε να μπορεί κανείς να παρακολουθήσει μαθήμα- τα φιλοσοφίας.
    [Show full text]
  • Babylonian Astral Science in the Hellenistic World: Reception and Transmission
    CAS® e SERIES Nummer 4 / 2010 Francesca Rochberg (Berkeley) Babylonian Astral Science in the Hellenistic World: Reception and Transmission Herausgegeben von Ludwig-Maximilians-Universität München Center for Advanced Studies®, Seestr. 13, 80802 München www.cas.lmu.de/publikationen/eseries Nummer 4 / 2010 Babylonian Astral Science in the Hellenistic World: Reception and Transmission Francesca Rochberg (Berkeley) In his astrological work the Tetrabiblos, the astronomer such as in Strabo’s Geography, as well as in an astrono- Ptolemy describes the effects of geography on ethnic mical text from Oxyrhynchus in the second century of character, claiming, for example, that due to their specific our era roughly contemporary with Ptolemy [P.Oxy. geographical location „The ...Chaldeans and Orchinians 4139:8; see Jones 1999, I 97-99 and II 22-23]. This have familiarity with Leo and the sun, so that they are astronomical papyrus fragment refers to the Orchenoi, simpler, kindly, addicted to astrology.” [Tetr. 2.3] or Urukeans, in direct connection with a lunar parameter Ptolemy was correct in putting the Chaldeans and identifiable as a Babylonian period for lunar anomaly Orchinians together geographically, as the Chaldeans, or preserved on cuneiform tablets from Uruk. The Kaldayu, were once West Semitic tribal groups located Babylonian, or Chaldean, literati, including those from in the parts of southern and western Babylonia known Uruk were rightly famed for astronomy and astrology, as Kaldu, and the Orchinians, or Urukayu, were the „addicted,” as Ptolemy put it, and eventually, in Greco- inhabitants of the southern Babylonian city of Uruk. He Roman works, the term Chaldean came to be interchan- was also correct in that he was transmitting a tradition geable with „astrologer.” from the Babylonians themselves, which, according to a Hellenistic Greek writers seeking to claim an authorita- Hellenistic tablet from Uruk [VAT 7847 obv.
    [Show full text]
  • Astronomy and Hipparchus
    CHAPTER 9 Progress in the Sciences: Astronomy and Hipparchus Klaus Geus Introduction Geography in modern times is a term which covers several sub-disciplines like ecology, human geography, economic history, volcanology etc., which all con- cern themselves with “space” or “environment”. In ancient times, the definition of geography was much more limited. Geography aimed at the production of a map of the oikoumene, a geographer was basically a cartographer. The famous scientist Ptolemy defined geography in the first sentence of his Geographical handbook (Geog. 1.1.1) as “imitation through drafting of the entire known part of the earth, including the things which are, generally speaking, connected with it”. In contrast to chorography, geography uses purely “lines and label in order to show the positions of places and general configurations” (Geog. 1.1.5). Therefore, according to Ptolemy, a geographer needs a μέθοδος μαθεματική, abil- ity and competence in mathematical sciences, most prominently astronomy, in order to fulfil his task of drafting a map of the oikoumene. Given this close connection between geography and astronomy, it is not by default that nearly all ancient “geographers” (in the limited sense of the term) stood out also as astronomers and mathematicians: Among them Anaximander, Eudoxus, Eratosthenes, Hipparchus, Poseidonius and Ptolemy are the most illustrious. Apart from certain topics like latitudes, meridians, polar circles etc., ancient geography also took over from astronomy some methods like the determina- tion of the size of the earth or of celestial and terrestrial distances.1 The men- tioned geographers Anaximander, Eudoxus, Hipparchus, Poseidonius and Ptolemy even constructed instruments for measuring, observing and calculat- ing like the gnomon, sundials, skaphe, astrolabe or the meteoroscope.2 1 E.g., Ptolemy (Geog.
