Polygonal Numbers 1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Special Kinds of Numbers
Chapel Hill Math Circle: Special Kinds of Numbers 11/4/2017 1 Introduction This worksheet is concerned with three classes of special numbers: the polyg- onal numbers, the Catalan numbers, and the Lucas numbers. Polygonal numbers are a nice geometric generalization of perfect square integers, Cata- lan numbers are important numbers that (one way or another) show up in a wide variety of combinatorial and non-combinatorial situations, and Lucas numbers are a slight twist on our familiar Fibonacci numbers. The purpose of this worksheet is not to give an exhaustive treatment of any of these numbers, since that is just not possible. The goal is to, instead, introduce these interesting classes of numbers and give some motivation to explore on your own. 2 Polygonal Numbers The first class of numbers we'll consider are called polygonal numbers. We'll start with some simpler cases, and then derive a general formula. Take 3 points and arrange them as an equilateral triangle with side lengths of 2. Here, I use the term \side-length" to mean \how many points are in a side." The total number of points in this triangle (3) is the second triangular number, denoted P (3; 2). To get the third triangular number P (3; 3), we take the last configuration and adjoin points so that the outermost shape is an equilateral triangle with a side-length of 3. To do this, we can add 3 points along any one of the edges. Since there are 3 points in the original 1 triangle, and we added 3 points to get the next triangle, the total number of points in this step is P (3; 3) = 3 + 3 = 6. -
10901 Little Patuxent Parkway Columbia, MD 21044
10901 Little Patuxent Parkway Columbia, MD 21044 Volume 1 | 2018 We would like to thank The Kalhert Foundation for their support of our students and specifically for this journal. Polygonal Numbers and Common Differences Siavash Aarabi, Howard Community College 2017, University of Southern California Mentored by: Mike Long, Ed.D & Loretta FitzGerald Tokoly, Ph.D. Abstract The polygonal numbers, or lattices of objects arranged in polygonal shapes, are more than just geometric shapes. The lattices for a polygon with a certain number of sides represent the polygon where the sides increase from length 1, then 2, then 3 and so forth. The mathematical richness emerges when the number of objects in each lattice is counted for the polygons of increasing larger size and then analyzed. So where are the differences? The polygonal numbers being considered in this project represent polygons that have different numbers of sides. It is when the integer powers of the polygonal sequence for a polygon with a specific number of sides are computed and their differences computed, some interesting commonalities emerge. That there are mathematical patterns in the commonalities that arise from differences are both unexpected and pleasing. Background A polygonal number is a number represented as dots or pebbles arranged in the shape of a regular polygon, or a polygon where the lengths of all sides are congruent. Consider a triangle as one polygon, and then fill the shape up according to figure 1, the sequence of numbers will form Triangular Numbers. The nth Triangular Numbers is also known as the sum of the first n positive integers. -
Triangular Numbers /, 3,6, 10, 15, ", Tn,'" »*"
