Linking Marine Fisheries Species to Biogenic Habitats in New Zealand: a Review and Synthesis of Knowledge

Total Page:16

File Type:pdf, Size:1020Kb

Linking Marine Fisheries Species to Biogenic Habitats in New Zealand: a Review and Synthesis of Knowledge Linking marine fisheries species to biogenic habitats in New Zealand: a review and synthesis of knowledge New Zealand Aquatic Environment and Biodiversity Report No. 130 M.A. Morrison E.G. Jones M. Consalvey K. Berkenbusch ISSN 1179-6480 (online) ISBN 978-0-478-43229-9 (online) May 2014 Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-resources/publications.aspx http://fs.fish.govt.nz go to Document library/Research reports © Crown Copyright - Ministry for Primary Industries Contents 1 INTRODUCTION .......................................................................................................................... 5 1.1 Objectives ............................................................................................................................... 6 1.2 Scope and limitations of review .............................................................................................. 6 1.3 What is (biogenic) habitat? ..................................................................................................... 7 1.4 Why does (biogenic) habitat matter to fisheries? .................................................................... 9 1.5 Some definitions of habitat/area functions ............................................................................ 11 1.6 The issue of sliding environmental base-lines ...................................................................... 15 2 NEW ZEALAND’S BIOGENIC HABITATS ............................................................................. 16 3 THE COASTAL ZONE ................................................................................................................ 17 3.1 Salt Marsh ............................................................................................................................. 17 3.2 Mangroves (Avicennia marina australasica) ........................................................................ 20 3.3 Seagrass (Zostera capricorni) ............................................................................................... 25 3.4 Macro-algae .......................................................................................................................... 31 3.5 Shellfish (molluscs) biogenic habitats .................................................................................. 45 3.6 Sponges (numerous species) ................................................................................................. 61 3.7 Bryozoan reefs and/or accumulations ................................................................................... 65 3.8 Tubeworms ........................................................................................................................... 76 3.9 Coastal (less than 200 m water depth) gorgonians, red and black corals, hydroids, ascidians, brachiopods, sea-pens, sea-whips and other species ......................................................................... 81 4 BURROWS AS BIOGENIC HABITAT ...................................................................................... 83 4.1 Impact on geotechnical sediment properties ......................................................................... 86 4.2 Impact on geochemical sediment properties ......................................................................... 88 4.3 Burrow irrigation .................................................................................................................. 89 4.4 Geochemistry of burrow environments ................................................................................. 89 4.5 Influence on associated biota ................................................................................................ 9 2 4.6 Burrows as habitats for other species .................................................................................... 93 4.7 Influence on meiofauna ......................................................................................................... 94 4.8 Influence on macrofauna ....................................................................................................... 95 4.9 Influence on aquatic plants ................................................................................................... 97 4.10 Threats to burrows and burrowing organisms ....................................................................... 98 5 THE DEEP SEA (MORE THAN 200 M WATER DEPTH) ....................................................... 98 5.1 New Zealand’s deep-water fish and fisheries ....................................................................... 99 5.2 Corals .................................................................................................................................. 102 5.3 Bryozoans ........................................................................................................................... 109 5.4 Sponges ............................................................................................................................... 109 5.5 Tubeworms ......................................................................................................................... 109 6 CASE STUDIES OF BIOGENIC HABITAT LINKS TO FISHERIES..................................... 110 6.1 Blue crabs in the northern Gulf of Mexico ......................................................................... 110 6.2 Sponges and fish on the North-west Australian Continental Shelf ..................................... 