    [Show full text]
  • Some Curves and the Lengths of Their Arcs Amelia Carolina Sparavigna
    Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna To cite this version: Amelia Carolina Sparavigna. Some Curves and the Lengths of their Arcs. 2021. hal-03236909 HAL Id: hal-03236909 https://hal.archives-ouvertes.fr/hal-03236909 Preprint submitted on 26 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna Department of Applied Science and Technology Politecnico di Torino Here we consider some problems from the Finkel's solution book, concerning the length of curves. The curves are Cissoid of Diocles, Conchoid of Nicomedes, Lemniscate of Bernoulli, Versiera of Agnesi, Limaçon, Quadratrix, Spiral of Archimedes, Reciprocal or Hyperbolic spiral, the Lituus, Logarithmic spiral, Curve of Pursuit, a curve on the cone and the Loxodrome. The Versiera will be discussed in detail and the link of its name to the Versine function. Torino, 2 May 2021, DOI: 10.5281/zenodo.4732881 Here we consider some of the problems propose in the Finkel's solution book, having the full title: A mathematical solution book containing systematic solutions of many of the most difficult problems, Taken from the Leading Authors on Arithmetic and Algebra, Many Problems and Solutions from Geometry, Trigonometry and Calculus, Many Problems and Solutions from the Leading Mathematical Journals of the United States, and Many Original Problems and Solutions.
    [Show full text]
  • Apollonius of Pergaconics. Books One - Seven
    APOLLONIUS OF PERGACONICS. BOOKS ONE - SEVEN INTRODUCTION A. Apollonius at Perga Apollonius was born at Perga (Περγα) on the Southern coast of Asia Mi- nor, near the modern Turkish city of Bursa. Little is known about his life before he arrived in Alexandria, where he studied. Certain information about Apollonius’ life in Asia Minor can be obtained from his preface to Book 2 of Conics. The name “Apollonius”(Apollonius) means “devoted to Apollo”, similarly to “Artemius” or “Demetrius” meaning “devoted to Artemis or Demeter”. In the mentioned preface Apollonius writes to Eudemus of Pergamum that he sends him one of the books of Conics via his son also named Apollonius. The coincidence shows that this name was traditional in the family, and in all prob- ability Apollonius’ ancestors were priests of Apollo. Asia Minor during many centuries was for Indo-European tribes a bridge to Europe from their pre-fatherland south of the Caspian Sea. The Indo-European nation living in Asia Minor in 2nd and the beginning of the 1st millennia B.C. was usually called Hittites. Hittites are mentioned in the Bible and in Egyptian papyri. A military leader serving under the Biblical king David was the Hittite Uriah. His wife Bath- sheba, after his death, became the wife of king David and the mother of king Solomon. Hittites had a cuneiform writing analogous to the Babylonian one and hi- eroglyphs analogous to Egyptian ones. The Czech historian Bedrich Hrozny (1879-1952) who has deciphered Hittite cuneiform writing had established that the Hittite language belonged to the Western group of Indo-European languages [Hro].
    [Show full text]
  • 9 · the Growth of an Empirical Cartography in Hellenistic Greece
    9 · The Growth of an Empirical Cartography in Hellenistic Greece PREPARED BY THE EDITORS FROM MATERIALS SUPPLIED BY GERMAINE AUJAe There is no complete break between the development of That such a change should occur is due both to po­ cartography in classical and in Hellenistic Greece. In litical and military factors and to cultural developments contrast to many periods in the ancient and medieval within Greek society as a whole. With respect to the world, we are able to reconstruct throughout the Greek latter, we can see how Greek cartography started to be period-and indeed into the Roman-a continuum in influenced by a new infrastructure for learning that had cartographic thought and practice. Certainly the a profound effect on the growth of formalized know­ achievements of the third century B.C. in Alexandria had ledge in general. Of particular importance for the history been prepared for and made possible by the scientific of the map was the growth of Alexandria as a major progress of the fourth century. Eudoxus, as we have seen, center of learning, far surpassing in this respect the had already formulated the geocentric hypothesis in Macedonian court at Pella. It was at Alexandria that mathematical models; and he had also translated his Euclid's famous school of geometry flourished in the concepts into celestial globes that may be regarded as reign of Ptolemy II Philadelphus (285-246 B.C.). And it anticipating the sphairopoiia. 1 By the beginning of the was at Alexandria that this Ptolemy, son of Ptolemy I Hellenistic period there had been developed not only the Soter, a companion of Alexander, had founded the li­ various celestial globes, but also systems of concentric brary, soon to become famous throughout the Mediter­ spheres, together with maps of the inhabited world that ranean world.