TRIANGULAR NUMBERS V.E. HOGGATT, JR., and IVIARJORIE BICKWELL San Jose State University, San Jose, California 9111112 1. INTRODUCTION To Fibonacci is attributed the arithmetic triangle of odd numbers, in which the nth row has n entries, the cen- ter element is n* for even /?, and the row sum is n3. (See Stanley Bezuszka [11].) FIBONACCI'S TRIANGLE SUMS / 1 =:1 3 3 5 8 = 2s 7 9 11 27 = 33 13 15 17 19 64 = 4$ 21 23 25 27 29 125 = 5s We wish to derive some results here concerning the triangular numbers /, 3,6, 10, 15, ", Tn,'" »*". If one o b - serves how they are defined geometrically, 1 3 6 10 • - one easily sees that (1.1) Tn - 1+2+3 + .- +n = n(n±M and (1.2) • Tn+1 = Tn+(n+1) . By noticing that two adjacent arrays form a square, such as 3 + 6 = 9 '.'.?. we are led to 2 (1.3) n = Tn + Tn„7 , which can be verified using (1.1). This also provides an identity for triangular numbers in terms of subscripts which are also triangular numbers, T =T + T (1-4) n Tn Tn-1 • Since every odd number is the difference of two consecutive squares, it is informative to rewrite Fibonacci's tri- angle of odd numbers: 221 222 TRIANGULAR NUMBERS [OCT. FIBONACCI'S TRIANGLE SUMS f^-O2) Tf-T* (2* -I2) (32-22) Ti-Tf (42-32) (52-42) (62-52) Ti-Tl•2 (72-62) (82-72) (9*-82) (Kp-92) Tl-Tl Upon comparing with the first array, it would appear that the difference of the squares of two consecutive tri- angular numbers is a perfect cube. -
On Some Polynomial Values of Repdigit Numbers
ON SOME POLYNOMIAL VALUES OF REPDIGIT NUMBERS T. KOVACS,´ GY. PETER,´ N. VARGA (DEBRECEN) Abstract. We study the equal values of repdigit numbers and the k dimensional polygonal numbers. We state some effective finiteness theorems, and for small parameter values we completely solve the corresponding equations. Let x(x + 1) ··· (x + k − 2)((m − 2)x + k + 2 − m) (1) f (x) = k;m k! be the mth order k dimensional polygonal number, where k ≥ 2 and m ≥ 3 are fixed integers. As special cases for fk;3 we get the bi- x+k−1 nomial coefficient k , for f2;m(x) and f3;m(x) we have the corre- sponding polygonal and pyramidal numbers, respectively. These fig- urate numbers have already been investigated from several aspects and therefore have a rich literature, see Dickson [9]. For example, the question whether a perfect square is a binomial coefficient, i.e., if fk;3(x) = f2;4(y) and also the more general question on the power val- ues of binomial coefficients was resolved by Gy}ory[12]. The equation x y n = 2 has been investigated by several authors, for general effective finiteness statements we refer to Kiss [17] and Brindza [6]. In the spe- cial cases m = 3; 4; 5 and 6, the corresponding diophantine equations were resolved by Avanesov [1], Pint´er[19] and de Weger [23] (inde- pendently), Bugeaud, Mignotte, Stoll, Siksek, Tengely [8] and Hajdu, Pint´er[13], respectively. The equal values of polygonal and pyrami- dal numbers were studied by Brindza, Pint´er,Turj´anyi [7] and Pint´er, Varga [20]. -
Babylonian Astral Science in the Hellenistic World: Reception and Transmission
CAS® e SERIES Nummer 4 / 2010 Francesca Rochberg (Berkeley) Babylonian Astral Science in the Hellenistic World: Reception and Transmission Herausgegeben von Ludwig-Maximilians-Universität München Center for Advanced Studies®, Seestr. 13, 80802 München www.cas.lmu.de/publikationen/eseries Nummer 4 / 2010 Babylonian Astral Science in the Hellenistic World: Reception and Transmission Francesca Rochberg (Berkeley) In his astrological work the Tetrabiblos, the astronomer such as in Strabo’s Geography, as well as in an astrono- Ptolemy describes the effects of geography on ethnic mical text from Oxyrhynchus in the second century of character, claiming, for example, that due to their specific our era roughly contemporary with Ptolemy [P.Oxy. geographical location „The ...Chaldeans and Orchinians 4139:8; see Jones 1999, I 97-99 and II 22-23]. This have familiarity with Leo and the sun, so that they are astronomical papyrus fragment refers to the Orchenoi, simpler, kindly, addicted to astrology.” [Tetr. 2.3] or Urukeans, in direct connection with a lunar parameter Ptolemy was correct in putting the Chaldeans and identifiable as a Babylonian period for lunar anomaly Orchinians together geographically, as the Chaldeans, or preserved on cuneiform tablets from Uruk. The Kaldayu, were once West Semitic tribal groups located Babylonian, or Chaldean, literati, including those from in the parts of southern and western Babylonia known Uruk were rightly famed for astronomy and astrology, as Kaldu, and the Orchinians, or Urukayu, were the „addicted,” as Ptolemy put it, and eventually, in Greco- inhabitants of the southern Babylonian city of Uruk. He Roman works, the term Chaldean came to be interchan- was also correct in that he was transmitting a tradition geable with „astrologer.” from the Babylonians themselves, which, according to a Hellenistic Greek writers seeking to claim an authorita- Hellenistic tablet from Uruk [VAT 7847 obv. -