112 6.3 Corals and sablefish in Alaska; and a meta-analysis of foundation (biogenic) species ...... 114 7 SELECTED NEW ZEALAND FISHERIES SPECIES – BIOGENIC HABITAT LINKS ....... 116 7.1 Snapper (Pagrus auratus) ................................................................................................... 116 7.2 Tarakihi (Nemodactylus macropterus) ................................................................................ 119 7.3 Blue cod (Parapercis colias) .............................................................................................. 122 8 CONCLUSIONS ......................................................................................................................... 123 8.1 Consider biogenic habitats as a key element of marine ecosystems ................................... 128 8.2 A national (fish-) habitat classification ............................................................................... 129 8.3 Detection and mapping ....................................................................................................... 129 8.4 Habitat modelling and predictive maps............................................................................... 130 8.5 Threats and stressors ........................................................................................................... 130 8.6 Fisheries links – from patch to the fishery scale ................................................................. 130 8.7 The functioning of the biogenic habitats themselves as living organisms .......................... 131 8.8 Integrated marine spatial planning and ecosystem based management .............................. 132 9 ACKNOWLEDGEMENTS ........................................................................................................ 132 REFERENCES ................................................................................................................................... 132 EXECUTIVE SUMMARY Morrison, M.A.; Jones, E.; Consalvey, M.; Berkenbusch, K. (2014). Linking marine fisheries species to biogenic habitats in New Zealand: a review and synthesis of knowledge. New Zealand Aquatic Environment and Biodiversity Report No. 130. 156 p. Fisheries research and management has traditionally been focussed on the fish populations, while the habitats and environments which underpin their production have been largely ignored. This situation is changing, with an increasing awareness that habitats are important and can be degraded through human activities, both marine and land-based. While the wider field of marine ecology has been researching such fish-habitat themes for a number of decades, the species worked on are often small, site-attached, and relatively short-lived; while fisheries species tend to be larger bodied, and operate over much larger spatial and temporal scales. Given this, quantitatively linking fisheries species to habitats is a challenge, and an active field of research. One type of habitat that appears to be especially important for many demersal species are those referred to as ‘biogenic’ habitats. These biogenic habitats are formed by plants and animals, and occur from the inter-tidal out to the deep sea. Well known biogenic habitats include salt marshes, mangrove forests, seagrass meadows, kelp forests, bryozoan fields, and shellfish beds. For the purposes of this review, biogenic habitats are defined as a) those living species that form emergent three-dimensional structure, that separate areas in which they occur from surrounding lower vertical dimension seafloor habitats and b) non-living structure generated by living organisms, such as infaunal tubes and burrows. A sub-set of these habitats are biogenic “reefs”, which are visually imposing, and are defined as "solid, massive
Recommended publications
  • To Next File: Sfc260a.Pdf
    Appendix 1 FISH SPECIES IDENTIFIED FROM THE COASTAL EAST CAPE REGION Surveys of the East Cape Region (Bay of Plenty and East Coast) were conducted during 1992, 1993, and 1999 (see Tables 1, 2, and 4 for locality data), with additional records from the National Fish Collection. FAMILY, SPECIES, AND AUTHORITY COMMON NAME STATIONS Lamnidae Isurus oxyrinchus Rafinesque mako shark (P) E20o Squalidae Squalus mitsukurii Jordon & Snyder piked spurdog (D) W Dasyatidae Dasyatis brevicaudata (Hutton) shorttailed stingray E19o Myliobatidae eMyliobatis tenuicaudatus (Hector) eagle ray E03° Anguillidae Anguilla australis Richardson shortfin eel (F) W eAnguilla dieffenbachii Gray longfin eel (F) W Muraenidae Gymnothorax prasinus (Richardson) yellow moray E05o, E08° Ophichthyidae Scolecenchelys australis (MacLeay) shortfinned worm eel E01, E10, E11, E28, E29, E33, E48 Congridae Conger verreauxi Kaup southern conger eel E03, E07, E09, E12°, E13, E16, E18, E22o, E23o, E25o, E31, E33 Conger wilsoni (Bloch & Schneider) northern conger eel W; E05, E09, E12, E27 Conger sp. conger E01°, E31o Engraulidae Engraulis australis (White) anchovy (P) E Clupeidae Sardinops neopilchardus (Steindachner) pilchard (P) E Gonorynchidae Gonorynchus forsteri Ogilby sandfish (D) E Retropinnidae eRetropinna retropinna (Richardson) smelt (F) W; E Galaxiidae Galaxias maculatus (Jenyns) inanga (F) W; E Bythitidae eBidenichthys beeblebroxi Paulin grey brotula E01, E03, E08, E09, E10, E12, E18, E19, E21, E23, E27, E28, E29, E31, E33, E34 eBrosmodorsalis persicinus Paulin & Roberts pink brotula E02, E07, E10°, E18, E22, E29, E31, E33o eDermatopsis macrodon Ogilby fleshfish E08, E31 Moridae Austrophycis marginata (Günther) dwarf cod (D) E Continued next page > e = NZ endemic species. D = deepwater species (> 50 m depth); E = estuarine species; F = freshwater species; P = pelagic species; U = species of uncertain identity.
