PELL FACTORIANGULAR NUMBERS Florian Luca, Japhet Odjoumani

Total Page:16

File Type:pdf, Size:1020Kb

PELL FACTORIANGULAR NUMBERS Florian Luca, Japhet Odjoumani PUBLICATIONS DE L’INSTITUT MATHÉMATIQUE Nouvelle série, tome 105(119) (2019), 93–100 DOI: https://doi.org/10.2298/PIM1919093L PELL FACTORIANGULAR NUMBERS Florian Luca, Japhet Odjoumani, and Alain Togbé Abstract. We show that the only Pell numbers which are factoriangular are 2, 5 and 12. 1. Introduction Recall that the Pell numbers Pm m> are given by { } 1 αm βm P = − , for all m > 1, m α β − where α =1+ √2 and β =1 √2. The first few Pell numbers are − 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, 80782, 195025,... Castillo [3], dubbed a number of the form Ftn = n!+ n(n + 1)/2 for n > 1 a factoriangular number. The first few factoriangular numbers are 2, 5, 12, 34, 135, 741, 5068, 40356, 362925,... Luca and Gómez-Ruiz [8], proved that the only Fibonacci factoriangular numbers are 2, 5 and 34. This settled a conjecture of Castillo from [3]. In this paper, we prove the following related result. Theorem 1.1. The only Pell numbers which are factoriangular are 2, 5 and 12. Our method is similar to the one from [8]. Assuming Pm = Ftn for positive integers m and n, we use a linear forms in p-adic logarithms to find some bounds on m and n. The resulting bounds are large so we run a calculation to reduce the bounds. This computation is highly nontrivial and relates on reducing the diophantine equation Pm = Ftn modulo the primes from a carefully selected finite set of suitable primes. 2010 Mathematics Subject Classification: Primary 11D59, 11D09, 11D7; Secondary 11A55. Key words and phrases: factoriangular numbers, Pell numbers. Communicated by Žarko Mijajlović. 93 94 LUCA, ODJOUMANI, AND TOGBÉ 2. p-adic linear forms in logarithms Our main tool is an upper bound for a non-zero p-adic linear form in two logarithms of algebraic numbers due to Bugeaud and Laurent [1]. Let η be an algebraic number of degree d over Q with minimal primitive polynomial over the integers d f(x) := a (X η(i)) Z[X], 0 − ∈ i=1 Y (i) where the leading coefficient a0 is positive and the η , i =1,...,d are the conju- gates of η. The logarithmic height of η is given by d 1 h(η) := log a + log(max η(i) , 1 ) . d 0 {| | } i=1 X Let K be an algebraic number field of degree dK. Let η1, η2 Kr 0, 1 and b1 b1 ∈ { } b ,b positive integers. We put Λ = η η . For a prime ideal π of the ring K 1 2 1 − 2 O of algebraic integers in K and η K, we denote by ordπ(η) the order at which π ∈ appears in the prime factorization of the principal fractional ideal η K generated O by η in K. When η is an algebraic integer, η K is an ideal of K. When K = Q, O O π is just a prime number. Let eπ and fπ be the ramification index and the inertial degree of π, respectively, and let p Z be the only prime number such that π p. Then ∈ | k k eπ i fπi p K = π , K/π = p , dK = eπi fπi , O i |O | i=1 i=1 Y X where π1 := π,...,πk are prime ideals in K. We set D := dK/fπ. Let A1, A2 be positive real numbers such that O log p log A > max h(η , (i =1, 2). i i D Further, let n o ′ b b b := 1 + 2 . D log A2 D log A1 With the above notation, Bugeaud and Laurent proved the following result (see [1, Corollary 1 to Theorem 3]). Theorem 2.1. Assume that η1, η2 are algebraic integers which are multiplica- tively independent and that π does not divide η1η2. Then 24p(pfπ 1) ord (Λ) 6 − D5(log A )(log A ) π (p 1)(log p)4 1 2 − ′ 10 log p 2 max log b + log(log p)+0.4, , 10 . × D n o In the actual statement of [1], there is only a dependence of D4 in the right- hand side of the above inequality, but there all the valuations are normalized. Since we work