<<

BIOMINERALIZATION OF GIANT SHELLS

( GIGAS): IMPLICATIONS FOR

PALEOCLIMATE APPLICATIONS

by

MICHELLE ELIZABETH GANNON

ALBERTO PÉREZ-HUERTA, COMMITTEE CO-CHAIR PAUL AHARON, COMMITTEE CO-CHAIR C. FRED ANDRUS NATASHA T. DIMOVA JULIE OLSON

A THESIS

Submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Geological Sciences in the Graduate School of The University of Alabama

TUSCALOOSA, ALABAMA

2016

Copyright Michelle Elizabeth Gannon 2016 ALL RIGHTS RESERVED

ABSTRACT

The , Tridacna gigas, is an important faunal component of Indo-Pacific reef ecosystems, for which its shell is often used as an environmental archive for modern and past climates. This thesis is a study of the shell microstructure of modern specimens from Palm

Island, (GBR), and Huon Peninsula, Papua-New Guinea (PNG), using a combination of petrography, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and Raman spectroscopy, as well as a microstructural comparison of fossil T. gigas through 200 ka from PNG.

Daily growth increments are recognizable in all specimens through ontogeny within the internal layer. For modern T. gigas from PNG, increments are composed of pairs of organized aragonitic needles and compact, oblong crystals, whereas modern specimens from GBR are composed of shield-like crystals. The combination of nutrient availability and rainfall are likely the most significant factors controlling shell growth and it may explain the observed differences in microstructure. The external layers are composed of a dendritic microfabric, significantly enriched in 13C compared to the internal layer, suggesting a different metabolic control on layer secretion. The internal and external layers are likely mineralized independent from each other, associated with the activity of a specific mantle organ.

Furthermore, needles similar to those of modern T. gigas from PNG, are observed and the widths are measured in the set of fossil T. gigas. An exception includes two mid-Holocene-aged individuals, composed of elongated crystals, oblique to the outside of the shell. The results show that widths follows a cyclic pattern, similar to those of solar radiation variability, suggesting

ii there is a relationship between solar activity and the width of aragonitic needles. Differences between modern and mid-Holocene T. gigas, are likely associated with fundamental environmental differences.

The results of this study, pointing to locality and environmental dependence, layer specific mantle biomineralization, and co-variation between needle width and solar modulation, advance the potential of giant clam shells to assist in the reconstruction of many climate parameters that were previously limited to chemical analyses. Microstructural results are additionally applicable in engineering and medical research fields.

iii

DEDICATION

This thesis is dedicated to everyone who has supported me through the process of pursuing the work required to complete my master’s research, especially my family and friends.

This could not have been done without the help of my understanding parents, Roses and Jerry.

iv

LIST OF ABBREVIATIONS AND SYMBOLS

ANW Aragonitic Needle Width

ASIL Alabama Stable Isotope Laboratory

Ba Barium

10Be Beryllium-10

C Celsius

13C Carbon-13

Ca Calcium

CAF Central Analytical Facility cm Centimeter cm-1 Per Centimeter

D/L D-alloisoleucine/L-isoleucine

E East

EBSD Electron Backscatter Diffraction e.g. Example

ENSO El Niño Southern Oscillation

FE-SEM Field Emission Scanning Electron Microscope

Fig. Figure

GBR Great Barrier Reef gcm-1 Grams per Centimeter

HCl Hydrochloric Acid

v

IRMS Isotope Ratio Mass Spectrometer

K Kanzarua ka Thousands of Years km Kilometer kV Kilovolts m Meter

Mg Magnesium

µm Micrometer

µM Micromole mm Millimeter n Population size nA NanoAmpere

NBS-19 National Bureau of Standards-19 nm Nanometer

18O Oxygen-18

231Pa Protactiunium-231

PT Palm Tridacna

PNG Papua-New Guinea

S South

SEM Scanning Electron Microscopy se Standard Error

Sr Strontium

SST Sea Surface Temperature

vi

230Th Thorium-230

T. gigas Tridacna gigas

238U Uranium-238

235U Uranium-235

U Uranium

UV Ultraviolet

V-PBD Vienna Pee Dee Belemnite

° Degree

δ Delta

= Equal to

> Greater than

< Less than

% Percent

‰ Permil

± Plus or Minus

σ Standard Deviation

vii

ACKNOWLEDGMENTS

The graduate study of the senior author was supported by a W. Gary Hooks Endowed Geology

Fund and a University of Alabama Research Graduate Council (RGC) Award. Thanks are extended to Johnny Goodwin and the Central Analytical Facility (CAF) for assistance and training on the SEM, Dr. Joe Lambert and the Alabama Stable Isotope Laboratory (ASIL) for facilitating isotope analyses, and Patrick Sipe and Gregory Dye for assistance in obtaining

Raman spectra. Finally, thanks to Sara Kozmor for collaborative ideas.

viii

CONTENTS

ABSTRACT ...... ii

DEDICATION ...... iv

LIST OF ABBREVIATIONS AND SYMBOLS ...... v

ACKNOWLEDGMENTS ...... viii

LIST OF TABLES ...... xi

LIST OF FIGURES ...... xii

1.INTRODUCTION ...... 1

2. A BIOMINERALIZATION STUDY OF GIANT CLAM (TRIDACNA GIGAS) SHELLS ...... 3

3. MICROSTRUCTURE VARIABILITY IN FOSSIL GIANT TRIDACNA GIGAS)

FROM THE HUON PENINSULA, PAPUA NEW GUINEA: AN ARCHIVE OF SOLAR

MODULATION? ...... 32

REFERENCES ...... 53

APPENDIX I: BIOLOGY ...... 61

APPENDIX II: SEASONAL GROWTH...... 64

APPENDIX III: NEEDLE MEASUREMENTS ...... 67

APPENDIX IV: DAILY GROWTH ...... 77

APPENDIX V: DAYTIME AND NIGHTTIME GROWTH ...... 78

APPENDIX VI: DAILY HIGH TIDES ...... 79

APPENDIX VII: SOLAR IRRADIANCE CALCULATIONS ...... 86

APPENDIX VIII: PRECIPITATION AND GROWTH ...... 90

ix

APPENDIX VII: RAMAN SPECTROSCOPY ...... 93

APPENDIX VIII: STABLE ISOTOPIC ANALYSIS ...... 119

APPENDIX IX: TERRACE CORRELATIONS ...... 123

APPENDIX X: TERRACE AGES ...... 125

x

LIST OF TABLES

1.1. Solar irradiance calculations ...... 26

2.1. Geologic ages of reef terraces ...... 37

2.2. Fossil specimens ...... 38

2.3. Microstructure of fossil specimens ...... 47

xi

LIST OF FIGURES

1.1. Schematic representation of a shell section ...... 5

1.2. Shell sections of T. gigas specimens and collection sites ...... 7

1.3. Shell sections at the umbo region ...... 8

1.4. Petrographic and SEM observations of daily growth lines ...... 13

1.5. Microstructure of the internal layer of Palm Island ...... 14

1.6. Schematic representation of microstructure measurements (modern) ...... 15

1.7 Microstructure of the internal layer of Huon Peninsula ...... 16

1.8. Raman spectroscopy ...... 19

1.9. Seasonal shell growth ...... 21

1.10. Shell growth and tidal influences ...... 22

1.11. Shell growth, precipitation and insolation ...... 24

1.12. External microstructure and stable carbon isotopes ...... 28

1.13. Schematic representation of internal organs ...... 29

1.14. Schematic representation of mantles and shell layers ...... 30

2.1. Fossil sample collection locations (Huon Peninsula ) ...... 36

2.2. Shell sections of fossil specimens ...... 40

2.3. Schematic representation of microstructure measurements (fossil) ...... 41

2.4. Shell section, petrographic and SEM representation of modern T. gigas ...... 42

2.5. Petrographic images of fossil specimens ...... 43

2.6. High resolution SEM images of fossil specimens ...... 44

xii

2.7. T. gigas microstructure types ...... 45

2.8. EBSD comparison of Holocene and modern T. gigas ...... 46

2.9. Aragonitic needle measurements and correlations ...... 49

A.1. Seasonal growth increments: modern GBR ...... 65

A.2 Seasonal growth increments: modern PNG ...... 66

A.3 Stable isotope sampling ...... 119

xiii

1. INTRODUCTION

Giant clam (Tridacna gigas) shells are considered excellent bioarchives of their surrounding environment and have been used in paleoclimate studies (Aharon, 1983; Aharon and

Chappell, 1986; Watanabe et al., 2004; Yan et al., 2014; Ayling et al., 2015; Warter and Müller,

2016). Their restricted range in Indo-Pacific coral reefs allows for their shell chemistry and morphology to represent the environments that drive many global climate factors such as El

Niño-Southern Oscillation, monsoons, and oscillation of the Intertropical Convergence Zone

(Chiang, 2009), making them ideal specimens. However, studies of these shells often contain many common assumptions: i.) presence of regular growth increments at daily, monthly and seasonal scales using imaging techniques with varying resolutions; ii.) shells grow continuously; and iii.) diagenetic alteration is present in fossil specimens. The objectives of this master’s thesis research are to characterize the microstructure of T. gigas through time, ontogeny and locality, simultaneously addressing the common assumptions. In order to thoroughly explore each objective, several methodologies were employed: petrographic analysis, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), stable isotope mass spectrometry and Raman spectroscopy.

This thesis is composed of two manuscripts. The first, “A Biomineralization Study of the

Giant Clam (Tridacna gigas) Shells,” addresses modern T. gigas from Palm Island, Great Barrier

Reef, Australia and Huon Peninsula, Papua New Guinea. This manuscript describes the shells’

1 microstructural differences between these localities and discusses several environmental parameters that might affect shell growth. Additionally suggested is a mechanism through which the internal and external layers of T. gigas might be secreted, with respect to the lateral and siphonal mantles, likely responsible for their complexities.

The second paper entitled: “Microstructure Variability in Fossil Giant Clams (Tridacna gigas) from the Huon Peninsula, Papua New Guinea: An archive of solar modulation?” addresses

T. gigas microstructure through time (~134.1 ka), utilizing specimens from the raised terraces of the Huon Peninsula, Papua New Guinea. Presented is a co-variance between the oscillation of the widths of aragonitic needles, the major component of T. gigas microstructure, and solar modulation.

Finally, several appendices are included that provide additional insights that have not been incorporated into the manuscript chapters for publication. These include data tables as well as a description of seasonal growth increments, noted in modern specimens.

2

2. A BIOMINERALIZATION STUDY OF THE GIANT CLAM (TRIDACNA GIGAS) SHELLS Gannon, M. E.1, A. Pérez-Huerta1, P. Aharon1, and S. C. Street2 1Department of Geological Sciences, The University of Alabama, Tuscaloosa 2Department of Chemistry, The University of Alabama, Tuscaloosa

3

Abstract

The giant clam, Tridacna gigas, is an important faunal component of reef ecosystems within the

Indo-Pacific region. In addition to its ecological role, shells of this bivalve species are useful bioarchives for past climate and environmental reconstructions. However, the biomineralization processes involved in the shell aragonite deposition are insufficiently understood in order to confidently make chemical and other analytical measurements. Here, we present a study of the shell microstructure of modern specimens from Palm Island, Great Barrier Reef (GBR) of

Australia and Huon Peninsula, Papua New Guinea (PNG), using a combination of petrography, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and Raman spectroscopy. Daily growth increments are recognizable in all specimens through ontogeny, and counting these growth lines provides a robust specimen age estimate. For the internal layers, paired increments of organized aragonitic needles and compact, oblong crystals are recognized for a specimen from PNG, whereas specimens from GBR are composed of shield-like crystals.

The combination of nutrient availability, rainfall and solar irradiance are likely to be the most significant factors controlling shell growth and it may explain the observed differences in microstructure. The external layer, identical in all specimens, is composed of a dendritic microfabric and it is significantly enriched in 13C compared to the internal layer suggesting a different metabolic control on layer secretion. This study proposes that the mineralization of the internal and external layers is independent from each other and associated with the activity of a specific mantle. Future studies using T. gigas shells as bioarchives need to consider the microstructure as it reflects the environment in which the individual lived as well as the differences in mineralization pathways of internal and external layers.