    [Show full text]
  • Morphological Variations of the Shell of the Bivalve Lucina Pectinata
    I S S N 2 3 47-6 8 9 3 Volume 10 Number2 Journal of Advances in Biology Morphological variations of the shell of the bivalve Lucina pectinata (Gmelin, 1791) Emma MODESTIN PhD of Biogeography, zoology and Ecology University of the French Antilles, UMR AREA DEV ABSTRACT In Martinique, the species Lucina pectinata (Gmelin, 1791) is called "mud clam, white clam or mangrove clam" by bivalve fishermen depending on the harvesting environment. Indeed, the individuals collected have differences as regards the shape and colour of the shell. The hypothesis is that the shape of the shell of L. pectinata (P. pectinatus) shows significant variations from one population to another. This paper intends to verify this hypothesis by means of a simple morphometric study. The comparison of the shape of the shell of individuals from different populations was done based on samples taken at four different sites. The standard measurements (length (L), width or thickness (E - épaisseur) and height (H)) were taken and the morphometric indices (L/H; L/E; E/H) were established. These indices of shape differ significantly among the various populations. This intraspecific polymorphism of the shape of the shell of P. pectinatus could be related to the nature of the sediment (granulometry, density, hardness) and/or the predation. The shells are significantly more elongated in a loose muddy sediment than in a hard muddy sediment or one rich in clay. They are significantly more convex in brackish environments and this is probably due to the presence of more specialised predators or of more muddy sediments. Keywords Lucina pectinata, bivalve, polymorphism of shape of shell, ecology, mangrove swamp, French Antilles.
    [Show full text]
  • Silver Trevally (Pseudocaranx Georgianus)
    I & I NSW WILD FISHERIES RESEARCH PROGRAM Silver Trevally (Pseudocaranx georgianus) EXPLOITATION STATUS GROWTH OVERFISHED Minimum legal length (MLL) of 30 cm total length was implemented in September 2007 but recent size composition data indicate silver trevally should still be considered ‘growth overfished’. Status should be reviewed after the impact of the MLL implementation has been fully assessed. SCIENTIFIC NAME STANDARD NAME COMMENT Pseudocaranx georgianus silver trevally Was recently known as P. dentex. Pseudocaranx georgianus Image © Bernard Yau Background samples from Botany Bay between December and August, however the life history of juvenile Recent research determined that the silver trevally is poorly known. trevally in south-eastern Australian and northern New Zealand waters is distinct from Silver trevally is a relatively long lived, slow the larger tropical form (Pseudocaranx dentex) growing species, attaining a maximum age and the old name (P. georgianus) has been in excess of 25 years. In NSW coastal waters restored. Silver trevally occur in estuarine and trevally reach a maximum size of about coastal waters of southern Australian states 65 cm FL and weight of about 4 kg. Since the ranging from about Coffs Harbour in NSW 1980s, the average size of silver trevally in to about Perth in WA. Most of the Australian catches has declined considerably and in recent commercial catch is taken in NSW and eastern years fish greater than about 35 cm in length Victoria. Silver trevally is a schooling species, (or 0.75 kg in weight) have been very poorly inhabiting mainly sandy substrates and feeding represented in catches. Commercial catches are on benthic invertebrates, including worms and dominated by young fish, less than about five molluscs, and also on benthic and planktonic years of age.