with the actual order ordπ(Λ), we must multiply the upper bound of [1] by another factor of dK/fπ = D. PELL FACTORIANGULAR NUMBERS 95 3. Proof of Theorem 1.1 We study the Diophantine equation (3.1) Pm = Ftn. We may assume that n > 10, since the smaller values can be checked by hand. Before proving our main result, let us prove some preliminary results that are useful for the proof of Theorem 1.1. Lemma 3.1. The following inequalities n−2 n−1 (3.2) α 6 Pn 6 α hold for all n > 1. Proof. Follows immediately by induction on n. n n 6 6 n > Further (see [8]), the inequalities e Ftn n hold for all n 3. Taking logarithms, the above inequalities yield n(n + 1) (3.3) n(log n 1) < log n!+ <n log n, − 2 for all n > 3. Inequalities (3.2) imply (m 2)log α 6 log Pm 6 (m 1)log α. Using (3.1), we get that for positive integers m,−n satisfying (3.1) and n−> 10, we have n(n + 1) (m 2)log α 6 log n!+ 6 (m 1)log α. − 2 − Combining the last inequality above with (3.3), one has n(log n 1) < (m 1)log α and (m 2)log α<n log n. − − − Hence, n(log n 1) n log n (3.4) 1+ − <m< 2+ . log α log α If n 6 100, the above inequality implies that m 6 525. We listed all Pell numbers Pm with m 6 525 and all factoriangular numbers Ftn with n 6 100 and intersected these two lists. All solutions in this range of (3.1) are listed in the Theorem 1.1. We assume from now on that n> 100. Rewriting (3.1) as αm βm n(n + 1) − = n!+ , 2√2 2 we get, after some algebraic manipulations using the fact that β = α−1, that − −m 2m m 2√2 n!= α α n(n + 1)√2α + εm , − m+1 where εm := ( 1) 1 . We note that − ∈ {± } 2m m m m α n(n + 1)√2 α + εm = (α z )(α z ), − − 1 − 2 where n(n + 1)√2 2n2(n + 1)2 4ǫ (3.5) z1,2 := ± − . p2 96 LUCA, ODJOUMANI, AND TOGBÉ Thus, equation (3.1) is equivalent to − (2√2)n!= α m(αm z )(αm z ). − 1 − 2 Let K = Q(z1) and let π be a prime ideal lying above 2 in K. As α is unit and π 2, one has O | m m (3.6) ord (n!) 6 ordπ(2√2n!) 6 ordπ(α z )+ordπ(α z ). 2 − 1 − 2 m We use Theorem 2.1 to get an upper bound on ordπ(α zi), for i =1, 2. We fix i 1, 2 and put − ∈{ } m η := α, η := zi, b := m, b := 1, Λi := α zi. 1 2 1 2 − Note that z1z2 = ǫ. Then z1, z2 and α are all units so π cannot divide any of them. Further, these three numbers belong to K. Next we prove that α and zi are −1 multiplicatively independent for i =1, 2. Of course, since z2 = z1 , it suffices to show that this is so only for i = 1. Well, note first that since ±n > 100, it follows that ∆ > 0. Let d be that positive squarefree integer such that for some positive integer u we have ∆ = 2n2(n + 1)2 4ǫ = du2. Since the left–hand side above is a multiple of 4 and d is squarefree, it− follows that 2 u. Then, using (3.5), we have | z = A√2 B√d, 1 ± where (A, B) = (n(n + 1)/2,u/2) Z2. ∈ Hence, z2 = C + D√2d, where C, D are integers. However, since z2 Q(2√d) and 1 1 ∈ α Q(√2) and they are multiplicatively dependent, it follows that d 1, 2 . The case∈ d = 2, leads to ∈{ } u2 (n(n + 1))2 = 2ε, − − or (u n(n + 1))(u + n(n +1)) = 2ε, − − which is impossible since the left–hand side above is an integer multiple of the number u + n(n + 1) > 1002. The case d = 1 leads to u 2 n(n + 1) 2 2 = ε 1 . 2 − 2 − ∈ {± } Hence, (X, Y ) := (u/2,n (n+1)/2) is a positive integer solution of the Pell equation X2 2Y 2 = 1. − ± It is known that Y = Pk for some k > 1. Hence, Pk = n(n + 1)/2 is a triangular number. Luckily all Pell triangular numbers have been found by McDaniel [9]. Lemma 3.2 (Theorem [9]). If Pk is triangular then k =1. Since for us n> 100, it follows that the equation Pk = n(n+1)/2 is impossible. This proves that indeed z1 and α are multiplicatively dependent. Thus, K = Q(√2, √d) has dK = 4. Further, since the discriminant of K is even (because 2 ramifies in Q(√2) K), it follows that for our prime ideal π, we have ⊆ fπ > 2 and so D = dK/fπ 6 2. PELL FACTORIANGULAR NUMBERS 97 Next, we calculate upper bounds for the logarithmic heights of α and zi. The 2 1 minimal primitive polynomial of α over the integers is x 2x 1, so h(α)= 2 log α. 1 − − Since α > 2, one can take log A1 = 2 log α.