4

Introduction

The giant clam, Tridacna gigas, is the largest known bivalve and one of the largest members of the Phylum (Rosewater, 1965). T. gigas is a characteristic invertebrate in coral reef environments throughout the Indo-Pacific region, mainly between 100° to 180° of longitude in the Southern Hemisphere (Rosewater, 1965), with a limited distribution due to complicated reproduction (Braley, 1984). This species is found in shallow waters of fringing, barrier, and lagoonal reefs typically no deeper than 10 m (Aharon and Chappell, 1986). Besides its ecological importance in coral reefs, shells of T. gigas have been used to extract paleoclimate information (e.g., Aharon et al., 1980; Aharon, 1983; Aharon, 1985; Aharon and Chappell, 1986;

Watanabe et al., 2004; Elliot et al., 2009; Welsh et al., 2011; Batenburg et al., 2011; Sano et al.,

2012; Yan et al., 2013), especially for the low latitude tropics in which well documented records are rare (Sano et al., 2012). These clams are considered valuable bioarchives because their shells are very dense with a high growth rate, resistant to extreme diagenesis in fossil specimens relative to coral skeletons (Veeh and Chappell, 1970), and may have long life spans (Watanabe et al., 2004). Internal and external shell morphologies have previously been analyzed to distinguish Tridacna species (Rosewater, 1965) and provide a Figure 1.1, Schematic representation of a shell temporal context for geochemical analyses section, from the umbo to the posterior region, indicating the location of the external and (Fig. 1.1). However, shell biomineralization internal layers, and the separation of the first (FG) and last (LG) growth stages through and growth of these clams are insufficiently ontogeny as recorded within the internal layer.

5 understood in order to constructively plan chemical analyses, besides some basic descriptions of shell microstructures (e.g., Taylor, 1973; Watanabe et al., 2004) and histology of mantle tissues

(Norton and Jones, 1992).

The aim of this study is to provide a detailed description of the shell microstructure and growth features, focusing primarily on the internal layers, of T. gigas shells collected from two different geographical regions and reef settings. An additional objective is to evaluate common assumptions about shell biomineralization involving continuous deposition of aragonite throughout the ontogeny (Watanabe et al., 2004) and the interpretation of daily growth increments in reference to shell microstructures (Aharon and Chappell, 1986; Watanabe et al.,

2004; Sano et al., 2012). Finally, a model of shell biomineralization, based on the activity of siphonal and lateral mantles, is proposed.

Materials and Methods

Samples

Two live specimens (PT-1 and PT-3) were collected from Palm Island, the Great Barrier Reef

(GBR) of Australia, on May 27, 1980 (Fig. 1.2). From the umbo to the posterior region, PT-1 and PT-3 are 31 cm long and 6.5 cm thick and 55 cm long and 16 cm thick at the umbo, respectively. At this site, coral reefs reside in the GBR where sea surface temperatures

(SST) vary between 23°C and 28°C, with a mean seasonal temperature amplitude of about 3°C

(Aharon, 1991). These reefs receive a daily influx of fresh water from river channel inputs

(Crossland and Barnes, 1983) and therefore, the nutrient supply to the lagoonal reef is mostly terrestrial based, composed of , ammonium and nitrate (Furnas and Mitchell, 1983).

6

Figure 1.2, Shell sections of T. gigas specimens and collec-tion sites. Longitudinal shell sections, from umbo to post-erior regions, of the specimens (K-133 (a) and PT- 1 (b)) collected in Papua-New Guinea and Australia. (c-e), Details of collection sites at the Huon Peninsula, Papua- New Guinea (c) and Palm Island, Great Barrier Reef, Australia (d), with white circles showing the location of specimen collection and white triangles showing the location of rainfall stations whose data are used in this study.

Rainfall also controls the large inputs of freshwater as storm events causing flash floods in this region are common during the Austral summer (King et al., 2001).

For an inter-specimen comparison, an additional T. gigas sample (K-133) was added to the study. It was collected alive on September 15, 1977 from an active on the Huon

Peninsula, Papua New Guinea (PNG; Fig. 1.2). From the umbo to posterior region, K-133 is 28.6 cm tall and 7.3 cm thick at the umbo. The average SST at this location is 27.9 ± 0.9°C with a seasonal amplitude of about 2.5°C (Aharon and Chappell, 1986). This specimen is a modern representative of T. gigas fossils from uplifted coral reef terraces at the same location that were

7

Figure 1.3, Shell sections of T. gigas at the umbo region used for analyses during the first and last seasons of growth (a: K-133; b: PT-1; c: PT-3). Boxes on each individual represent the locations of cuts made to produce shell block samples for SEM, EBSD and Raman spectroscopy analyses, and circles designate the first or last season of growth. The pallial line on each individual, separating external (EL) and internal (IL) layers is represented by a dashed line. First season of growth is closest to the pallial line while the last growth is farthest from the pallial line.

previously used in paleoclimate research (Aharon et al., 1980; Aharon, 1983; Aharon, 1985;

Aharon and Chappell, 1986). Elongated coral reefs of PNG occur along the steep Vitiaz Strait shorelines, and form either narrow fringing reefs that follow the coastal contours or barrier reefs enclosing shallow, narrow and elongated (Chappell, 1974b). Fringing, open ocean reefs

8 have water flowing through them constantly (Aharon and Chappell, 1986), bringing offshore nutrients into the reef environment (Belda et al., 1993). The coral reef setting along the coast of

PNG differs from that of the GBR where water enters the system nearly exclusively through surface water channel inputs. Thus, the flux of nutrient supply to the fringing reefs of PNG is likely higher than that of the GBR lagoon reefs (Belda et al., 1993) and therefore PNG is less dependent on local rainfall. La Niña events associated with El Niño-Southern Oscillation affect

PNG, bringing periods of increased rainfall to the region every 2.5 to 7 years (Tudhope et al.,

2001).

Specimens from GBR and PNG were selected for this study as they were generously made available from Dr. Paul Aharon’s personal collection. Tridacna from these locations have been used in several other studies including: Chappell and Polach, 1972; Aharon, 1980; Aharon and Chappell, 1986; Aharon, 1991; Hearty and Aharon, 1993; Elliot et al., 2009; Welsh et al.,

2011; Ayling et al., 2015; among others. Due to the popularity of Tridacna studies from these locations and the availability of these specimens, it seemed wise to incorporate all modern specimens available for this work.

Methods

A comparison of the first season of growth, internal from the pallial line, and the last season of growth before capture, was made among analyzed specimens using SEM and EBSD techniques

(Fig. 1.3). However, petrographic analyses were made on the entire inner layer of K-133 (PNG) and PT-1 (GBR) to estimate the total growth per lunar month.

9

Petrography

Thin sections of the entire internal layers for K-133 and PT-1 were analyzed using a Nikon stereoscopic microscope and SPOT Advanced imaging software at the Alabama Stable Isotope

Laboratory (ASIL) in the Department of Geological Sciences of The University of Alabama. Due to the size of PT-3, a thin section representing the entire shell was not available.

Scanning Electron Microscopy (SEM)

Shell sections of T. gigas from the first and last stages of ontogenetic growth (Fig. 1.1) within the internal layer were cut, first using a Hillquist Trim Saw and subsequently a Buehler Isomet 1000 for high precision, embedded in Buehler EpoxiCure 2 resin and hardener, and ground using paper from coarse to fine grit size. Subsequently, each sample was polished using alumina oxide of 1.0 µm and 0.3 µm and etched for 30 seconds using 2% HCl. Samples were coated with approximately 20 nm of gold. SEM analyses were performed using a field emission scanning electron microscope (FE-SEM) JEOL 7000 located in the Central Analytical Facility (CAF) of

The University of Alabama. Imaging was obtained at high vacuum, using a medium probe current of 8 nA, and an accelerating voltage of 8 kV.

Electron Backscatter Diffraction (EBSD)

Samples used for SEM were re-polished and coated with 2.5 nm of carbon for EBSD analysis

(Pérez-Huerta and Cusack, 2009). The EBSD study was carried out with an Oxford Nordlys camera mounted on a field emission scanning electron microscope (FE-SEM) JEOL 7000 located in the CAF of The University of Alabama. EBSD data were collected with Oxford Aztec

2.0 software at high vacuum, 20 kV, a large probe current of 15 nA, working distance of 10 mm

10 and a resolution of 1.15 μm step size for crystallographic maps. Finally, data were analyzed using OIM 5.3 from EDAX-TSL. In this study, EBSD data are represented by crystallographic maps and pole figures in reference to the {001} plane of aragonite (see further details in Pérez-

Huerta et al., 2011).

Raman Spectroscopy

Ultrapolished samples were analyzed with a Jobin-Yvon HR800 UV Raman Spectrometer using a wavelength of 100 nm and spot size of 5 µm in the Department of Chemistry at the University of Alabama.

Carbon Stable Isotopes

Powder samples of T. gigas shells K-133 and PT-1 were acquired using a computer-assisted,

New Wave Research Leica GZ6 micromill and analyzed for δ13C across the pallial line, sampling both the external and internal layers of the shells, thought to be contemporaneous based on the predicted direction of growth. The internal layer was sampled parallel to the pallial line at a high resolution interval of 50 µm for approximately the first season of life [K-133 = 3 mm, and PT-1

= 1.6 mm]. In the external layer, parallel, non-continuous trenches were drilled every 120 µm at approximately 45° from the pallial line. δ13C is reported relative to the conventional Vienna Pee

Dee Belemnite standard (VPDB) calibrated against the NBS-19 standard. Analyses were conducted in the ASIL using a ThermoFinnigan Delta Plus Isotope Ratio Mass Spectrometer

(IRMS) modified with a Gasbench for orthophosphoric acid digestion and online gas extraction.

The overall precision and reproducibility of the isotope measurements during the study was

0.06‰ on the basis of NBS-19 standard repeats (n = 27).

11

Results

Shell Growth Features

Giant clams from both GBR and PNG exhibit regular growth lines that have been previously interpreted as daily growth increments (Fig. 1.4; see also Aharon and Chappell, 1986; Watanabe et al., 2004). A comparison of petrographic and SEM observations was conducted for samples K-

133 and PT-1 (Fig. 1.4) in order to correlate the daily growth lines with the microstructure.

Under SEM, the presence of these growth lines is more marked in the specimen from PNG (Fig.

1.4c), having an average thickness of 32.7 ± 2.5 µm (1σ, n = 10) during the first stage of growth

(Fig. 1.3a). Throughout the individual’s ontogeny, these growth increments become thinner, with an average thickness of 21.2 ±5.8 µm (1σ, n = 10) at the last stage of growth (Fig. 1.3a).

Microscopically visible growth increments of specimens from the first stage of growth for the

GBR specimen (PT-1; Fig. 1.3b) have an average thickness of 26.1 ± 3.3 µm (1σ, n = 10) (Fig.

1.4d). At the last stage of growth (Fig. 1.3b), SEM reveals smaller increment thickness with an average of 20.6 ± 3.2 µm (1σ, n = 10). These observations show a trend in the vertical reduction of the daily growth line thickness with increasing age between first and last growth (Fig. 1.3) specimens from both localities. The reduction in vertical daily growth thickness is likely caused by shell extension with age that could be governed by mass conservation.

Shell Microstructure and Microtexture

The microstructure of the internal layers of giant clams collected from Palm Island, GBR, is consistent between specimens and composed of shield-like aragonite crystals that do not vary in morphology along a growth line (Fig. 1.5). These crystals tend to widen through the ontogeny at

12

Figure 1.4, Petrographic and SEM observations of daily growth increments. Petrographic analysis allows for the visual observation of wide-view daily growth increments: (a) K-133 and (b) PT-1; SEM images show distinct increments and suggest microstructural changes at a low resolution: (c) K-133 and (d) PT-1. an independent rate for each one of the two specimens (Fig. 1.6 for measuring methodology).

The average crystal width in the first season for PT-3 is 2.7 ± 0.6 µm, (1σ, n = 20) (Figs. 1.3c and 1.5a) and PT-1 is 0.9 ± 0.2 µm (1σ, n = 20) (Figs. 1.3b and 1.5b). The last season of growth has average crystal thicknesses for PT-3 of 2.9 ± 1.2 µm (1σ, n = 20) (Figs. 1.3c and 1.5c) and for PT-1 of 3.6 ± 1.5 µm (1σ, n = 20) (Figs. 1.3b and 1.5d). The microtextural characterization of these aragonite crystals by EBSD was unsuccessful because diffraction was not recorded in either specimen and no crystallographic information was obtained.