The Polygonal Number Theorem for Any Integer M > 1, Every Non- Negative Integer N Is a Sum of M+2 Polygonal Numbers of Order M+2
THEOREM OF THE DAY The Polygonal Number Theorem For any integer m > 1, every non- negative integer n is a sum of m+2 polygonal numbers of order m+2. For a positive integer m, the polygonal numbers of order m + 2 are the values m P (k) = k2 − k + k, k ≥ 0. m 2 The first case, m = 1, gives the triangular numbers, 0, 1, 3, 6, 10,.... A general diagrammatic construction is illustrated on the right for the case m = 3, the pentagonal numbers: a regular (m + 2)−gon is extended by adding vertices along ‘rays’ of new vertices from (m + 1) vertices with 1, 2, 3,... additional vertices inserted between each ray. How can we find a representation of a given n in terms of polygonal numbers of a given order m+2? How do we discover, say, that n = 375 is the sum 247+70+35+22+1 of five pentagonal numbers? What follows a piece of pure sorcery from the celebrated number theorist Melvyn B. Nathanson! 1. Assume that m ≥ 3. Choose an odd positive integer b such that b = 29 (1) We can write n ≡ b + r (mod m), 0 ≤ r ≤ m − 2; and n = 375 ≡ 29 + 1 (mod 3) n − b − r (2) If a = 2 + b, an odd positive integer by virtue of (1), then a = 259 m ! b2 − 4a < 0 and 0 < b2 + 2b − 3a + 4. (∗) 841 − 1036 < 0, 0 < 841 + 58 − 777 + 4 2. Invoke Cauchy's Lemma: If a and b are odd positive integers satisfying (∗) then there exist nonnegative integers s, t, u, v such that a = s2 + t2 + u2 + v2 and b = s + t + u + v. -
Winnovative HTML to PDF Converter for .NET
TECHCALC - HELP CONTENTS 1. GENERAL Page 01 2. REVERSE POLISH NOTATION (RPN) Page 04 3. AUTOMATIC BACKUP Page 04 4. SCREEN TRANSITIONS Page 04 5. EDITING AN EXPRESSION Page 05 6. MEMORIES Page 05 7. HISTORY Page 06 8. TRIGONOMETRIC FUNCTIONS Page 06 9. POWER & ROOT FUNCTIONS Page 06 10. LOG & ANTILOG FUNCTIONS Page 07 11. PERMUTATIONS & COMBINATIONS Page 07 12. HCF, LCM, PRIME FACTORIZATION, REMAINDER, Δ% & CUMULATIVE % FUNCTIONS Page 07 13. STATISTICS FUNCTIONS Page 07 14. FACTORIAL FUNCTION Page 10 15. MODULUS FUNCTION Page 11 16. RANDOM NUMBERS Page 11 17. FRACTIONS MODE Page 11 18. HEX, OCT & BIN CALCULATIONS Page 11 19. LEFT HAND SHIFT & RIGHT HAND SHIFT Page 12 20. GRAPHING CALCULATIONS Page 12 21. CONVERSION FACTORS Page 13 22. CONSTANTS Page 13 23. MATRICES Page 14 24. COMPLEX NUMBERS Page 14 25. QUICK FORMULAS Page 15 26. CUSTOM FORMULAS Page 15 27. TIME CALCULATOR Page 15 28. EQUATION SOLVER Page 16 29. CALCULUS Page 17 30. PERIODIC TABLE Page 17 31. SIGMA AND PI NOTATION Page 17 32. PERCENTAGE CALCULATOR Page 17 33. MOLECULAR WEIGHT CALCULATOR Page 18 34. BALANCING CHEMICAL EQUATIONS Page 18 35. STATISTICS (GROUPED DATA) Page 18 36. NUMERICAL SEQUENCES Page 18 37. FEET AND INCHES CALCULATOR Page 19 38. FINANCIAL MODE Page 19 GENERAL Use the menu to change calculator modes (scroll to view all) - the action bar can be hidden via the 'Settings' if required. Some buttons have 2 values - short press gives main function, long press gives secondary function (in yellow). A wide variety of themes are available in the following categories: Standard Themes: Standard 1 is the default used by the application. -
Figurate Numbers