Recommended publications
  • Triangular Numbers /, 3,6, 10, 15, ", Tn,'" »*"
    TRIANGULAR NUMBERS V.E. HOGGATT, JR., and IVIARJORIE BICKWELL San Jose State University, San Jose, California 9111112 1. INTRODUCTION To Fibonacci is attributed the arithmetic triangle of odd numbers, in which the nth row has n entries, the cen- ter element is n* for even /?, and the row sum is n3. (See Stanley Bezuszka [11].) FIBONACCI'S TRIANGLE SUMS / 1 =:1 3 3 5 8 = 2s 7 9 11 27 = 33 13 15 17 19 64 = 4$ 21 23 25 27 29 125 = 5s We wish to derive some results here concerning the triangular numbers /, 3,6, 10, 15, ", Tn,'" »*". If one o b - serves how they are defined geometrically, 1 3 6 10 • - one easily sees that (1.1) Tn - 1+2+3 + .- +n = n(n±M and (1.2) • Tn+1 = Tn+(n+1) . By noticing that two adjacent arrays form a square, such as 3 + 6 = 9 '.'.?. we are led to 2 (1.3) n = Tn + Tn„7 , which can be verified using (1.1). This also provides an identity for triangular numbers in terms of subscripts which are also triangular numbers, T =T + T (1-4) n Tn Tn-1 • Since every odd number is the difference of two consecutive squares, it is informative to rewrite Fibonacci's tri- angle of odd numbers: 221 222 TRIANGULAR NUMBERS [OCT. FIBONACCI'S TRIANGLE SUMS f^-O2) Tf-T* (2* -I2) (32-22) Ti-Tf (42-32) (52-42) (62-52) Ti-Tl•2 (72-62) (82-72) (9*-82) (Kp-92) Tl-Tl Upon comparing with the first array, it would appear that the difference of the squares of two consecutive tri- angular numbers is a perfect cube.
    [Show full text]
  • New Formulas for Semi-Primes. Testing, Counting and Identification
    New Formulas for Semi-Primes. Testing, Counting and Identification of the nth and next Semi-Primes Issam Kaddouraa, Samih Abdul-Nabib, Khadija Al-Akhrassa aDepartment of Mathematics, school of arts and sciences bDepartment of computers and communications engineering, Lebanese International University, Beirut, Lebanon Abstract In this paper we give a new semiprimality test and we construct a new formula for π(2)(N), the function that counts the number of semiprimes not exceeding a given number N. We also present new formulas to identify the nth semiprime and the next semiprime to a given number. The new formulas are based on the knowledge of the primes less than or equal to the cube roots 3 of N : P , P ....P 3 √N. 1 2 π( √N) ≤ Keywords: prime, semiprime, nth semiprime, next semiprime 1. Introduction Securing data remains a concern for every individual and every organiza- tion on the globe. In telecommunication, cryptography is one of the studies that permits the secure transfer of information [1] over the Internet. Prime numbers have special properties that make them of fundamental importance in cryptography. The core of the Internet security is based on protocols, such arXiv:1608.05405v1 [math.NT] 17 Aug 2016 as SSL and TSL [2] released in 1994 and persist as the basis for securing dif- ferent aspects of today’s Internet [3]. The Rivest-Shamir-Adleman encryption method [4], released in 1978, uses asymmetric keys for exchanging data. A secret key Sk and a public key Pk are generated by the recipient with the following property: A message enciphered Email addresses: [email protected] (Issam Kaddoura), [email protected] (Samih Abdul-Nabi) 1 by Pk can only be deciphered by Sk and vice versa.