Unlike the GBR samples, the specimen from PNG exhibits couplets of two layers for each daily growth increment (Fig.1.7): (i) a layer with a mean thickness of 33.5 ± 6.2 µm (1σ, n

= 12), consisting of well-organized, complex prismatic, orthogonal, aragonitic needles, and a

13

Figure 1.5, Microstructure of the internal layer of T. gigas specimens from Palm Island showing wide, shield-like aragonite crystals for the first stages of growth in PT-3 (a) and PT- 1 (b) and those regions of the shell deposited at the end of the individual’s life [PT-3 (c) and PT-1 (d)]. Arrow denotes the direction of growth. thinner increment with a mean thickness of 9.7 ± 3.3 µm (1σ, n = 12) composed of small, clinogonal, oblique crystals propagating at an angle from the needles. The occurrence of these couplets can be traced throughout the ontogenetic growth recorded within the internal layers, but the aragonitic needles within the thicker bands tend to widen through ontogeny (Figs. 1.3a and

1.7; Fig. 1.6 for needle measuring methodology). Needles present in the first season of growth average 3.0 ± 0.7 µm in width (1σ, n = 20) (Fig. 1.7a) and retain their morphology during later growth, averaging 4.6 ± 1.3 µm in width (1σ, n= 20) (Fig. 1.7b). Unlike the specimens from

Palm Island, EBSD for the first and last seasons of growth successfully diffracted, producing in situ crystallographic data to understand the mineralization of these crystal structure (Fig. 1.7).

The crystallographic map and pole figure indicate that there is microtextural continuity between

14

Figure 1.6, Width measurements were acquired during SEM imaging of the internal

layers (IL) overlaying the first season of growth (circle). Black box: section of shell prepared for analysis; EL: External Layer. This example is K-133 (PNG), last

season of life. the orthogonal needles and small, clinogonal, oblique crystals, representing single crystals with the c-axis parallel to needle elongation and perpendicular to the visible growth lines.

EBSD of modern T. gigas allows for the in situ characterization of the microtexture of the shell in original form. This will provide an understanding of the consistency regarding the expected crystallographic context for future studies. T. gigas specimens of unknown age may have been subjected to diagenetic processes which will likely show disorganization in which case the shell might not be best fit for further analyses (Chappell and Polach, 1972).

Discussion

Shell Growth Features

Internal layers in hand-held, sectioned samples are characterized by macroscopically visible alternation of light and darks bands, with each pair likely representing about one year of growth

(Aharon and Chappell, 1986). Counting these bands is the primary tool to obtain ages for modern and fossil T. gigas shells (e.g., Aharon, 1991; Patzold et al., 1991; Watanabe et al., 2004; Elliot et al., 2009; Welsh et al., 2011; Batenburg et al., 2011; Yan et al., 2013). Using this methodology, for example, the age of the PT-3 specimen used in this study was estimated to be

15

Figure 1.7, Elongated aragonite needle and small crystal packages compose the microstructure of K-133 from PNG likely representing day time (DT) and night time (NT) growth. The microstructure is consistent through the first stage of growth (a) and the last season of the individual’s life (b). EBSD maps show the microtexture of this individual in relation to the microstructure; the crystallographic orientation map (c) and pole figure (d) show that the c-axis of aragonite is parallel to the elongation of needles and small crystals and perpendicular to the daily growth increments (dashed lines), further displayed by the pole figure (d). Arrow denotes the direction of growth.

16 years (Aharon, 1991). Another approach for specimen-age determination is to use the thickness of each individual, which is estimated to be 2 cm per year (Aharon and Chappell,

1986). Watanabe et al. (2004) reported the finding of a 60 year old T. gigas specimen that is 36 cm thick at its maximum growth (umbo regions). The specimen PT-3 is 16 cm thick at the umbo, but only 16 years old based on band counting creating a large discrepancy between utilizing the thickness of the shell versus the counting of annual bands. Besides morphological features, chemical information is also used to determine the age of an individual. Oxygen isotopes oscillate seasonally (Aharon and Chappell, 1986), being more enriched in 18O during Austral

16 winter months and depleted in 18O during the Austral summer months (Watanabe et al., 2004;

Elliot et al., 2009; Welsh et al., 2011; Batenburg et al., 2011; Yan et al., 2013). Utilizing δ18O is effective, although it requires accounting for vital effects and climate anomalies, which is hard to do for fossil specimens.

An additional method of shell dating is proposed by counting the thinnest growth lines, observed in all specimens under a petrographic microscope and SEM observations (Fig. 1.4).

These growth lines are accepted to be daily growth increments (Aharon and Chappell, 1986;

Sano et al., 2012) and can be counted in order to determine ontogenic age, which has also been used in Tridacna maxima (Duprey et al., 2015). Using petrographic and SEM analysis, PT-1 age before capture is approximately 46 months old and K-133 is approximately 44 months old at the time of capture, and both have similar thicknesses of 6.5 cm and 7.3 cm, respectively. The large age discrepancy between both GBR specimens (PT-3: 16 years and PT-1: 46 months) is likely caused by the confusion of macroscopically visible light and dark banding, because there are often subsets of smaller light and dark bands within the annual band that do not seem to correlate to regular growth increments, allowing for erroneous age dating.

Daily band counting is thought to be the best possible method to estimate ontogenic ages because there is less uncertainty, unless there is a significant break in growth (e.g., anomalous seasonal growth interruption). However, the method is time-consuming and relies on good sample preservation and thus, it could be a useful complement with annual band counting and chemical data for fossils.

17

Differences in Shell Microstructure and Microtexture

Although all studied specimens are assigned to the species Tridacna gigas and have an identical external morphology, there are substantial differences in the microstructure and microtexture of their internal shell layers. Specimens from GBR have an identical microstructure, composed of shield-like aragonite crystals, while the specimen from PNG is composed of paired growth increments of wide bands of orthogonal needles and narrow bands of small, clinogonal, aragonite crystals that propagate at an angle from the needles (Figs. 1.5 and 1.6). These paired increments are likely to represent daytime and nighttime deposition as suggested by Sano et al. (2012) on the basis of solar insolation and measured Sr/Ca variability through the daily cycle. The microstructural changes documented here for the PNG specimen support the Sano et al., (2012) contention and are likely driven by the dissimilar calcification rates controlled by the photosynthetic activity of that are active during daytime and shut-off at night.

Although daily growth lines are recognizable at low resolution in the two GBR specimens the paired day/night increments are apparently absent. Also, the more irregular morphology of aragonite crystals and less defined crystal boundaries may suggest faster secretion of microstructural components.

Besides a dissimilar microstructure, microtextural differences are also present between specimens from the two locations. EBSD analysis of the specimen K-133 (PNG) produced consistent aragonite diffraction patterns, allowing the comparison of microstructure to preferred crystallographic orientations (Fig. 1.6), but there was no diffraction for the specimens from GBR

(PT-1 and PT-3). The absence of EBSD diffraction in biominerals has been attributed to the (i) the presence of amorphous mineral phases; (ii) organics (e.g., Dalbeck et al., 2006); (iii) size of crystals (Humphreys, 2004); and (iv) weak crystallization (Carlson, 1980; Kats et al., 1993).

18

Figure 1.8, Raman spectra show the aragonite defining peaks at wavelengths of 706 and 1085, and the absence of peaks associated with organic components. Each spectrum is the average of four data points: (1) PT-1 internal layer early ontogeny, (2) PT-1 internal layer late ontogeny, (3) K-133 external, (4) PT-3 external, (5) K-133 internal layer late ontogeny, (6) K-133 internal layer early ontogeny.

Raman spectroscopy was performed in order to resolve the absence of diffraction in specimens from GBR and to determine any possible differences in the mineralization of internal and external layers in the studied specimens. Data were collected for PT-1 and K-133 at four points within the internal layer in both the first and last growth (Fig. 1.1). Results show the presence of identical aragonite defining peaks at 706 and 1085 cm-1 (Fig. 1.7; Urmos et al., 1991) and the absence of peaks attributed to organic components. These findings rule out the presence of amorphous and organic phases in GBR specimens and favor the weak crystallization hypothesis for the absence of EBSD diffraction at the activation volume (< 50 nm).

The discrepancies in microstructure and microtexture observed between specimens from

GBR and PNG could be attributed to either speciation or environmental factors. External

19 morphologies of different giant clam species have been well assessed (Rosewater, 1965) and the individuals in this study were confidently assigned to the species T. gigas. Analysis of genetic differentiation of T. gigas in the Great Barrier Reef spanning over 1000 km showed that there was genetic variability, although no significant differences were reported (Benzie and Williams,

1992). Due to the combination of the lack of speciation in distal reefs, as well as panmictic reproduction, any genetic disturbance could be devastating for the species because the genes would spread through the population rapidly (Benzie and Williams, 1992). In the current study, the distance between specimen collection locations is approximately 900 km, which is shorter than the variation between the farthest sampling sites utilized by Benzie and Williams (1992), reporting no significant genetic deviations. Thus, it is assumed that the GBR and PNG localities are sufficiently proximal to be considered members of the same reproductive population, containing similar genetic components. Therefore, environmental differences between locations are the likely explanation for observed differences in the internal layers of studied T. gigas shells.

Environmental Factors Influencing Shell Growth

Biomineralization of the T. gigas shell is tightly controlled biologically, but also highly influenced by site-specific environmental parameters (Sano et al., 2012). The influence of external factors on shell growth is dependent on the scale of observation, with the smallest being diurnal, while other factors are recognizable at the seasonal level.

On the diurnal scale, a symbiotic relationship maintained with photosynthetic zooxanthellae, which live within the tissues of the siphonal mantle (Norton and James, 1992), cause T. gigas to display brilliant blue and green colors when their valves are opened

20

Figure 1.9, Growth tends to increase during the Austral summer and decrease in the Austral winter for both PT-1 (GBR) and K-133 (PNG). A selection of seasonal data is shown.

21

(Rosewater, 1965). Zooxanthellae depend on sunlight for their production of glucose, which is essential in giant clam nutrition (Rees et al., 1993). According to Sano et al. (2012), giant clams are supplied with nutrients at a higher rate during the daytime and thus calcify a thicker daytime growth increment during sunlight hours.

Careful petrographic daily band counting yields total growth per month based on sets of

29 days (typical lunar month is 29.53 days). Therefore, growth along the same transect within the shell can be assumed to represent the overall activity of the individual. Growth seems to be partially influenced by general seasonality (Fig. 1.9). The rainy season, Austral summer in the

GBR and PNG, tends to be positively correlated with growth, while the dry season, Austral winter, tends to have a negative correlation with growth. This effectively means that as the season progresses, the amount of growth per lunar month is increasing. The association is more pronounced in PT-1, (GBR) and subtle in K-133, (PNG); this might be due to anomalous weather patterns, such as El Niño Southern Oscillation or influenced by differing environmental fluctuations seen between the two locations, discussed below.

Figure 1.10, The quantified growth of approximately 29 day intervals for (a) K-133 (PNG) and (b) PT-1 (GBR) are plotted in a grey and white dashed line and the time of day of the highest tide, every seven days for (a) Dreger Harbour, PNG and (b) Lucinda, Australia, is represented by the black line. Every seventh day was plotted for a clearer visibility and is thought to be representative of the days surrounding. There is no apparent correlation between total growth and the time of day of the highest tide. Tidal data from http://tides.mobilegeographics.com.

22

At the seasonal level, there are several factors that may influence shell growth dynamics: seawater temperature, tides, rainfall, solar irradiance and nutrient availability. Seawater temperature variability is not considered to be important in the growth of these specimens because seasonal differences in temperature are minimal at collection sites (Aharon, 1991). Tidal cycles have been shown to correspond to growth at a 14-day periodicity, represented by the ability to determine the breaks between or general width of daily growth increments (Pannella and MacClintock, 1986). This noted periodicity is likely due to the prominence of either daytime or nighttime increments, limited by the time of day of the highest tide. For instance, if the highest tide occurs during the daytime, when zooxanthellae are active, it is thought that this would disrupt maximum potential growth. If the highest tide is during the nighttime, the growth would likely not be affected. To investigate this hypothesis, tidal records for Dreger Harbour, Papua

New Guinea (6.6500° S, 147.8667° E) and Lucinda, Australia (18.5167° S, 146.3333° E) obtained from http://tides.mobilegeographics.com) and times of highest tide and total growth were plotted (Fig. 1.10). The times of highest tides tend to oscillate, although maintain a seasonal high or low, and although the total growth is only measured in terms of lunar months, plotting these on a time series should show a correlation, where present. The growth of both specimens,

K-133 (PNG) and PT-1 (GBR), show no correspondence with daily tidal cycles as are observed in other bivalve species (e.g., Pannella and MacClintock, 1968; Tran et al., 2011; Schöne and

Surge, 2012).