Figurate Numbers by George Jelliss June 2008 with additions November 2008 Visualisation of Numbers The visual representation of the number of elements in a set by an array of small counters or other standard tally marks is still seen in the symbols on dominoes or playing cards, and in Roman numerals. The word "calculus" originally meant a small pebble used to calculate. Bear with me while we begin with a few elementary observations. Any number, n greater than 1, can be represented by a linear arrangement of n counters. The cases of 1 or 0 counters can be regarded as trivial or degenerate linear arrangements. The counters that make up a number m can alternatively be grouped in pairs instead of ones, and we find there are two cases, m = 2.n or 2.n + 1 (where the dot denotes multiplication). Numbers of these two forms are of course known as even and odd respectively. An even number is the sum of two equal numbers, n+n = 2.n. An odd number is the sum of two successive numbers 2.n + 1 = n + (n+1). The even and odd numbers alternate. Figure 1. Representation of numbers by rows of counters, and of even and odd numbers by various, mainly symmetric, formations. The right-angled (L-shaped) formation of the odd numbers is known as a gnomon. These do not of course exhaust the possibilities. 1 2 3 4 5 6 7 8 9 n 2 4 6 8 10 12 14 2.n 1 3 5 7 9 11 13 15 2.n + 1 Triples, Quadruples and Other Forms Generalising the divison into even and odd numbers, the counters making up a number can of course also be grouped in threes or fours or indeed any nonzero number k. -
TRIANGULAR REPUNIT—THERE IS but 1 a Repunit Is Any Integer That
Czechoslovak Mathematical Journal, 60 (135) (2010), 1075–1077 TRIANGULAR REPUNIT—THERE IS BUT 1 John H. Jaroma, Ave Maria (Received June 27, 2009) Abstract. In this paper, we demonstrate that 1 is the only integer that is both triangular and a repunit. Keywords: repunit, triangular number MSC 2010 : 11A99 A repunit is any integer that can be written in decimal notation as a string of 1’s. Examples include 1, 11, 111, 1111, 11111,... Furthermore, if we denote rn to be the nth repunit then it follows that 10n − 1 (1) rn = . 9 Triangular numbers are those integers that can be represented by the number of dots evenly arranged in an equilateral triangle. More specifically, they are the numbers 1, 3, 6, 10, 15,... It follows that the nth triangular number, tn is the sum of the first n consecutive integers beginning with 1. In particular, for n > 1 n(n + 1) (2) tn = . 2 Now, the number 1 is both triangular and a repunit. It is the objective of this note to illustrate that 1 is the only such number. To this end, we state and prove the following lemma. It incorporates a result that [1] asserts had been known by the early Pythagoreans. Appearing in Platonic Questions, Plutarch states that eight times any triangular number plus one is a square. The result is actually necessary and sufficient. We demonstrate it as such here. 1075 Lemma. The integer n is triangular if and only if 8n +1 is a square. Proof. If n = tn, then by (2), n(n + 1) 8 +1=4n2 +4n +1=(2n + 1)2. -
Apollonius of Pergaconics. Books One - Seven
APOLLONIUS OF PERGACONICS. BOOKS ONE - SEVEN INTRODUCTION A. Apollonius at Perga Apollonius was born at Perga (Περγα) on the Southern coast of Asia Mi- nor, near the modern Turkish city of Bursa. Little is known about his life before he arrived in Alexandria, where he studied. Certain information about Apollonius’ life in Asia Minor can be obtained from his preface to Book 2 of Conics. The name “Apollonius”(Apollonius) means “devoted to Apollo”, similarly to “Artemius” or “Demetrius” meaning “devoted to Artemis or Demeter”. In the mentioned preface Apollonius writes to Eudemus of Pergamum that he sends him one of the books of Conics via his son also named Apollonius. The coincidence shows that this name was traditional in the family, and in all prob- ability Apollonius’ ancestors were priests of Apollo. Asia Minor during many centuries was for Indo-European tribes a bridge to Europe from their pre-fatherland south of the Caspian Sea. The Indo-European nation living in Asia Minor in 2nd and the beginning of the 1st