    [Show full text]
  • Wild About Learning
    WILD ABOUT LEARNING An Interdisciplinary Unit Fostering Discovery Learning Written on a 4th grade reading level, Wild Discoveries: Wacky New Animals, is perfect for every kid who loves wacky animals! With engaging full-color photos throughout, the book draws readers right into the animal action! Wild Discoveries features newly discovered species from around the world--such as the Shocking Pink Dragon and the Green Bomber. These wacky species are organized by region with fun facts about each one's amazing abilities and traits. The book concludes with a special section featuring new species discovered by kids! Heather L. Montgomery writes about science and nature for kids. Her subject matter ranges from snake tongues to snail poop. Heather is an award-winning teacher who uses yuck appeal to engage young minds. During a typical school visit, petrified parts and tree guts inspire reluctant writers and encourage scientific thinking. Heather has a B.S. in Biology and a M.S. in Environmental Education. When she is not writing, you can find her painting her face with mud at the McDowell Environmental Center where she is the Education Coordinator. Heather resides on the Tennessee/Alabama border. Learn more about her ten books at www.HeatherLMontgomery.com. Dear Teachers, Photo by Sonya Sones As I wrote Wild Discoveries: Wacky New Animals, I was astounded by how much I learned. As expected, I learned amazing facts about animals and the process of scientifically describing new species, but my knowledge also grew in subjects such as geography, math and language arts. I have developed this unit to share that learning growth with children.
    [Show full text]
  • Warkworth Leigh Pakiri Puhoi Matakana
    To Mangawhai 15 d R d R r e Pakiri Hill i v r i i R k i i Care must be taken r u i h k a PAKIRI on Pakiri Hill, a P R d Cp Rodney-Okakari Pt a narrow, steep, Pakiri Hill R 14 Marine Reserve Paki d ri R n d a (Goat Island) winding and unsealed l s I section of road t a o G ri Rd Paki 13 Puhoi 42KM Auckland 81KM LEIGH 12 Leigh Harbour To Wellsford To Tamahunga Te Araroa T ī Trail P Whangateau o i n t 11 Reptile R Omaha Park d Forest Omaha Big Omaha Whangateau Bay M d Harbour a R t igh ak e Te Hauturu-o-Toi a L Point n a Wells Little Barrier Island V a NZ’s first nature reserve l l e (est. 1896) y R d 9 Omaha Omaha Flats Rd Tāwharanui MATAKANA Marine Reserve Dome Tongue Farm Rd Forest 8 T 10 Morris a k atu R & d James Tāwharanui Pottery Regional Park d R a n a Dome k a Valley at M S Hauraki Gulf h a Matakana Tīkapa Moana r p River R d 6 1 WARKWORTH Sandspit 7 Leigh 22KM Kawau d 4 Matakana 9KM pit R Sands KAWAU Island la Ln Honey Arabel BAY Centre M a h u Snells Beach r Jane Gifford a Bon Accord n Scow g i E a s North to Wellsford, Whangarei North to Wellsford, t R d Algies Bay Scandrett Regional Park Mahurangi Harbour 5 Mansion House s Ba Martin y Warkworth R R Satellite i d d Earth g e Station R d NORTHLAND / To Whangarei 1 NORTH AUCKLAND NZ Whangarei 3 Wellsford Auckland Warkworth 16KM Mahurangi East Motuora Island Auckland 44KM Regional Park Recreation Reserve Mah urangi West Rd Iconic photo stop! PUHOI 3 12 Local favourite 1 Mahurangi Point of interest Petrol station Regional Park Don’t miss 3 Route Electric car charging Swimming Marine reserve P Walking track uh oi R Te Araroa d Regional park Trail Food Scenic views Puhoi River 1 Golf Cycleway 2 Wenderholm Cafe Regional Surfing Museum Toll Road Tunnel Park Store South to Auckland Sep 2019 Sep 2019 Kawau Island Leigh Harbour 7 13 With a sheltered coastline offering Named after the Māori word for the shag Omaha Cove is a beautiful, small and stunning harbours, beautiful beaches (cormorant) bird, Kawau.