On the other hand, seasonal rainfall variability is greatly enhanced during the monsoons that move through the region during the Austral summer (November through April) and the relative drought during the Austral winter (May through October; Williamson and Hancock,

2005). Growth is plotted against rainfall records in Figure 1.11 from nearby stations used as a

23

Figure 1.11, Growth lines of approximately 29 daily increments are marked on the whole shell petrographic images with blue lines and shown plotted in red (K-133: a and c; PT-1 b and d). Rainfall data, plotted in blue, is from Madang, Papua New Guinea (IAEA/WMO (2014) and Orpheus Island, Great Barrier Reef, Australia (Bureau of Meteorology, Government of Australia (2014). Calculated solar irradiance is in yellow (Nix and Kalma, 1972; Aharon (unpublished dissertation); NASA Langley Research Center, Atmospheric Science Data Center). proxy for collection sites (Madang, Papua New Guinea, IAEA/WMO, 2014; Orpheus Island,

Great Barrier Reef, Australia, Bureau of Meteorology, Government of Australia, 2014). In general, rainfall amount and total growth in both K-133 and PT-1 exhibit an inverse relationship suggesting the existence of a linkage between the two parameters (Fig. 1.11), although the use of data from proxy locations might introduce some error resulting less significant correspondence.

Solar irradiance has previously been correlated with enhanced daily shell growth, through the analysis of Sr/Ca (Sano et al., 2012; Hori et al., 2015). This is thought to be due to the influence from photosymbiosis. Therefore, in times that there are fewer cloudy days, there should be more input from zooxanthellae, allowing the shell to have enhanced growth. Because

24 this data was not directly collected for regions of interest during the lifespan of the T. gigas, an estimate of solar irradiance is required. An equation approximating the relationship of rainfall and level of cloudiness was developed by Nix and Kalma (1972) specifically for the latitude of

6˚S, where the Huon Peninsula is located and further employed by Aharon (unpublished doctoral dissertation):

Q = QA [(-0.5 • (p/Σp)) + (ΣQ/ΣQA) + 0.054]

Data for each variable from both locations were obtained from the NASA Langley Research

Center, Atmospheric Science Data Center for PNG (6˚S, 147.5˚E) and GBR (18.517˚S, 146.3˚E), including insolation at the top of the atmosphere at the monthly (QA) and annual (ΣQA) scales and annual effective solar radiation (ΣQ; Table 1.1). The independent variable influencing changes in solar irradiance is monthly rainfall precipitation (p). Annual precipitation (Σp) is a based on the sum of the average monthly precipitation (Table 1.1).

When plotted with growth, no direct relationship can be derived (Fig. 1.11). Rainfall data for both sites during the lifespan of each T. gigas is a proxy because it was not collected prior to the field work for initial studies (Madang, PNG and Orpheus Island, GBR, Australia) and therefore is an approximation, likely adding error to the calculations for solar irradiance.

Additionally, because the equation was developed specifically for use in the Huon Peninsula, the application to the GBR is an over-simplification of a more complicated system, which requires further empirical testing to prove usefulness. With more representative rainfall and solar irradiance data, a better correlation between these parameters and growth is predicted.

Nutrient availability in the environment in which T. gigas specimens live may impact their ability to mineralize their shell. Major nutrients, including nitrogen and phosphorus, tend to differ depending on the coral reef type. Typically, coral reefs are nutrient depleted and thought to

25

Table 1.1, Values of data used in solar irradiance calculations for the purpose of estimating monthly cloudiness. Data were obtained from the NASA Langley Research Center Atmospheric Science Data Center. Huon Peninsula Great Barrier Reef (6˚S, 147.5˚E) (18.517˚S, 146.3˚E) Month Monthly Insolation (cal/cm2/day) 1 912.0 989.5 2 920.7 946.5 3 903.4 869.0 4 851.0 757.2 5 783.8 651.3 6 746.8 597.1 7 761.5 620.4 8 816.5 708.1 9 869.0 819.1 10 903.4 912.0 11 903.4 972.3 12 903.4 998.1

Parameter Huon Peninsula Great Barrier Reef Σp (mm) 2602.69 1147.5 ΣQ (cal/cm2/day) 173.2 ± 42.5 161.4 ± 85.8 ΣQA (cal/cm2/day) 312.7 ± 63.3 299.5 ± 149.2 be sinks of phosphorus and producers of carbon and nitrogen (Crossland and Barnes, 1983).

Open ocean environments, such as the fringing coral reef along the Huon Peninsula (PNG), have between 0 and 4 µM of nitrogen and between 0 and 0.6 µM of phosphorous (Belda and

Yellowlees, 1993) and are relatively nutrient depleted. In contrast, the inshore reefs along the

GBR contain >1 µM of nitrogen and >2 µM of phosphorus derived through overland channel inputs that introduce nitrogen and phosphorus to the system (Crossland and Barnes, 1983; Belda and Yellowlees, 1993). A study from the Palm Passage, GBR, in 1983, only three years after the collection of the GBR T. gigas, shows that nearby water quality samples contained between 0 –

0.045 µM nitrogen of predominately ammonium but also included nitrate and nitrite; ammonium peaks between December and February while nitrate peaks between March and June.

26

Phosphorous ranged between 0.004 – 0.009 µM (Phosphate; Furnas and Mitchell, 1983). If these results are representative of the very proximal location where PT-1 lived, increased nitrogen might be responsible for some of the growth seen during the dry seasons as the rainy season likely incorporated ammonium and nitrate into the lagoon. Although zooxanthellae can uptake ammonium (Fitt et al., 1993), over a brief period of time, the nitrogen was likely fixed to become nitrate and consumed by , which subsequently were filtered by the clams. The large difference in nutrient availability between collection sites could be an important factor to explain differences in growth as well as microstructure in the studied T. gigas specimens.

The combined processes surrounding these environmental parameters lead to the conclusion that higher concentrations of nutrients, influenced by rainfall, and phytoplankton, combined with an increase in solar irradiance, as suggested by Sano et al., (2012) and calculated utilizing rainfall, would favor a faster growth rate. Therefore, the assumed seasonal order of events begins with a period of increased rainfall, during which T. gigas should have a slower growth rate due to an inferred increase in cloudiness preventing optimal (Sano et al., 2012), followed by a period of enhanced solar irradiance and likely a spike in nutrient availability, yielding increased shell growth (Fig. 1.11).

Biomineralization Model

Any model attempting to explain the biomineralization of T. gigas shells has to account for the secretion of both internal and external layers (Fig. 1.12). Although the geochemistry of the external layer has been studied (Elliot et al., 2009), its microstructure has not been fully described and it is assumed to be composed of crossed lamellar aragonite (Patzold et al., 1991;

Lin et al., 2006). However, the external layer of another giant clam species, Hippopus hippopus,

27

Figure 1.12, The dendritic microstructure of the external layer of K-133 (PNG) compared with the prismatic internal microstructure displays that the layers are thought to propagate bi-directionally, as shown by arrows, the white box in (a) shows a representative area from where (b) was imaged; the external layer is composed of two crystal orientations. Stable carbon isotope profiles of the external and internal layers across the pallial line: (c) K-133, from PNG and (d) PT-1, Palm Island, GBR. has been described to have a dendritic nature (Taylor, 1973), which is a precursor of the crossed lamellar structure, although it does not have a first order lamellae (Kouchinsky, 2000). Dendritic growth patterns are consistent with the current observations (Fig. 1.12). The microstructure of the external layers is identical for all studied individuals, confirmed by Raman spectroscopy data which show nearly identical intensities of Raman scattering (Fig. 1.8). This supports the idea that external layers are secreted in the same manner, and possibly more highly controlled biologically than the internal layers because the internal layers tend to differ while the external are identical.

28

To determine possible differences in the metabolic pathways of shell deposition for both internal and external layers, δ13C was measured in the external layer and in the first season of growth in the internal layer of both PT-1 and K-133 (Fig. 1.12). In K-133 there is a large positive

δ13C shift of between 0.29 and 0.67 (‰VPDB) across the pallial line that separates external and internal layers within a 95% confidence interval. The external δ13C in the GBR specimen PT-1 is also substantially higher than that of the internal by between 1.40 and 1.77 (‰VPDB) in a 95% confidence interval, consistent with previous observations by Elliot et al. (2009) who found a difference of about 2 (‰VPDB). As δ13C appears to be consistently higher within the external layer than internal, it further suggests that there are likely two metabolic pathways responsible for shell secretion.

T. gigas has two mantle organs, which is uncommon in mollusks, and it may cause the observed discrepancies between the internal and external shell layers. The siphonal mantle is in

Figure 1.13, Schematic representation of the mantles and water currents in Tridacna gigas (modified after Norton and James, 1992): Siphonal mantle (SM), ctenidia (CT), incurrent water (IWC), excurrent water chamber (ECW), digestive mass (DM), and lateral mantle (LM). Zooxanthellae tubular system is denoted by the red pathway. The mechanism by which water is filtered is shown by the blue pathway: incurrent water moves through ctenidia and food is removed within the ctenidia gills, processed, and ultimately ending up in the digestive mass. The digestive mass shares a boundary with the hinge gland, which is partially bounded by the lateral mantle and extra pallial space. The lateral mantle is a membranous lining of the inside of the valves and is confined by the excurrent water chamber, which can hold and squirt water as a method of deterring predators at rates dependent on the individuals size (Neo and Todd, 2011).

29

Figure 1.14, Schematic representation of external (EL) and internal (IL) layers of T. gigas shell in relation to the position of two mantles (blue: siphonal mantle, green: lateral mantle; a). (b) Three folds of the siphonal mantle: outer fold (OF), middle fold (MF), and inner fold (IF), responsible for the secretion of the dendritic microstructure observed in the external layer of the shell (c). (d) Cuboidal epithelial cells line of the lateral mantle, responsible for the secretion of shield-like crystals in the internal layers of specimens from the Palm Island (e) and the orthogonal needles and clinogonal crystals of internal layers in the specimen from the PNG (f).

direct contact with the external layer while the lateral mantle lines the inside of the shell (Fig.

1.13). These results suggest that the siphonal mantle is responsible for the secretion of the external shell layer. Histological studies show that there are three folds along the margin of this mantle: inner fold, middle fold and, outer fold (Norton and James, 1992; Fig. 1.14). Each fold displays tightly packed columnar epithelial cells on the outside, which are not exposed (Norton and James, 1992; Fig. 1.14). The loosely folded inside of the inner fold is the colorful, visible part of the mantle that holds the zooxanthellae (Norton and James, 1992). The size of the dendritic structures produced is likely a direct representation of the space the epithelial cell had to fill. Thus, it is proposed that tight folds are likely responsible for the third order lamellae while

30 loose folds are likely responsible for the second order lamellae, defining the dendritic microstructure

The lateral mantle is connected to the siphonal mantle at the pallial line, below which the internal layer of the shell is covered with a very thin layer of membranous material (Norton and

James, 1992; Fig. 1.13). Simple cuboidal epithelial cells cover the lateral mantle along the shell and are likely responsible for secreting the aragonitic needles or shield-like crystals that compose internal microstructures of both GBR and PNG specimens (Fig. 1.13). The cuboidal epithelia are not folded which explains the simplicity of the aragonite microstructure they produce. It is possible that the size of the epithelial cells depends on the environment in which the clam lives, providing an explanation for different microstructures produced in each unique locality, besides nutrient availability.

31

3. MICROSTRUCTURE VARIABILITY IN FOSSIL GIANT CLAMS (TRIDACNA GIGAS) FROM THE HUON PENINSULA, PAPUA NEW GUINEA: AN ARCHIVE OF SOLAR MODULATION? M. E. Gannon1, P. Aharon1 and A. Pérez-Huerta1 1Department of Geological Sciences, The University of Alabama, Tuscaloosa

32

Abstract

Massive, aragonitic shells of fossil giant clams, Tridacna gigas, are often well preserved and provide robust bioarchives for paleoclimate studies because they are long-lived and exhibit fast growth rates. Modern and fossil specimens from the uplifted coral reef terraces of the Huon

Peninsula, Papua New Guinea, display daily growth increments at the microscale that are composed of pairs of complex prismatic aragonitic needles (daytime) and small crystals, oblique to needles (nighttime). An exception includes two mid-Holocene-aged individuals, composed of elongated, clinogonal aragonite crystals, oblique to the outside of the shell. Daily growth of modern T. gigas has been documented to correlate with solar irradiance, and it is likely that fossil

T. gigas do also because similar growth increments are displayed. This study assesses fossil T. gigas spanning the last 200 ka for microstructural differences as well as monitoring aragonitic needle width (ANW) through time. The results show that ANW follows a cyclic pattern, similar to those of solar radiation variability and δ18O, suggesting a relationship between solar irradiance and the width of aragonitic needles over the past 200 ka. Due to microstructural and microtextural differences between modern and mid-Holocene T. gigas, it is likely that there are fundamental environmental differences between these times. The results of this study, suggesting co-variation between ANW of fossil T. gigas and solar modulation, advance the potential of giant clams to assist in the reconstruction of past solar modulation at a resolution higher than so far achieved.