    [Show full text]
  • Lecture 2: Arithmetic
    E-320: Teaching Math with a Historical Perspective Oliver Knill, 2010-2017 Lecture 2: Arithmetic The oldest mathematical discipline is arithmetic. It is the theory of the construction and manip- ulation of numbers. The earliest steps were done by Babylonian, Egyptian, Chinese, Indian and Greek thinkers. Building up the number system starts with the natural numbers 1; 2; 3; 4::: which can be added and multiplied. Addition is natural: join 3 sticks to 5 sticks to get 8 sticks. Multiplication ∗ is more subtle: 3 ∗ 4 means to take 3 copies of 4 and get 4 + 4 + 4 = 12 while 4 ∗ 3 means to take 4 copies of 3 to get 3 + 3 + 3 + 3 = 12. The first factor counts the number of operations while the second factor counts the objects. To motivate 3 ∗ 4 = 4 ∗ 3, spacial insight motivates to arrange the 12 objects in a rectangle. This commutativity axiom will be carried over to larger number systems. Realizing an addition and multiplicative structure on the natural numbers requires to define 0 and 1. It leads naturally to more general numbers. There are two major motivations to to build new numbers: we want to 1. invert operations and still get results. 2. solve equations. To find an additive inverse of 3 means solving x + 3 = 0. The answer is a negative number. To solve x ∗ 3 = 1, we get to a rational number x = 1=3. To solve x2 = 2 one need to escape to real numbers. To solve x2 = −2 requires complex numbers. Numbers Operation to complete Examples of equations to solve Natural numbers addition and multiplication 5 + x = 9 Positive fractions addition and
    [Show full text]
  • A Concise History of the Philosophy of Mathematics
    A Thumbnail History of the Philosophy of Mathematics "It is beyond a doubt that all our knowledge begins with experience." - Imannuel Kant ( 1724 – 1804 ) ( However naïve realism is no substitute for truth [1] ) [1] " ... concepts have reference to sensible experience, but they are never, in a logical sense, deducible from them. For this reason I have never been able to comprehend the problem of the á priori as posed by Kant", from "The Problem of Space, Ether, and the Field in Physics" ( "Das Raum-, Äether- und Feld-Problem der Physik." ), by Albert Einstein, 1934 - source: "Beyond Geometry: Classic Papers from Riemann to Einstein", Dover Publications, by Peter Pesic, St. John's College, Sante Fe, New Mexico Mathematics does not have a universally accepted definition during any period of its development throughout the history of human thought. However for the last 2,500 years, beginning first with the pre - Hellenic Egyptians and Babylonians, mathematics encompasses possible deductive relationships concerned solely with logical truths derived by accepted philosophic methods of logic which the classical Greek thinkers of antiquity pioneered. Although it is normally associated with formulaic algorithms ( i.e., mechanical methods ), mathematics somehow arises in the human mind by the correspondence of observation and inductive experiential thinking together with its practical predictive powers in interpreting future as well as "seemingly" ephemeral phenomena. Why all of this is true in human progress, no one can answer faithfully. In other words, human experiences and intuitive thinking first suggest to the human mind the abstract symbols for which the economy of human thinking mathematics is well known; but it is those parts of mathematics most disconnected from observation and experience and therefore relying almost wholly upon its internal, self - consistent, deductive logics giving mathematics an independent reified, almost ontological, reality, that mathematics most powerfully interprets the ultimate hidden mysteries of nature.
    [Show full text]