millennia B.C. was usually called Hittites. Hittites are mentioned in the Bible and in Egyptian papyri. A military leader serving under the Biblical king David was the Hittite Uriah. His wife Bath- sheba, after his death, became the wife of king David and the mother of king Solomon. Hittites had a cuneiform writing analogous to the Babylonian one and hi- eroglyphs analogous to Egyptian ones. The Czech historian Bedrich Hrozny (1879-1952) who has deciphered Hittite cuneiform writing had established that the Hittite language belonged to the Western group of Indo-European languages [Hro]. -
PELL FACTORIANGULAR NUMBERS Florian Luca, Japhet Odjoumani
PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE Nouvelle série, tome 105(119) (2019), 93–100 DOI: https://doi.org/10.2298/PIM1919093L PELL FACTORIANGULAR NUMBERS Florian Luca, Japhet Odjoumani, and Alain Togbé Abstract. We show that the only Pell numbers which are factoriangular are 2, 5 and 12. 1. Introduction Recall that the Pell numbers Pm m> are given by { } 1 αm βm P = − , for all m > 1, m α β − where α =1+ √2 and β =1 √2. The first few Pell numbers are − 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, 80782, 195025,... Castillo [3], dubbed a number of the form Ftn = n!+ n(n + 1)/2 for n > 1 a factoriangular number. The first few factoriangular numbers are 2, 5, 12, 34, 135, 741, 5068, 40356, 362925,... Luca and Gómez-Ruiz [8], proved that the only Fibonacci factoriangular numbers are 2, 5 and 34. This settled a conjecture of Castillo from [3]. In this paper, we prove the following related result. Theorem 1.1. The only Pell numbers which are factoriangular are 2, 5 and 12. Our method is similar to the one from [8]. Assuming Pm = Ftn for positive integers m and n, we use a linear forms in p-adic logarithms to find some bounds on m and n. The resulting bounds are large so we run a calculation to reduce the bounds. This computation is highly nontrivial and relates on reducing the diophantine equation Pm = Ftn modulo the primes from a carefully selected finite set of suitable primes. 2010 Mathematics Subject Classification: Primary 11D59, 11D09, 11D7; Secondary 11A55. -
Patterns in Figurate Sequences
Patterns in Figurate Sequences Concepts • Numerical patterns • Figurate numbers: triangular, square, pentagonal, hexagonal, heptagonal, octagonal, etc. • Closed form representation of a number sequence • Function notation and graphing • Discrete and continuous data Materials • Chips, two-color counters, or other manipulatives for modeling patterns • Student activity sheet “Patterns in Figurate Sequences” • TI-73 EXPLORER or TI-83 Plus/SE Introduction Mathematics has been described as the “science of patterns.” Patterns are everywhere and may appear as geometric patterns or numeric patterns or both. Figurate numbers are examples of patterns that are both geometric and numeric since they relate geometric shapes of polygons to numerical patterns. In this activity you will analyze, extend, and describe patterns involving figurate numbers and make connections between numeric and geometric representations of patterns. PTE: Algebra Page 1 © 2003 Teachers Teaching With Technology Patterns in Figurate Sequences Student Activity Sheet 1. Using chips or other manipulatives, analyze the following pattern and extend the pattern pictorially for two more terms. • • • • • • • • • • 2. Write the sequence of numbers that describes the quantity of dots above. 3. Describe this pattern in another way. 4. Extend and describe the following pattern with pictures, words, and numbers. • • • • • • • • • • • • • • 5. Analyze Table 1. Fill in each of the rows of the table. Table 1: Figurate Numbers Figurate 1st 2nd 3rd 4th 5th 6th 7th 8th nth Number Triangular 1 3 6 10 15 21 28 36 n(n+1)/2 Square 1 4 9 16 25 36 49 64 Pentagonal 1 5 12 22 35 51 70 Hexagonal 1 6 15 28 45 66 Heptagonal 1 7 18 34 55 Octagonal 1 8 21 40 Nonagonal 1 9 24 Decagonal 1 10 Undecagonal 1 ..