33

Introduction

The study of past seasonal climate variability is important in order to understand current and future climate trends. Ice cores, sediments, and fossils serve as useful archives of paleoclimate data based on the analysis of climate proxies. However, well documented records are rare for the tropics (Sano et al., 2012; Duprey et al., 2015; NOAA Index of Public Paleoclimatology

Datasets) although low latitudes predominantly control global climate, including El Niño

Southern Oscillation (ENSO) as well as Asian and African monsoons (Chiang, 2009).

Reef building organisms (e.g., , bivalves, ) are important high resolution bioarchives of the ambient environment and are extremely sensitive to climate shifts that are embedded in the chemistry of their carbonate exoskeletons (McCulloch et al., 1999; Watanabe et al., 2004; McGregor and Gagan, 2004; Elliot et al., 2009; Batenburg et al., 2011; Welsh et al.,

2011; Shöne and Surge, 2012). Giant clams, Tridacna species, are particularly useful bioarchives of paleoclimate and paleoenvironmental change because of the following reasons: (i) their massive aragonitic shells are typically well preserved (Hearty and Aharon, 1988; Romanek and

Grossman, 1989; Welsh et al., 2011; Warter et al., 2015); (ii) high growth rates afford daily to seasonal resolution (Aharon and Chappell, 1986; Watanabe et al., 2004; Elliot et al., 2009;

Batenburg et al., 2011; Welsh et al., 2011; Yan et al., 2013; Duprey et al., 2015; Warter et al.,

2015); (iii) massive aragonite is deposited in oxygen isotope equilibrium and carbon isotope equivalency with the ambient seawater (Aharon and Chappell, 1986; Jones et al., 1986; Aharon,

1991; Watanabe et al., 2004; Ayling, 2006; Batenburg et al., 2011; Welsh et al., 2011) and (iv) major and trace chemical elements, (e.g., Sr, Mg, Ba) normalized to Ca, are useful proxies of the ambient seawater environment (Elliot et al., 2009; Sano et al., 2012; Yan et al., 2013; Warter et al., 2015; Hori et al., 2015; Yan et al., 2015). Yet, in spite of the recent flurry of geochemical

34 proxy studies listed above, the variability of Tridacna shell microstructure in modern and fossil specimens that may impact the records is rarely considered because it is thought that macroscopic shell growth is relatively understood. For example, it has been documented that bundles (botryoids) consisting of fibrous aragonitic needles in the internal layers of T. gigas tend to widen in fossil samples while still preserving the original aragonite mineralogy (Chappell and

Polach, 1972; Aharon and Chappell, 1986). The question of whether the changing aragonite needle width (ANW), previously observed in the fossil samples, shows an geologic age- dependency or is variable and controlled by changes in ambient factors has not yet been explored. The aim of this study is to quantitatively describe the microstructure of the internal layers of fossil T. gigas shells of Late Pleistocene age in order to establish their variability and explore whether ANW is governed by age or ambient changes.

Geological Context

The Huon Peninsula on the eastern borderland of Papua New Guinea (PNG) (6°S and 148°E)

(Fig. 2.1) is considered one of the best examples of raised coral reef terraces worldwide

(Pirazzoli et al., 1991). This region is subjected to an uplift rate of up to 2.5 m per 1000 years due to massive compression of the Australian and Pacific Plates (Chappell, 1974a; Cutler et al.,

2003). The terraces have been the subject of extensive studies over several decades (Veeh and

Chappell, 1970; Chappell and Polach, 1972; Bloom et al., 1974; Aharon and Chappell, 1986;

Stein et al., 1993; Cutler et al., 2003; Ayling, 2006, among others) and yielded one of the most detailed Late Pleistocene sea level change histories that confirmed the Milankovitch theory of ice ages (Veeh and Chappell, 1970; Bloom et al., 1974; Aharon and Chappell, 1986; Chappell et al.,

1996; Lambeck and Chappell, 2001; Yokoyama et al., 2001; Cutler et al., 2003). Fringing,

35

Figure 2.1, Plan view map of uplifted coral reef terraces along the Sialum section of the Huon Peninsula, Papua-New Guinea (From Aharon and Chappell, 1986). Terrace numbers are marked on appropriate terrace locations (Table 2.1). RMF: Ramu-Markham Fault. barrier and lagoonal reefs are distinguished in the field on the basis of their geomorphology

(Chappell, 1974b; Aharon, 1983; Aharon and Chappell, 1986). The terrace units contain a variety of coral species of Indo-Pacific affinity (Veeh and Chappell, 1970; Bloom et al., 1974;

Aharon and Chappell, 1986; Stein et al., 1993; Yokoyama et al., 2001), bivalves, coralline algae and fine to coarse-grained reef sediments that are lithified into hard limestone (Chappell, 1974b;

Aharon and Chappell, 1986). Tridacna clams are commonly well preserved and often found in growth position on the raised coral reef terraces.

Terrace Ages

The age assignment of the terraces, important to our evaluation of ANW variability in time, is based on precise 238U/230Th and 235U/231Pa dating of relatively [U]-rich aragonitic corals (Veeh and Chappell, 1970; Bloom et al., 1974; Aharon and Chappell, 1986; Stein et al., 1993; Cutler et

36 al., 2003). Because of the rarity of diagenetically unaltered corals on the terraces on the one hand and the impracticality of using well preserved but [U]-poor T. gigas on the other, the radiocarbon method was used to date pristine T. gigas from terraces younger than 40 ka (1 ka = 1000 years)

(Veeh and Chappell, 1970; Bloom et al., 1974). Additionally, D-alloisoleucine/L-isoleucine

(D/L) ratios were measured in T. gigas whose ages were calibrated against radiometrically dated coral reef terraces from Huon Peninsula. The relationship between the D/L ratios and the radiometric ages offers an alternative method for estimating undated or insufficiently dated terraces (Hearty and Aharon, 1988).

With an exception below, Table 2.1 offers a summary of the terrace ages I to VIII (Fig.

2.1) using U/Th and U/Pa age data from corals published so far (Veeh and Chappell, 1970;

Bloom et al., 1974; Aharon and Chappell, 1986; Stein et al., 1993; Cutler et al., 2003). The exception includes two mid-Holocene T. gigas that were dated recently using the radiocarbon method (Table 2.1). Careful consideration was given to each reported age and, in order to be accepted for use in the current study, samples must have been in pristine condition, free of

Table 2.1, Weighted means and errors of accepted radiometric dates for each terrace based on recent and previous studies (see text). Terrace numbers according to Figure 2.1.

Terrace Dating Method Age (ka)1 Error (ka)2 Range (ka) n Reef Material I Δ14C 5.4 3 0.07 5.3-5.5 2 T. gigas II U-Th & Pa-U 36.7 6, 8 0.01 31-37 5 coral IIIb U-Th 41.7 5, 6 0.6 40-42 4 coral IIIa U-Th 51.0 4, 6 0.6 49-53 3 coral IV U-Th 62.5 4, 5, 6 0.6 57-74 7 coral V U-Th & Pa-U 92.1 5, 6, 8 3.1 85-95 7 coral VI U-Th 107.0 5, 6 0.2 106-108 3 coral VIIb U-Th 119.1 4, 6, 7 1.9 116-124 8 coral VIIa U-Th 134.1 4, 5, 6, 7 1.4 132-142 8 coral VIII U-Th 198.7 7 4.6 180-190 1 coral 1Weighted Mean; 2Weighted Mean Error; 3Aharon, personal communication; 4Veeh and Chappell, 1970; 5Bloom et al., 1974; 6Aharon and Chappell, 1986; 7Stein et al., 1992; 8Cutler et al., 2003.

37 diagenetic effects. If a particular coral age was significantly different from others on the same terrace unit it was considered suspect and discarded (Table 2.1).

Methods

Materials Studied

Fossil specimens used in this study were collected by P. Aharon from the Huon Peninsula, PNG, during three months of field work in the fall of 1977 (Figs. 2.1 and 2.2; Table 2.2). During this collection, specimens were acquired only if both valves were found together and attached to the limestone substrate (Aharon and Chappell, 1986). Petrographic and SEM observations were made on the internal layer of the first season of growth within 1 to 2 millimeters of the umbo

(Fig. 2.3). In specimens where the umbo was not preserved, the measurements were made in the area that was thought to be closest to that region. Resulting observations of the microstructure of

Table 2.2, Age assignment (Table 2.1) and specific reef morphology of the sampling sites for each specimen investigated in this study (see Fig. 2.2). Sample Terrace Terrace Age (ka) Reef Facies K-133 Modern 0 fringing reef crest K-134 I 5.35 ± 0.02 1 fringing reef crest K-135 I 5.52 ± 0.02 1 fringing reef crest K-9 IIIb 41.7 ± 0.6 regression slope-fringing K-8 IV 62.5 ± 0.6 fringing reef crest K-14 V 92.1 ± 3.1 fringing reef crest K-15 V 92.1 ± 3.1 fringing reef crest K-17 VI 107 ± 0.2 fringing reef crest K-46 VI 107 ± 0.2 fringing reef crest K-131 VIIb 119.1 ± 1.9 regression slope-fringing K-126 VIIa 134.1 ± 1.4 barrier reef K-24 VIIa 134.1 ± 1.4 lagoonal K-38 VIIa 134.1 ± 1.4 fringing reef crest 1 Aharon, peronal communication.

38 internal layers were then compared to those from a modern specimen (K-133) collected from the same locality (Fig. 2.4).

Optical Microscopy

Thin sections of the internal layer were analyzed using a Nikon stereoscopic microscope and

SPOT Advanced imaging software at the Alabama Stable Isotope Laboratory (ASIL) in the

Department of Geological Sciences of The University of Alabama.

Scanning Electron Microscopy (SEM)

Shell sections of the internal layer from first stage of growth of each T. gigas (Fig. 2.3) were cut, embedded in resin, and ground using sand paper from coarse to fine grit size. Subsequently, each sample was polished using alumina oxide of 1.0 µm and 0.3 µm and etched for 30 seconds using

2% HCl. Samples were coated with ~ 20 nm of gold. SEM analyses were performed using a

Field Emission Scanning Electron Microscope (FE-SEM) JEOL 7000 located in the Central

Analytical Facility (CAF) of The University of Alabama. Imaging was obtained at high vacuum, using a medium probe current of 8 nA, and an accelerating voltage of 8 kV.

Electron Backscatter Diffraction (EBSD)

Samples used for SEM were re-polished and coated with 2.5 nm of carbon for EBSD analysis

(Pérez-Huerta and Cusack, 2009). The EBSD study of modern T. gigas (K-133) was carried out with an Oxford Nordlys camera mounted on a Field Emission Scanning Electron Microscope

(FE-SEM) JEOL 7000 located in the Central Analytical Facility (CAF) of The University of

Alabama. EBSD data were collected with Oxford Aztec 2.0 software at high vacuum, 20 kV, a

39

Figure 2.2, Shell internal layer sections of fossil T. gigas specimens.

40

Figure 2.3, Aragonitic needle width (ANW) measurements were acquired during SEM imaging of the internal layers (IL) overlaying the first season of growth (black circle). Black box: section of shell prepared for analysis; EL: External Layer. This example is K-15 from Terrace V (see Fig. 2.2). large probe current of 15 nA, working distance of 10 mm and a resolution of 1.15 μm step size for crystallographic maps. Data for a mid-Holocene-aged specimen (K-134) were acquired using a TESCAN LYRA FESEM also located in the Central Analytical Facility (CAF) at the

University of Alabama. EBSD data of K-134 were collected at high vacuum, 30 kV, a large probe current (beam size) of 20 nA, working distance of 12.34 mm and a resolution of 1.0 μm step size. Finally, data were analyzed using OIM 5.3 from EDAX-TSL. EBSD data are represented by crystallographic maps and pole figures in reference to the {001} plane of aragonite (see further details in Pérez-Huerta et al., 2011).

Results

Shell Growth Features

Hand specimens show macroscopic light and dark banding (Fig. 2.2), with coupled increments thought to represent yearly couplets of seasonal growth (Aharon and Chappell, 1986). Based on our petrographic observations, most fossil specimens exhibit regular growth lines, composed of

41

Figure 2.4, Modern T. gigas (K-133) is the benchmark specimen to which fossils are compared. (a) Section of K-133; (b) Photomicrograph showing regular paired light and dark bands that represent a daily growth increment; plane view; (c) SEM image of a single daily growth increment showing aragonitic needles with small, clinogonal, oblique crystals, representa- tive of the overall microstructure found in this individual. Arrow denotes direction of growth.

paired light and dark increments that have been previously interpreted as daily growth lines

(Aharon and Chappell, 1986; Watanabe et al., 2004) (Fig. 2.5) consistent with the modern specimen (Fig. 2.4b). The mid-Holocene-age specimen (K134) observed petrographically, does not have clear daily growth increments regularly through ontogeny, but increments can be identified in several locations (Fig. 2.5). Although the dissimilar structure is consistent in the entire section, complicated sample preparation could cause this effect.