    [Show full text]
  • E Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary
    !e Urban Sanctuary Algae and Marine Invertebrates of Ricketts Point Marine Sanctuary Jessica Reeves & John Buckeridge Published by: Greypath Productions Marine Care Ricketts Point PO Box 7356, Beaumaris 3193 Copyright © 2012 Marine Care Ricketts Point !is work is copyright. Apart from any use permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission of the publisher. Photographs remain copyright of the individual photographers listed. ISBN 978-0-9804483-5-1 Designed and typeset by Anthony Bright Edited by Alison Vaughan Printed by Hawker Brownlow Education Cheltenham, Victoria Cover photo: Rocky reef habitat at Ricketts Point Marine Sanctuary, David Reinhard Contents Introduction v Visiting the Sanctuary vii How to use this book viii Warning viii Habitat ix Depth x Distribution x Abundance xi Reference xi A note on nomenclature xii Acknowledgements xii Species descriptions 1 Algal key 116 Marine invertebrate key 116 Glossary 118 Further reading 120 Index 122 iii Figure 1: Ricketts Point Marine Sanctuary. !e intertidal zone rocky shore platform dominated by the brown alga Hormosira banksii. Photograph: John Buckeridge. iv Introduction Most Australians live near the sea – it is part of our national psyche. We exercise in it, explore it, relax by it, "sh in it – some even paint it – but most of us simply enjoy its changing modes and its fascinating beauty. Ricketts Point Marine Sanctuary comprises 115 hectares of protected marine environment, located o# Beaumaris in Melbourne’s southeast ("gs 1–2). !e sanctuary includes the coastal waters from Table Rock Point to Quiet Corner, from the high tide mark to approximately 400 metres o#shore.
    [Show full text]
  • THE NAUTILUS (Quarterly)
    americanmalacologists, inc. PUBLISHERS OF DISTINCTIVE BOOKS ON MOLLUSKS THE NAUTILUS (Quarterly) MONOGRAPHS OF MARINE MOLLUSCA STANDARD CATALOG OF SHELLS INDEXES TO THE NAUTILUS {Geographical, vols 1-90; Scientific Names, vols 61-90) REGISTER OF AMERICAN MALACOLOGISTS JANUARY 30, 1984 THE NAUTILUS ISSN 0028-1344 Vol. 98 No. 1 A quarterly devoted to malacology and the interests of conchologists Founded 1889 by Henry A. Pilsbry. Continued by H. Burrington Baker. Editor-in-Chief: R. Tucker Abbott EDITORIAL COMMITTEE CONSULTING EDITORS Dr. William J. Clench Dr. Donald R. Moore Curator Emeritus Division of Marine Geology Museum of Comparative Zoology School of Marine and Atmospheric Science Cambridge, MA 02138 10 Rickenbacker Causeway Miami, FL 33149 Dr. William K. Emerson Department of Living Invertebrates Dr. Joseph Rosewater The American Museum of Natural History Division of Mollusks New York, NY 10024 U.S. National Museum Washington, D.C. 20560 Dr. M. G. Harasewych 363 Crescendo Way Dr. G. Alan Solem Silver Spring, MD 20901 Department of Invertebrates Field Museum of Natural History Dr. Aurele La Rocque Chicago, IL 60605 Department of Geology The Ohio State University Dr. David H. Stansbery Columbus, OH 43210 Museum of Zoology The Ohio State University Dr. James H. McLean Columbus, OH 43210 Los Angeles County Museum of Natural History 900 Exposition Boulevard Dr. Ruth D. Turner Los Angeles, CA 90007 Department of Mollusks Museum of Comparative Zoology Dr. Arthur S. Merrill Cambridge, MA 02138 c/o Department of Mollusks Museum of Comparative Zoology Dr. Gilbert L. Voss Cambridge, MA 02138 Division of Biology School of Marine and Atmospheric Science 10 Rickenbacker Causeway Miami, FL 33149 EDITOR-IN-CHIEF The Nautilus (USPS 374-980) ISSN 0028-1344 Dr.