    [Show full text]
  • The Pseudoprimes to 25 • 109
    MATHEMATICS OF COMPUTATION, VOLUME 35, NUMBER 151 JULY 1980, PAGES 1003-1026 The Pseudoprimes to 25 • 109 By Carl Pomerance, J. L. Selfridge and Samuel S. Wagstaff, Jr. Abstract. The odd composite n < 25 • 10 such that 2n_1 = 1 (mod n) have been determined and their distribution tabulated. We investigate the properties of three special types of pseudoprimes: Euler pseudoprimes, strong pseudoprimes, and Car- michael numbers. The theoretical upper bound and the heuristic lower bound due to Erdös for the counting function of the Carmichael numbers are both sharpened. Several new quick tests for primality are proposed, including some which combine pseudoprimes with Lucas sequences. 1. Introduction. According to Fermat's "Little Theorem", if p is prime and (a, p) = 1, then ap~1 = 1 (mod p). This theorem provides a "test" for primality which is very often correct: Given a large odd integer p, choose some a satisfying 1 <a <p - 1 and compute ap~1 (mod p). If ap~1 pi (mod p), then p is certainly composite. If ap~l = 1 (mod p), then p is probably prime. Odd composite numbers n for which (1) a"_1 = l (mod«) are called pseudoprimes to base a (psp(a)). (For simplicity, a can be any positive in- teger in this definition. We could let a be negative with little additional work. In the last 15 years, some authors have used pseudoprime (base a) to mean any number n > 1 satisfying (1), whether composite or prime.) It is well known that for each base a, there are infinitely many pseudoprimes to base a.
    [Show full text]
  • Primes and Primality Testing
    Primes and Primality Testing A Technological/Historical Perspective Jennifer Ellis Department of Mathematics and Computer Science What is a prime number? A number p greater than one is prime if and only if the only divisors of p are 1 and p. Examples: 2, 3, 5, and 7 A few larger examples: 71887 524287 65537 2127 1 Primality Testing: Origins Eratosthenes: Developed “sieve” method 276-194 B.C. Nicknamed Beta – “second place” in many different academic disciplines Also made contributions to www-history.mcs.st- geometry, approximation of andrews.ac.uk/PictDisplay/Eratosthenes.html the Earth’s circumference Sieve of Eratosthenes 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Sieve of Eratosthenes We only need to “sieve” the multiples of numbers less than 10. Why? (10)(10)=100 (p)(q)<=100 Consider pq where p>10. Then for pq <=100, q must be less than 10. By sieving all the multiples of numbers less than 10 (here, multiples of q), we have removed all composite numbers less than 100.