42

Figure 2.5, Photomicrographs of fossil T. gigas from thin sections; plane view. Light and dark pairs represent daily growth increments. Arrow denotes direction of growth.

Shell Microstructure

Observations under high-resolution SEM imaging show that the entire ontogeny of modern T. gigas (K-133) is composed of pairs of complex prismatic aragonitic needles, orthogonal to the

43

Figure 2.6, High resolution SEM images of fossil specimens exhibiting two morphological types (Table 2.3). Mid-Holocene-aged T. gigas have elongated, clinogonal aragonite crystals, oblique to the outside of the shell, an example is outlined a dashed, black line for K-134 and K-135. Other T. gigas display orthogonal, complex prismatic aragonite needles. Arrow denotes direction of growth. external layer of the shell (Majewske, 1974; Flügel, 2013) and small, clinogonal aragonite crystals, oblique to the aragonitic needles (Fig. 2.4c). Imaging of fossil T. gigas indicate that daily growth increments are visible in most specimens and are also composed of complex

44 prismatic aragonite needles with an additional increment of small, clinogonal aragonite crystals, oblique to the aragonitic needles (K-8, K-14, K-15, K-17, K-24, K-131 and K-38; Figs. 2.6 and

2.7b), similar to those present in the modern specimen (K-133; Fig. 2.4c). Several specimens have poorly defined small, clinogonal crystals making the aragonitic needles appear to end abruptly (K-9 and K-126; Figs. 2.6 and 2.7a) although their overall microstructure is comparable with most of the other specimens. A T. gigas from Terrace VI, K-46, contains increments of small, clinogonal, oblique aragonite crystals and poorly defined aragonitic needles although the measured ANW is nearly the same as that of the other T. gigas (K-17) from Terrace VI, (see

Discussion). An exception includes mid-Holocene-age samples, K-134 and K-135, which are composed of elongated, clinogonal crystals, oblique to the external shell layer (Figs. 2.6 and

2.7c).

Microtextural analyses of modern T. gigas show there is tight control over the crystallographic domain of the aragonitic needles and small crystals, which are also well defined in the crystallography map and pole figure (Fig. 2.8c and 2.8d). The c-axis is parallel to the elongation of the needles, shown by the a- and b-axes alternating between needles.

Crystallographic preference extends through the small, clinogonal crystal increment, denoted by the white dashed line (Fig. 2.8c). A mid-Holocene-aged sample, K-134, differs from the modern in terms of microstructure as well as microtexture, displayed by the crystallography map and

Figure 2.7, Two needle morphological types documented in T. gigas (a) orthogonal, aragonitic needles (daytime deposition) with increments of small, clinogonal crystals, oblique to needles (nighttime deposition) (K-8, K-14, K-15, K-17, K-24, K-131, K- 133 (Fig. 2.4a) and K-38; see Figs. 2.2 and 2.6), although several samples have poorly defined small, clinogonal, oblique crystals that are not easily visible (K-9 and K-126; see Figs. 2.2 and 2.6); (b) elongated, clinogonal, oblique crystals that are primarily observed in specimens of mid-Holocene-age (K-134 and K-135).

45

Figure 2.8, EBSD crystallographic maps and pole figures for a mid-Holocene-aged specimen (K-134: a and b) and modern specimen (K-133: c and d) show that the c-axis is elongated in the direction of growth, however the pole figures show that the modern specimen (d) had more control over growth than the Holocene-age specimen (b) because the poles are more constricted along the center of the figure (c-axis). White dashed lines constrict the nighttime (NT) interval from the daytime (DT), displaying the retained crystallographic domain through each interval (c). Red spots (a) and black spots (c) are areas of non-diffraction, which are different colors due to the different equipment used to obtain EBSD data.

pole figure obtained by EBSD (Fig. 2.8a and 2.8b). Elongated, clinogonal crystals, oblique to the outside of the shell, are well-defined and present single crystallographic domains. Although the c-axis of aragonite is overall parallel to the elongation of the crystals in each specimen, K-134 has less organization of the orientation of the crystallographic domains, represented by the variability in the pole figure (Fig. 2.8b).

46

Table 2.3, Microstructure type, average needle width, 1σ standard deviation and standard error of the mean for each T. gigas individual. Average ANW (µm)

Sample Terrace Age (ka) Microstructure (n = 20) σ se K-133 Modern 0 Needles 3.04 0.69 0.15 K-134 I 5.4 Oblique Crystals 1.56 1.32 0.30 K-135 I 5.4 Oblique Crystals 1.13 0.40 0.09 K-9 IIIb 41.7 Needles 1.07 0.43 0.10 K-8 IV 62.5 Needles 2.43 1.12 0.25 K-14 V 92.1 Needles 1.32 0.48 0.11 K-15 V 92.1 Needles 1.65 0.59 0.13 K-17 VI 107 Needles 4.54 1.02 0.23 K-46 VI 107 Needles 4.52 1.74 0.39 K-131 VIIb 119.1 Needles 2.62 0.81 0.18 K-126 VIIa 134.1 Needles 4.50 1.10 0.25 K-24 VIIa 134.1 Needles 2.21 0.59 0.13 K-38 VIIa 134.1 Needles 3.08 0.71 0.14 σ: standard deviation; se: standard error

Discussion

Aragonite Needle Width (ANW) Variability

Chappell and Polach (1972) proposed that botryoids of aragonite needles increase in width through time due to diagenetic alteration from aragonite to calcite although needles retain their morphology (Chappell and Polach, 1972; Aharon and Chappell, 1986; Ayling, 2006).

Differences in aragonite and calcite crystal densities (2.930 gcm-3 and 2.710 gcm-3, respectively) may explain the authors’ observations. It has also been suggested that neomorphism from aragonite to a secondary aragonite is possible (Moir, 1990; Ayling, 2006). EBSD maps show that there is no calcite in either modern or mid-Holocene specimens (Fig. 2.8). Additionally, orthogonal needles (K-133) and clinogonal, oblique crystals (K-134 and K-135) are well defined crystallographically ruling out a secondary phase of aragonite. If aragonite dissolution caused by diagenesis were present (other than slight effects from etching with dilute HCl, required in SEM

47 sample preparation), then the EBSD analyses paired with SEM imaging would have recognized it. Hence the aragonitic needles of each T. gigas are likely representatives of the geologic time in which it lived. Due to the discrepancies in microstructure and microtexture between the mid-

Holocene specimens and other fossil T. gigas, measurements made on these crystals might not be comparable with those of the aragonitic needles, however they are included in the ANW comparison in this study. While it is found that ANW does increase through time, the upward trend is not uniform but rather cyclical (Fig. 2.9a; Table 2.3). The relationship between daily growth and solar irradiance, previously established in modern T. gigas by Sano et al. (2012) and

Hori et al. (2015), opens the opportunity for reconstructing past solar modulation (total irradiance) variability using the ANW cyclicity in fossil T. gigas. According to van Geel et al.

(1999) and Sharma (2002), solar modulation is caused by complex interactions between galactic cosmic rays, solar wind (solar magnetic field intensity) and the geomagnetic field intensity of the

Earth. Radiocarbon and 10Be-based solar modulation reconstructed for the last 1000 years exhibits an excellent match with the Schwabe (11-yr) irradiance cycle suggesting that solar forcing may have contributed to a proportion of the warming since 1860 AD (Lean et al., 1995;

Muscheler et al., 2007).

Solar modulation variability has been estimated for the past 200 ka by Sharma (2002) on the basis of 10Be variability in deep-sea cores. According to the Sharma (2002) model, the strongest solar modulation occurred between 111-125 ka followed by a general weakened trend to the Holocene followed by modern high values (Fig. 2.9b). The solar modulation model of

Sharma (2002) matches well with the contemporaneous benthic marine δ18O time-series (Grootes et al., 1993; Johnson et al., 1997; Herbert et al., 2001; Lisiecki and Lisiecki, 2002) suggesting that in general, warm periods during the interglacials (190 ka, 125 ka and modern) are typified

48

Figure 2.9, Mean and standard error of ANW for each individual giant clam plotted against age (a; Tables 2.2 & 2.3). Open boxes represent the mid-Holocene-aged specimens with microstructure varying from of other specimens. The black dashed line is a cubic spline, showing the interpolation between ANW as it changes through time. (b) Normalized solar modulation for the past 200 ka (black dots) is plotted with δ18O values (red line) (Lisiecki and Lisiecki, 2002). Blue shaded and white boxes denote phase changes and transitions between interglacial (blue) and glacial (white) intervals. A rough correspondence is apparent between solar modulation, δ18O excursions and ANW variability [(b) modified after Sharma, 2002].

49 by high solar modulation and lower δ18O values whereas colder intervals during interstadials and glaciations are associated with weaker solar modulation and higher δ18O values.

Aragonite secretion at the microstructural level is controlled diurnally by photosynthetic processes due to T. gigas’ symbiotic relationship with zooxanthellae (Watanabe et al., 2004;

Sano et al., 2012; Yan et al., 2013; Hori et al., 2015). During daylight, photosynthesis of the zooxanthellae allows the shell to calcify at a higher rate, thus producing the organized aragonitic needles (Fig. 2.7). It follows that growth of fossil T. gigas also occurred under the diurnal influence due to the presence of daytime and nighttime increments, similar to the modern K-133

(Fig. 2.4). Given the documented relationship between solar irradiance and growth attributed to photosynthesis for modern T. gigas (Sano et al., 2013), we test below the hypothesis of a correspondence between solar modulation change through time and giant clam growth pattern expressed in terms of aragonite needle width (ANW) variability.

Notwithstanding that the number of T. gigas fossils in the pool of samples is scant, the matching of the phase mode changes in the ANW record with those of the solar modulation and

δ18O records is intriguing (Fig. 2.9). For example, the rise in solar modulation during the penultimate interglacial, the last interglacial and the modern, accompanied by δ18O negative excursions, matches reasonably well with rises in ANW values of fossil T. gigas associated with the coral reef terraces VIII at 198.7 ± 4.6 ka, VIIa at 134.1 ± 1.4 ka and VIIb at 119.1 ± 1.9 ka and the modern reef. Substantial drops in solar modulation associated with positive δ18O excursions correspond to drops in ANW values of coral reef terraces formed during interstadials

(Terrace V at 92.1 ± 3.1 ka, Terrace IV at 62.5 ± 0.6 ka and Terrace IIIb, at 41.7 ± 0.6 ka).

Discrepancies between the exact timing of phase changes are discerned between ANW record in

Figure 2.9a and the records in Figure 2.9b. For example, whereas the maximum solar modulation

50 values occur at around 124 ka, the ANW values peak 17 ka later at 107 ±0.2 ka. Additionally, two fossil T. gigas samples from coral reef terrace VIIa at 134 ka yield significantly different

ANW values (Table 2.3 and Fig. 2.9a) for reasons that are not understood. These observed discrepancies suggest either the presence of unidentifiable artifacts in the databases or some leads and lags in the systems.

The discrepancies in microstructure between modern, K-133 and mid-Holocene-age T. gigas, K-134 and K-135, as well as the microtextural differences between K-133 and K-134, suggest that there are environmental differences between these times. Variations that could affect shell microstructure include solar modulation, rainfall and nutrient availability. Based on these circumstances, it is impossible to determine the reason for differences in biomineralization mechanisms between modern and Holocene times though it is thought that they are likely environmentally influenced.

Conclusions

Modern and fossil T. gigas from the raised coral reef terraces of the Huon Peninsula are composed of orthogonal, complex, prismatic, aragonitic needles representing daylight deposition and small, crystals, oblique to the needles, representing nighttime deposition. Mid-Holocene- aged specimens are exceptional in their microstructure being composed of elongated aragonite crystals, oblique to the outside of the shell. T. gigas depend on the solar irradiance for enhanced daytime growth, which is a significant part of their shell deposition strategy; when solar irradiance is high, the individual clams produce wider needles. The ANW in fossil specimens shows phase-change modes that roughly match solar modulation and δ18O variability over the past 200 ka. Discrepancies between modern and mid-Holocene T. gigas are most likely due to

51 yet unidentified environmental changes that cause a biological response. These initial results suggest that shell microstructure (ANW) is likely affected by variations in solar activity and can be quantified for comparisons through geologic time. Future studies will need a much larger sample pool of wider age distribution to confirm the results reported here.

52

REFERENCES

Aharon, P., personal communication.

Aharon, P. Stable isotope geochemistry of a late Quaternary coral reef sequence, New Guinea: application of high resolution data to palaeoclimatology. (Unpublished doctoral dissertation).