    [Show full text]
  • Potential Future Changes in Mangrove-Habitat in Auckland's
    Potential Future Changes in Mangrove-Habitat in Auckland’s East-Coast Estuaries June TR 2009/079 Auckland Regional Council Technical Report No.079 June 2009 ISSN 1179-0504 (Print) ISSN 1179-0512 (Online) ISBN 978-1-877528-91-0 Reviewed by: Approved for ARC Publication by: Name: Megan Stewart Name: Grant Barnes Position: Group Manager, Monitoring and Position: Project Leader – Marine Research Organisation: Auckland Regional Council Organisation: Auckland Regional Council Date: 23rd March 2010 Date: 23rd March 2010 Recommended Citation: Swales, A.; Bell, R.G.; Gorman, R.; Oldman, J.W.; Altenberger, A. ; Hart, C.; Claydon, L.; Wadhwa, S.; Ovenden, R. (2008). Potential future changes in mangrove-habitat in Auckland’s east-coast estuaries. Prepared by NIWA for Auckland Regional Council. Auckland Regional Council Technical Publication Number TR 2009/079. © 2008 Auckland Regional Council This publication is provided strictly subject to Auckland Regional Council's (ARC) copyright and other intellectual property rights (if any) in the publication. Users of the publication may only access, reproduce and use the publication, in a secure digital medium or hard copy, for responsible genuine non-commercial purposes relating to personal, public service or educational purposes, provided that the publication is only ever accurately reproduced and proper attribution of its source, publication date and authorship is attached to any use or reproduction. This publication must not be used in any way for any commercial purpose without the prior written consent of ARC. ARC does not give any warranty whatsoever, including without limitation, as to the availability, accuracy, completeness, currency or reliability of the information or data (including third party data) made available via the publication and expressly disclaim (to the maximum extent permitted in law) all liability for any damage or loss resulting from your use of, or reliance on the publication or the information and data provided via the publication.
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • The Marine Fauna of New Zealand : Spirorbinae (Polychaeta : Serpulidae)
    ISSN 0083-7903, 68 (Print) ISSN 2538-1016; 68 (Online) The Marine Fauna of New Zealand : Spirorbinae (Polychaeta : Serpulidae) by PETER J. VINE ANOGlf -1,. �" ii 'i ,;.1, J . --=--� • ��b, S�• 1 • New Zealand Oceanographic Institute Memoir No. 68 1977 The Marine Fauna of New Zealand: Spirorbinae (Polychaeta: Serpulidae) This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Frontispiece Spirorbinae on a piece of alga washed up on the New Zealand seashore. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH The Marine Fauna of New Zealand: Spirorbinae (Polychaeta: Serpulidae) by PETER J. VINE Department of Zoology, University College, Singleton Park, Swansea, Wales, UK and School of Biological Sciences, James Cook University of North Queensland, Townsville, Australia PERMANENT ADDRESS "Coe! na Mara", Faul, c/- Dr Casey, Clifden, County Galway, Ireland New Zealand Oceanographic Institute Memoir No. 68 1977 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Citation according to World list of Scientific Periodicals (4th edition: Mem. N.Z. oceanogr. Inst. 68 ISSN 0083-7903 Received for publication at NZOI January 1973 Edited by T. K. Crosby, Science InformationDivision, DSIR and R.