    [Show full text]
  • Appendix a Tables of Fermat Numbers and Their Prime Factors
    Appendix A Tables of Fermat Numbers and Their Prime Factors The problem of distinguishing prime numbers from composite numbers and of resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic. Carl Friedrich Gauss Disquisitiones arithmeticae, Sec. 329 Fermat Numbers Fo =3, FI =5, F2 =17, F3 =257, F4 =65537, F5 =4294967297, F6 =18446744073709551617, F7 =340282366920938463463374607431768211457, Fs =115792089237316195423570985008687907853 269984665640564039457584007913129639937, Fg =134078079299425970995740249982058461274 793658205923933777235614437217640300735 469768018742981669034276900318581864860 50853753882811946569946433649006084097, FlO =179769313486231590772930519078902473361 797697894230657273430081157732675805500 963132708477322407536021120113879871393 357658789768814416622492847430639474124 377767893424865485276302219601246094119 453082952085005768838150682342462881473 913110540827237163350510684586298239947 245938479716304835356329624224137217. The only known Fermat primes are Fo, ... , F4 • 208 17 lectures on Fermat numbers Completely Factored Composite Fermat Numbers m prime factor year discoverer 5 641 1732 Euler 5 6700417 1732 Euler 6 274177 1855 Clausen 6 67280421310721* 1855 Clausen 7 59649589127497217 1970 Morrison, Brillhart 7 5704689200685129054721 1970 Morrison, Brillhart 8 1238926361552897 1980 Brent, Pollard 8 p**62 1980 Brent, Pollard 9 2424833 1903 Western 9 P49 1990 Lenstra, Lenstra, Jr., Manasse, Pollard 9 p***99 1990 Lenstra, Lenstra, Jr., Manasse, Pollard
    [Show full text]
  • Figurate Numbers
    Figurate Numbers by George Jelliss June 2008 with additions November 2008 Visualisation of Numbers The visual representation of the number of elements in a set by an array of small counters or other standard tally marks is still seen in the symbols on dominoes or playing cards, and in Roman numerals. The word "calculus" originally meant a small pebble used to calculate. Bear with me while we begin with a few elementary observations. Any number, n greater than 1, can be represented by a linear arrangement of n counters. The cases of 1 or 0 counters can be regarded as trivial or degenerate linear arrangements. The counters that make up a number m can alternatively be grouped in pairs instead of ones, and we find there are two cases, m = 2.n or 2.n + 1 (where the dot denotes multiplication). Numbers of these two forms are of course known as even and odd respectively. An even number is the sum of two equal numbers, n+n = 2.n. An odd number is the sum of two successive numbers 2.n + 1 = n + (n+1). The even and odd numbers alternate. Figure 1. Representation of numbers by rows of counters, and of even and odd numbers by various, mainly symmetric, formations. The right-angled (L-shaped) formation of the odd numbers is known as a gnomon. These do not of course exhaust the possibilities. 1 2 3 4 5 6 7 8 9 n 2 4 6 8 10 12 14 2.n 1 3 5 7 9 11 13 15 2.n + 1 Triples, Quadruples and Other Forms Generalising the divison into even and odd numbers, the counters making up a number can of course also be grouped in threes or fours or indeed any nonzero number k.
    [Show full text]
  • Properties of Pell Numbers Modulo Prime Fermat Numbers 1 General
    Properties of Pell numbers modulo prime Fermat numbers Tony Reix ([email protected]) 2005, ??th of February The Pell numbers are generated by the Lucas Sequence: 2 Xn = P Xn−1 QXn−2 with (P, Q)=(2, 1) and D = P 4Q = 8. There are: − − − The Pell Sequence: Un = 2Un−1 + Un−2 with (U0, U1)=(0, 1), and ◦ The Companion Pell Sequence: V = 2V + V with (V , V )=(2, 2). ◦ n n−1 n−2 0 1 The properties of Lucas Sequences (named from Edouard´ Lucas) are studied since hundreds of years. Paulo Ribenboim and H.C. Williams provided the properties of Lucas Sequences in their 2 famous books: ”The Little Book of Bigger Primes” (PR) and ”Edouard´ Lucas and Primality Testing” (HCW). The goal of this paper is to gather all known properties of Pell numbers in order to try proving a faster Primality test of Fermat numbers. Though these properties are detailed in the Ribenboim’s and Williams’ books, the special values of (P, Q) lead to new properties. Properties from Ribenboim’s book are noted: (PR). Properties from Williams’ book are noted: (HCW). Properties built by myself are noted: (TR). n -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 Un 5 -2 1 0 1 2 5 12 29 70 169 408 985 2378 Vn -14 6 -2 2 2 6 14 34 82 198 478 1154 2786 6726 Table 1: First Pell numbers 1 General properties of Pell numbers 1.1 The Little Book of Bigger Primes The polynomial X2 2X 1 has discriminant D = 8 and roots: − − α = 1 √2 β ± 1 So: α + β = 2 αβ = 1 − α β = 2√2 − and we define the sequences of numbers: αn βn U = − and V = αn + βn for n 0.