Aharon, P. (1983). 140,000-yr isotope climatic record from raised coral reefs in New Guinea. Nature 304, 720-723.

Aharon, P. (1985) Carbon Isotope Record of Late Quaternary Coral Reefs: Possible Index of Sea Surface Paleoproductivity. Geophysical Monograph 32, American Geophysical Union, Washington, D.C., p. 343-355.

Aharon, P. (1991). Recorders of reef environment histories: stable isotopes in corals, giant clams, and calcareous algae. Coral Reefs 10, 71-90.

Aharon, P., J. Chappell. (1986). Oxygen Isotopes, Sea Level Changes and the Temperature History of a Reef Environment in New Guinea over the Last 105 Years. Palaeogeography, Palaeoclimatology, Palaeoecology 56, 337-379.

Aharon, P., J. Chappell, and Compston, W. (1980). Stable isotopes and sea level data from New Guinea support Antarctic ice-surge theory of ice ages: Nature 283, 649-651.

Åse, L-E. (1981). Studies of Shores and Shore Displacement on the Southern Coast of Kenya. Especially in Kilifi District. Geografiska Annaler. Series A, Physical Geography 63, 303- 310.

Ayling, B. F. (2006). Seasonal Paleoclimates of the MIS 5E, 9 and 11 Interglacials, Using Geochemical Proxies in Porites and Tridacna. (Unpublished doctoral dissertation). Australian National University. Canberra, Australia.

Batenburg, S. J., G. Reichart, T. Jilbert, M. Janse, F. P. Wesselingh, W. Renema. (2011). Interannual climate variability in the Miocene: High resolution trace element and stable isotope ratios in giant clams. Palaeogeography, Palaeoclimatology, Palaeoecology 306, 75-81.

Belda, C. A., C. Cuff, and D. Yellowlees. (1993). Modification of Shell Formation in the Giant Clam Tridacna gigas at Elevated Nutrient Levels in Sea Water. Marine Biology 117, 251-257.

53

Benzie, J. A. H., S. T. Williams. (1992). No genetic differentiation of giant clam (Tridacna gigas) populations in the Great Barrier Reef, Australia. Marine Biology 113, 373-377.

Bloom, A. L., W.S. Broecker, J. M. A. Chappell, R. K. Matthews, K. J. Mesolella. (1974). Quaternary Sea Level Fluctuations on a Tectonic Coast: New 230Th/234U Dates from the Huon Peninsula, New Guinea. Quaternary Research 4, 185-205.

Braley, R. D. (1984). Reproduction in the Giant Clams Tridacna gigas and T. deresa In situ on the North-Central Great Barrier Reef, Australia, and Papua New Guinea. Coral Reefs 3, 221-227.

Bureau of Meteorology, Government of Australia. (2014) Climate and past weather. Station: 32083, Orpheus Island. http://www.bom.gov.au/climate/data.

Carlson, W. D. (1980). The calcite-aragonite equilibrium: effects of Sr substitution and anion orientational disorder. American Mineralogist 65, 1252-1262.

Chappell, J., H. A. Polach. (1972). Some Effects of Partial Recrystallisation on 14C Dating Late Corals and Molluscs. Quaternary Research 2, 244-252.

Chappell, J. (1974a). Upper Mantle Rheology in a Tectonic Region: Evidence From New Guinea. Journal of Geophysical Research 79, 390-398.

Chappell, J. (1974b). Geology of Coral Terraces, Huon Peninsula, New Guinea: A Study of Quaternary Tectonic Movements and Sea-Level Changes. Geological Society of America Bulletin 85, 553-570.

Chappell, J., A. Omura, T. Esat, M. McCulloch, J. Pandolfi, Y. Ota, B. Pillans. (1996). Reconsiliation of late Quaternary sea levels derived from coral terraces at Huon Peninsula with deep sea oxygen isotope records. Earth and Planetary Science Letters 141, 227-236.

Chiang, J. C. H. (2009). The Tropics in Paleoclimate. Annual Review of Earth Planet Science 37, 263-297.

Clement, A. C., R. Seager, M. A. Cane. (2000). Suppression of El Niño during the mid-Holocene by changes in the Earth’s orbit. Paleoceanography 15, 731-737.

COHAP Members. (1988). Climatic Changes of the Last 18,000 Years: Observations and Model Simulations. Science 241, 1043-1052.

Crossland, C. J., D. J. Barnes. (1983). Dissolved Nutrients and Organic Particulates in Water Flowing over Coral Reefs at Lizard Island. Australian Journal of Marine Freshwater Research 34, 853-844.

Cutler, K. B., R. L. Edwards, F. W. Taylor, H. Cheng, J. Adkins, C. D. Gallup, P. M. Cutler, G.

54

S. Burr, A. L. Bloom. (2003). Rapid sea-level fall and deep-ocean temperature change since the last interglacial period. Earth and Planetary Science Letters 206, 253-271.

Dalbeck, P., J. England, M. Cusack, M. R. Lee, A. E. Fallick. (2006). Crystallography and chemistry of the polymorph switch in M. edulis shells. European Journal of Mineralogy 18, 601-609.

Deane, E. M., R. W. O’Brien. (1980). Composition of the haemolymph of Tridacna maxima (Mollusca: ). Comparative Biochemistry and Physiology 66A, 339-341.

Dodge, R. E., R. G. Fairbanks, L. K. Benninger, F. Maurrasse. (1983). Pliestocene Sea Levels for Raised Coral Reefs of Haiti. Science 219, 1423-1425

Duprey, N., C. E. Lazareth, C. Dupouy, J. Butscher, R. Farman, C. Maes, G. Cabioch. (2015). 18 18 Calibration of seawater temperature and δ Oseawater signals in Tridanca maxima’s δ Oshell record based on in situ data. Coral Reefs 34, 437-450.

Elliot, M., K. Welsh, C. Chilcott, M. McCulloch, J. Chappell, B. Ayling. (2009). Profiles of trace elements and stable isotopes derived from giant long-lived Tridacna gigas bivalves: Potential applications in paleoclimate studies. Palaeogeography, Palaeoclimatology, Palaeoecology 280, 132-142.

Fitt, K., T. Rees, R. Braley, J. Lucas, D. Yellowlees. (1993). Nitrogen flux in giant clams: size- dependency and relationship of zooxanthellae density and clam biomass in the uptake of dissolved inorganic nitrogen. Marine Biology 117, 381-386.

Flater, David. Tides. Mobile Geographics. http://tides.mobilegeographics.com.

Flügel, E. (2013). Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer Science & Business Media.

Furnas, M., A. Mitchell. (1983). A Hydrologic, Nutrient and Phytoplankton Biomass Survey in Palm Passage (Central Great Barrier Reef) during 1983. Australian Institute of Marine Science, Data Report: Oceanographic Series, AIMS-OS-84-1.

Gagan, M. K., L. K. Ayliffe, D. Hopley, J. A. Cali, G. E. Mortimer, J. Chappell, M. T. McCulloch, M. J. Head. (1998). Temperature and Surface-Ocean Water Balance of the Mid-Holocene Tropical Western Pacific. Science 279, 1014-1018.

Gannon, M., A. Pérez-Huerta, P. Aharon. (In submission). A Biomineralization Study of the Giant Clam (Tridacna gigas) Shells. In submission to Coral Reefs.

Grootes, P. M., M. Stuiver, J. W. C. White, S. Johnsen, J. Jouzel. (1993). Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, 552-554.

Hearty, P. J., P. Aharon. (1988). Amino acid chronostratigraphy of late Quaternary coral reefs:

55

Huon Peninsula, New Guinea, and the Great Barrier Reef, Australia. Geology 16, 579- 583.

Herbert, T. D., J. D. Schuffert, D. Andreasen, L. Heusser, M. Lyle, A. Mix, A. C. Ravelo, L. D. Stott, J. C. Herguera, 2001, Collapse of the California current during glacial maxima linked to climate change on land, Science v. 293: p71-76.

Hori, M., Y. Sano, A. Ishida, N. Takahata, K. Shirai, T. Watanabe. (2015). Middle Holocene daily light cycle reconstructed from the strontium/calcium ratios of a fossil giant clam shell. Nature Scientific Reports 5, 1-5.

Humphreys, F. J. (2004). Characterisation of fine-scale microstructures by electron backscatter diffraction (EBSD). Scripta Materialia 51, 771-776.

IAEA/WMO. (2014). Global Network of Isotopes in Precipitation. http://www.iaea.org/water.

Jones, D. S., D. F. Williams, C. S. Romanek. (1986). Life Histories of Symbiont-Bearing Giant Clams from Stable Isotope Profiles. Science 231, 46-48.

Johnson S. J., H. B. Clausen, W. Dansgaard, N. S. Gunderstrup, C. U. Hammer, U. Andersen, K. K. Andersen, C. S. Hvidberg, D. Dahl-Jensen, J. P. Stffensen, H. Shoji, A. E. SveinbjöRnsdóttir, J. White, J. Jouzel, D. Fisher. (1997). The δ18O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability. Journal of Geophysical Research: 102, 26,397-26,410.

Kats, E. I., V. V. Lebedev, A. R. Muratov. (1993). Weak crystallization theory. Physics Reports 228, 1-91.

King, B., F. McAllister, E. Wolanski, T. Done, S. Spagnol. (2001). Chapter 10: River Plume Dynamics in the Central Great Barrier Reef. Oceanic Processes of Coral Reefs: Physical and Biological links in the Great Barrier Reef (ed. E. Wolanski.) 145-159.

Kobayashi, I. (1969). Internal Microstructure of the Shell of Bivalve Molluscs. American Zoologist 9, 663-672.

Kouchinsky, A. (2000). Shell microstructures in Early Cambrian molluscs. Acta Palaeontological Polonica 45, 119-150.

Lambeck, K., J. Chappell. (2001). Sea Level Change Through the Last Glacial Cycle. Science 292, 679-686.

Lean, J., J. Beer, R. Bradley. (1995). Reconstruction of solar irradiance since 1610: Implications for climate change. Geophysical Research Letters 22, 3195-3198.

Lin, A. Y. M, Meyers, M. A., Vecchio, K. S. (2006) Mechanical properties and structure of Strombus gigas,Tridacna gigas, and Haliotis rufescens sea shells: A comparative study.

56

Materials Science and Engineering 26, 1380-1389.

Lisiecki, L. E., P. A. Lisiecki. (2002). Application of dynamic programming to the correlation of paleoclimate records. Paleoceanography 17, 1-12.

Majewske, O. P. (1974). Recognition of Invertebrate Fossil Fragments in Rock and Thin Sections. Brill Achive 13.

McCulloch, M. T., A. W. Tudhope, T. M. Esat, G. E. Mortimer, J. Chappell, B. Pillans, A. Chivas, A. Omura. (1999). Coral Record of Equatorial Sea-Surface Temperaures During the Penultimate Deglaciation at Huon Peninsula. Science 283, 202-204.

McGregor, H. V., M. K. Gagan. (2004). Western Pacific coral δ18O records of anomalous Holocene variability in the El Niño-Southern Oscillation. Geophysical Research Letters 31, 1-4.

Moir, B. G. (1990). Comparative Studies of “Fresh” and “Aged” Tridacna gigas Shell: Preliminary Investigations of a Reported Technique for Pretreatment of Tool Material. Journal of Archaeological Science 17, 329-345.

Muscheler, R., F. Joos, J. Beer, S. A. Müller, M. Vonmoos, I. Snowball. (2007). Solar activity during the last 1000 yr inferred from radionuclide records. Quaternary Science Reviews 26, 82-97.

NASA Langley Research Center, Atmospheric Science Data Center. eosweb.larc.nasa.gov/

Neumann, D. (1981). Tidal and Lunar Rhythms. Biological Rhythms, 351-380.

Neo, M. L., P. A. Todd. (2011). Quantification of water squirting by juvenile fluted giant clams ( L.). Japan Ethological Society 29, 85-91.

Nix, H., J. Kalma. (1972). Climate as a dominant control in the biogeography of northern Australia and New Guinea. Bridge and barrier: a natural and cultural history of Torres Strait (ed. D. Walker). 61-91.

NOAA Index of Public Paleoclimatology Datasets. (ftp://ftp.ncdc.noaa.gov/pub/data/paleo/)

NOAA. (2009). National Weather Service Glossary. (weather.gov/glossary/)

Norton, J. H., G. W. Jones. (1992). The Giant Clam: An Anatomical and Histological Atlas. Queensland Department of Primary Industries. Australian Centre for International Agricultural Research.

Norton, J. H, M. A. Shepard, H. M. Long, W. K. Fitt. (1992). The Zooxanthellal Tubular System in the Giant Clam. Biological Bulletin 183, 503-506.