    [Show full text]
  • TREATISE ONLINE Number 48
    TREATISE ONLINE Number 48 Part N, Revised, Volume 1, Chapter 31: Illustrated Glossary of the Bivalvia Joseph G. Carter, Peter J. Harries, Nikolaus Malchus, André F. Sartori, Laurie C. Anderson, Rüdiger Bieler, Arthur E. Bogan, Eugene V. Coan, John C. W. Cope, Simon M. Cragg, José R. García-March, Jørgen Hylleberg, Patricia Kelley, Karl Kleemann, Jiří Kříž, Christopher McRoberts, Paula M. Mikkelsen, John Pojeta, Jr., Peter W. Skelton, Ilya Tëmkin, Thomas Yancey, and Alexandra Zieritz 2012 Lawrence, Kansas, USA ISSN 2153-4012 (online) paleo.ku.edu/treatiseonline PART N, REVISED, VOLUME 1, CHAPTER 31: ILLUSTRATED GLOSSARY OF THE BIVALVIA JOSEPH G. CARTER,1 PETER J. HARRIES,2 NIKOLAUS MALCHUS,3 ANDRÉ F. SARTORI,4 LAURIE C. ANDERSON,5 RÜDIGER BIELER,6 ARTHUR E. BOGAN,7 EUGENE V. COAN,8 JOHN C. W. COPE,9 SIMON M. CRAgg,10 JOSÉ R. GARCÍA-MARCH,11 JØRGEN HYLLEBERG,12 PATRICIA KELLEY,13 KARL KLEEMAnn,14 JIřÍ KřÍž,15 CHRISTOPHER MCROBERTS,16 PAULA M. MIKKELSEN,17 JOHN POJETA, JR.,18 PETER W. SKELTON,19 ILYA TËMKIN,20 THOMAS YAncEY,21 and ALEXANDRA ZIERITZ22 [1University of North Carolina, Chapel Hill, USA, [email protected]; 2University of South Florida, Tampa, USA, [email protected], [email protected]; 3Institut Català de Paleontologia (ICP), Catalunya, Spain, [email protected], [email protected]; 4Field Museum of Natural History, Chicago, USA, [email protected]; 5South Dakota School of Mines and Technology, Rapid City, [email protected]; 6Field Museum of Natural History, Chicago, USA, [email protected]; 7North
    [Show full text]
  • Geographic Variation in the Central Pacific Halfbeak, Hyporhamphus Acutus (Gunther)I
    Pacific Science (1974), Vol. 28, No.2, p. 111-122 Printed in Great Britain Geographic Variation in the Central Pacific Halfbeak, Hyporhamphus acutus (Gunther)I BRUCE B. COLLETTE2 ABSTRACT: Ifyporhamphus acutus (GUnther) is distinguished from other Central Pacific species ofHyporhamphus by its long upper jaw, long anal fin base (longer than dorsal base), and shape of its preorbital lateral line canal. Two subspecies are recognized: Ifyporhamphus acutus acutus (Gunther) with fewer vertebrae and fin rays inhabits the chain of idands from Wake Island and the Marshall Islands in the northwest to the Tuamotu Archipelago and Easter Island in the southeast; Ifyporhamphus acutus paciftcus (Steindachner) with more vertebrae and fin rays is found in the Hawaiian Islands and at Johnston Island. Hemiramphus furcatus Philippi from Easter Island and Odontorhamphus chancellori Weed from the Cook Islands are placed in the synonymy of Ifyporhamphus acutus acutus. THE SYSTEMATICS of the Central Pacific species lateral line canal; and the following eight mea­ ofhalfbeaks are badly confused; the purpose of surements: lower jaw length, head length, this paper is to eliminate this confusion for one distance from pectoral fin origin to pelvic fin species, Ifyporhamphus acutus. Further studies origin, distance from pelvic fin origin to caudal are in progress to solve the systematic problems fin base, length of dorsal and anal fin bases, and of the nominal species Ifyporhamphus aifinis maximum body depth and width. Frequency (Gunther), Ifyporhamphus laticeps (Gunther), and distributions of meristic characters were com­ Hyporhamphus dussumieri (Valenciennes). Austra­ pared geographically, byisland groups. Sketches lian populations of Ifyporhamphus aifinis and ofpreorbital canals were made ofsamples from Hyporhamphus dussumieri are dealt with in a each island group and compared.
    [Show full text]