    [Show full text]
  • TRIANGULAR REPUNIT—THERE IS but 1 a Repunit Is Any Integer That
    Czechoslovak Mathematical Journal, 60 (135) (2010), 1075–1077 TRIANGULAR REPUNIT—THERE IS BUT 1 John H. Jaroma, Ave Maria (Received June 27, 2009) Abstract. In this paper, we demonstrate that 1 is the only integer that is both triangular and a repunit. Keywords: repunit, triangular number MSC 2010 : 11A99 A repunit is any integer that can be written in decimal notation as a string of 1’s. Examples include 1, 11, 111, 1111, 11111,... Furthermore, if we denote rn to be the nth repunit then it follows that 10n − 1 (1) rn = . 9 Triangular numbers are those integers that can be represented by the number of dots evenly arranged in an equilateral triangle. More specifically, they are the numbers 1, 3, 6, 10, 15,... It follows that the nth triangular number, tn is the sum of the first n consecutive integers beginning with 1. In particular, for n > 1 n(n + 1) (2) tn = . 2 Now, the number 1 is both triangular and a repunit. It is the objective of this note to illustrate that 1 is the only such number. To this end, we state and prove the following lemma. It incorporates a result that [1] asserts had been known by the early Pythagoreans. Appearing in Platonic Questions, Plutarch states that eight times any triangular number plus one is a square. The result is actually necessary and sufficient. We demonstrate it as such here. 1075 Lemma. The integer n is triangular if and only if 8n +1 is a square. Proof. If n = tn, then by (2), n(n + 1) 8 +1=4n2 +4n +1=(2n + 1)2.
    [Show full text]
  • The Distribution of Pseudoprimes
    The Distribution of Pseudoprimes Matt Green September, 2002 The RSA crypto-system relies on the availability of very large prime num- bers. Tests for finding these large primes can be categorized as deterministic and probabilistic. Deterministic tests, such as the Sieve of Erastothenes, of- fer a 100 percent assurance that the number tested and passed as prime is actually prime. Despite their refusal to err, deterministic tests are generally not used to find large primes because they are very slow (with the exception of a recently discovered polynomial time algorithm). Probabilistic tests offer a much quicker way to find large primes with only a negligibal amount of error. I have studied a simple, and comparatively to other probabilistic tests, error prone test based on Fermat’s little theorem. Fermat’s little theorem states that if b is a natural number and n a prime then bn−1 ≡ 1 (mod n). To test a number n for primality we pick any natural number less than n and greater than 1 and first see if it is relatively prime to n. If it is, then we use this number as a base b and see if Fermat’s little theorem holds for n and b. If the theorem doesn’t hold, then we know that n is not prime. If the theorem does hold then we can accept n as prime right now, leaving a large chance that we have made an error, or we can test again with a different base. Chances improve that n is prime with every base that passes but for really big numbers it is cumbersome to test all possible bases.
    [Show full text]
  • Elementary Proof That an Infinite Number of Cullen Primes Exist
    Elementary Proof that an Infinite Number of Cullen Primes Exist Stephen Marshall 21 February 2017 Abstract This paper presents a complete proof of the Cullen Primes are infinite, even though only 16 of them have been found as of 21 Feb 2017. We use a proof found in Reference 1, that if p > 1 and d > 0 are integers, that p and p+ d are both primes if and only if for integer m: m = (p-1)!( + ) + + We use this proof for d = to prove the infinitude of Cullen prime numbers. The author would like to give many thanks to the authors of 1001 Problems in Classical Number Theory, Jean-Marie De Koninck and Armel Mercier, 2004, Exercise Number 161 (see Reference 1). The proof provided in Exercise 6 is the key to making this paper on the Cullen Prime Conjecture possible. Introduction James Cullen, (19 April 1867 – 7 December 1933) was born at Drogheda, County Louth, Ireland. At first he was educated privately, then he studied pure and applied mathematics at the Trinity College, Dublin for a while, he went to 1 Mungret College, Limerick, before deciding to become a Jesuit, studying in England in Mansera House, and St. Mary's, and was ordained as a priest on 31 July 1901. In 1905, he taught mathematics at Mount St. Mary's College in Derbyshire and published his finding of what is now known as Cullen numbers in number theory. In number theory of prime numbers, a Cullen number is a natural number of the form n Cn = n2 + 1 Cullen numbers were first studied by James Cullen in 1905.
    [Show full text]
  • On Types of Elliptic Pseudoprimes
    journal of Groups, Complexity, Cryptology Volume 13, Issue 1, 2021, pp. 1:1–1:33 Submitted Jan. 07, 2019 https://gcc.episciences.org/ Published Feb. 09, 2021 ON TYPES OF ELLIPTIC PSEUDOPRIMES LILJANA BABINKOSTOVA, A. HERNANDEZ-ESPIET,´ AND H. Y. KIM Boise State University e-mail address: [email protected] Rutgers University e-mail address: [email protected] University of Wisconsin-Madison e-mail address: [email protected] Abstract. We generalize Silverman's [31] notions of elliptic pseudoprimes and elliptic Carmichael numbers to analogues of Euler-Jacobi and strong pseudoprimes. We inspect the relationships among Euler elliptic Carmichael numbers, strong elliptic Carmichael numbers, products of anomalous primes and elliptic Korselt numbers of Type I, the former two of which we introduce and the latter two of which were introduced by Mazur [21] and Silverman [31] respectively. In particular, we expand upon the work of Babinkostova et al. [3] on the density of certain elliptic Korselt numbers of Type I which are products of anomalous primes, proving a conjecture stated in [3]. 1. Introduction The problem of efficiently distinguishing the prime numbers from the composite numbers has been a fundamental problem for a long time. One of the first primality tests in modern number theory came from Fermat Little Theorem: if p is a prime number and a is an integer not divisible by p, then ap−1 ≡ 1 (mod p). The original notion of a pseudoprime (sometimes called a Fermat pseudoprime) involves counterexamples to the converse of this theorem. A pseudoprime to the base a is a composite number N such aN−1 ≡ 1 mod N.
    [Show full text]
  • The Simple Mersenne Conjecture
    The Simple Mersenne Conjecture Pingyuan Zhou E-mail:[email protected] Abstract p In this paper we conjecture that there is no Mersenne number Mp = 2 –1 to be prime k for p = 2 ±1,±3 when k > 7, where p is positive integer and k is natural number. It is called the simple Mersenne conjecture and holds till p ≤ 30402457 from status of this conjecture. If the conjecture is true then there are no more double Mersenne primes besides known double Mersenne primes MM2, MM3, MM5, MM7. Keywords: Mersenne prime; double Mersenne prime; new Mersenne conjecture; strong law of small numbers; simple Mersenne conjecture. 2010 Mathematics Subject Classification: 11A41, 11A51 1 p How did Mersenne form his list p = 2,3,5,7,13,17,19,31,67,127,257 to make 2 –1 become primes ( original Mersenne conjecture ) and why did the list have five errors ( 67 and 257 were wrong but 61,89,107 did not appear here )? Some of mathematicians have studied this problem carefully[1]. From verification results of new Mersenne conjecture we see three conditions in the conjecture all hold only for p = 3,5,7,13,17,19,31,61,127 though new Mersenne conjecture has been verified to be true for all primes p < 20000000[2,3]. If we only consider Mersenne primes and p is p k positive integer then we will discovery there is at least one prime 2 –1 for p = 2 ±1,±3 when k ≤ 7 ( k is natural number 0,1,2,3,…), however, such connections will disappear completely from known Mersenne primes when k > 7.
    [Show full text]