57

Pannella, G., C. MacClintock. (1968). Biological and Environmental Rhythms Reflected in Molluscan Shell Growth. Memoir (Journal of Paleontology) 2, 64-80.

Pérez-Huerta, A., M. Cusack. (2009). Optimizing Electron Backscatter Diffraction of Carbonate Biominerals—Resin Type and Carbon Coating. Microscopy and Microanalysis 15, 197- 203.

Pérez-Huerta, A., M. Cusack, P. Dalbeck. (2011). Crystallographic contribution to the vital effect in biogenic carbonates Mg/Ca thermometry. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 102, 35-41.

Pirazzoli, P. A., U. Radtke, W. S. Hantoro, C. Jounnic, C. T. Hoant, C. Causse, M. Borel Best. (1991). Quaternary Raised Coral-Reef Terraces on Sumba Island, . Science 252, 1834-1836.

Radtke, U., G. Schellmann. (2005). Timing and Magnitude of Sea Level Change During MIS 5 Derived from Barbados Coral Reef Terraces: A Critical Literature Review and New Data. Journal of Coastal Research SPECIAL ISSUE 42, 52-62.

Radtke, U., G. Schellmann. (2006). Uplift History along the Clermont Nose Traverse on the West Coast of Barbados during the Last 500,000 Years-Implications for Paleo-Sea Level Reconstructions. Journal of Coastal Research 22, 350-355.

Rees, T. A. V., W. K. Fitt, B. Baillie, D. Yellowlees. (1993). A Method for Temporal Measurement of Hemolymph Composition in the Giant Clam and its Application to Glucose and Glycerol Levels During a Diel Cycle. Limnology and Oceanography 38, 213-217.

Rodríguez-Tovar, F. J. (2014). Orbital Climate Cycles in the Fossil Record: From Semidiurnal to Million-Year Biotic Responses. Annual Review of Earth Planetary Science 42, 69-102.

Romanek, C. S., E. L. Grossman. (1989). Stable Isotope Profiles of Tridacna maxima as Environmental Indicators. The Society of Economic Paleontologists and Mineralogists 4, 402-413.

Rosewater, J. (1965). The Family Tridacnidae in the Indo-Pacific. Indo-Pacific Mollusca 1: 347- 396.

Sano, Y., Kobayashi, S., Shirai, K., Takahata, N., Matsumoto, K., Watanabe, T., Sowa, K., Iwai, K. (2012). Past daily light cycle recorded in the strontium/calcium ratios of giant clam shells. Nature Communications 3, Article: 761.

Shöne, B. R., D. M. Surge. (2012). Bivalve Sclerochronology and Geochemistry. Treatise on Invertebrate Paleontology, Part N, Revised 1, Chapter 14.

Sharma, M. (2002). Variations in solar magnetic activity during the last 200 000 years: is there a

58

Sun-climate connection? Earth and Planetary Science Letters 199, 459-472.

Stein, M., G. J. Wasserburg, P. Aharon, J. H. Chen, Z. R. Zhu, A. Bloom, J. Chappell. (1993). TIMS U-series dating and stable isotopes of last interglacial event in Papua New Guinea. Geochimica et Comsmochimica Acta 57, 2541-2554.

Steinhilber, F., J. A. Abreu, J. Beer. (2008). Solar modulation during the Holocene. Astrophysics and Space Sciences Transactions 4, 1-6.

Taylor, J. D. (1973). The Structural Evolution of the Bivalve Shell. Palaeontology 16, 519-534.

Tran, D., A. Nadau, G. Durrieu, P. Ciret, J. Parisot, J. Massabuau. (2011). Field Chronobiology of a Molluscan Bivalve: How the Moon and Sun Cycles Interact to Drive Oyster Activity Rhythms. Chronobiology International 28, 307-317.

Tudhope, A. W., C. P. Chilcott, M. T. McCulloch, E. R. Cook, J. Chappell, R. M. Ellam, D. W. Lea, J. M. Lough, G. B. Shimmield. (2001). Variability in the El Niño-Southern Oscillation through a Glacial-Interglacial Cycle. Science 291, 1511-1517.

Urmos, J., S. K., Sharma, F. T. Mackenzie. (1991). Characterization of some biogenic carbonates with Raman spectroscopy. American Mineralogist 76, 641-646. van Geel, B., O. M. Raspopov, H. Renssen, J. van der Plicht, V. A. Dergachev, H. A. J. Meijer. (1999). The role of solar forcing upon climate change. Quaternary Science Reviews 18, 331-338.

Veeh, H. H., J. Chappell. (1970). Astronomical Theory of Climatic Change: Support from New Guinea. Science 167, 862-865.

Warter, V., W. Müller, F. P. Wesselingh, J. A. Todd, W. Renema. (2015). Late Miocene Seasonal to Subdecadal Climate Variability in the Indo-West Pacific (East Kalimantan, Indonesia) Preserved in Giant Clams. Palaios 30, 66-82.

Warter, V. W. Müller. (2016). Daily growth and tidal rhythms in Miocene and modern giant clams revealed via ultra-high resolution LA-ICPMS – A novel methodological approach towards improved sclereochemistry. Palaeogeography, Palaeoclimatology, Palaeoecology. In press.

Watanabe, T., A. Suzuki, H. Kawahata, H. Kan, and S. Ogawa. (2004). A 60-year Isotopic Record from a Mid-Holocene Fossil Giant Clam (Tridacna Gigas) in the Ryukyu Islands: Physiological and Paleoclimatic Implications. Palaeogeography, Palaeoclimatology, Palaeoecology 212, 343-354.

Weiner, S., P. M. Dove. (2003). An Overview of Biominrealization Processes and the Problem of the Vital Effect. [Eds. P. M. Dove, J. J. DeYoreo, and S. Weiner]. Reviews in Mineralogy and Geochemistry: Biomineralization 54, 1-30.

59

Welsh, K., M. Elliot, A. Tudhope, B. Ayling, J. Chappell. (2011). Giant bivalves (Tridacna gigas) as recorders of ENSO variability. Earth and Planetary Science Letters 307, 266- 270.

Williamson, A., G. Hancock. (2005). The Geology and Mineral Potential of Papua New Guinea. Papua New Guinea Department of Mining, 30-41.

Yan, H., D. Shao, Y. Wang, L. Sun. (2013) Sr/Ca profile of long-lived Tridacna gigas bivalves from : A new high-resolution SST proxy. Geochimica et Cosmochimica Acta 112, 52-65.

Yan, H., L. Sun, D. Shao, Y. Wang. (2015). Seawater Temperature seasonality in the South China Sea during the late Holocene derived from high-resolution Sr/Ca ratios of Tridacna gigas. Quaternary Research 83, 298-306.

Yan, H., Y. Wang, L. Sun. (2014). High resolution oxygen isotope and grayscale records of a medieval fossil giant clam (Tridacna gigas) in the South China Sea: physiological and paleoclimatic implications. Acta Oceanologica Sinica 33, 18-25.

Yokoyama, Y., T. M. Esat, K. Lambeck. (2001). Coupled climate and sea-level changes deduced from Huon Peninsula coral terraces of the last ice age. Earth and Planetary Science Letters 193, 579-587.

60

APPENDIX I: BIOLOGY

Relevant Anatomy

Organs responsible for shell production are those involved with the organism’s respiration and digestion (Fig. 1.12). The siphonal mantle is visible when the valves are opened. Iridophores of brilliant shades of blue and green are characteristic of T. gigas (Rosewater, 1965), produced by photosynthetic zooxanthellae making this species unique from most other bivalves (Norton, et al., 1992). Zooxanthellae live within a tubular system that extends from the siphonal mantle to the digestive mass (Norton et al., 1992). The siphonal mantle also holds the internal and external that are responsible for filtering water in to and out of the organism. Surrounding these orifices are sensory hyaline organs that allow the to detect predators, increasing their awareness and longevity (Norton et al., 1992). Incurrent water moves through ctenidia and food is filtered out within the ctenidial gills, processed, and ultimately ending up in the digestive mass

(Norton and Jones, 1992). The digestive mass shares a boundary with the hinge gland, which is partially bounded by the lateral mantle and extra pallial space (Norton and Jones, 1992). The lateral mantle is a membranous lining of the inside of the valves and is confined by the excurrent water chamber, which can hold and squirt water as a method of deterring predators at rates dependent on the individuals size (Neo and Todd, 2011). The pallial line is the location on the shell where the siphonal and lateral mantles attach to the valves. This is also the interface of the internal and external layers of shell (Norton et al., 1992).

61

Feeding Mechanisms

In order to maintain rapid shell growth, a large source of nutrients is required. T. gigas fulfills this need through two feeding mechanisms: traditional filter feeding, and symbiotic zooxanthellae. In the juvenile stage, the clam ingests and retains photosynthetic zooxanthellae within their siphonal mantle (Fitt and Trench, 1981) by the means of sequestering through a tubular system from their digestive mass (Norton et al., 1992). Zooxanthellae provide the individual with carbon for calcification in the forms of glycerol and glucose (Rees et al,

1993). They can also be harvested if there is a lack of phytoplankton in the water, obtained during filter feeding. During early ontogeny, T. gigas depends on both sources of nutrients; as it grows, it becomes increasingly dependent on the symbiotic relationship: particulate carbon from filter feeding decreases in absorbance from 65% to 34% (Klumpp et al., 1992).

Reproduction

T. gigas are sequential simultaneous ; individuals produce both and in a sequential pattern, although they are not spawned at the same time (Braley, 1984). Upon reaching sexual maturity between 10 years (Jones, et al., 1986) and 12 years of age (Watanabe et al., 2004), the gonads develop initially as male components and later add female ovaries (Norton and Jones, 1992). The gonads are located along the side of the wall of the digestive mass (Norton and Jones, 1992), likely allowing for easy reallocation of nutrients from shell secretion during spawning, which is associated with decreased summer growth at the onset of sexual maturity

(Romanek and Grossman, 1989). Lunar periodicity affects when spawning occurs, however it differs with locality ranging from on the day of the new moon to 13 days after the new moon

(Braley, 1984). The lunar month is often recorded within the shell in patterns of simple and

62 complex (light and dark) daily growth increments that remain fairly consistent in thickness through the duration of the month (Pannella and MacClintock, 1968). Due to the energy and nutrients spawning requires, there could potentially be microstructural influences visible in the shell.

63

APPENDIX II: SEASONAL GROWTH INCREMENTS

SEM band counting and assuming daily increments for the growth lines, light and dark microscopically visible increments at low resolution, displays microstructural changes at a regular interval every two to three lunar months (29.53 days per lunar month) for all modern specimens analyzed. GBR specimens showed a microstructural modification at growth breaks represented by a band of organized needles bounded on either side by the normal growth of shield-like aragonite crystals (Fig. A.1). Growth breaks at these intervals are also apparent in the

T. gigas from PNG (Fig. A.2). The microstructure in K-133 is composed of small disorganized crystals in bands that span the height of several days of growth (Figs. 1.7a and 1.7b). The EBSD crystallography map and pole figure of a K-133 seasonal break shows a continuity of the c-axis of aragonite following the elongation of needles in the direction of growth, although the diffraction is reduced and corresponds to the small crystal size present at these seasonal break increments (Fig. A.2c and A.2d).

64

Figure A.1, Seasonal breaks are seen at regular intervals of approximately three months in GBR specimens by semi-organized needles with a noticeable break in growth for early ontogenies [PT-3 (a) and PT-1 (b)] as well as during the last stage of the individual’s life [PT- 3 (c) and PT-1 (d)].

65

Figure A.2, Seasonal increments in the T. gigas from PNG are composed of tiny disorganized crystals in early ontogeny (a) and later ontogeny (b). Reduced size of the crystals at seasonal breaks is seen in microtexture EBSD mapping (c) which retains c-axis in the same position as non-seasonal increments (d).

66

APPENDIX III: NEEDLE MEASUREMENTS

(See Figs. 1.6 and 2.3) Age (Table 2.1) Specimen n Layer (Fig. 1.1) Needle Width (µm) Modern K-133 1 FG 3.69 Modern K-133 2 FG 2.04 Modern K-133 3 FG 2.62 Modern K-133 4 FG 1.57 Modern K-133 5 FG 4.71 Modern K-133 6 FG 2.35 Modern K-133 7 FG 3.45 Modern K-133 8 FG 2.66 Modern K-133 9 FG 2.74 Modern K-133 10 FG 3.46 Modern K-133 11 FG 2.97 Modern K-133 12 FG 2.93 Modern K-133 13 FG 3.17 Modern K-133 14 FG 3.08 Modern K-133 15 FG 2.75 Modern K-133 16 FG 2.93 Modern K-133 17 FG 2.58 Modern K-133 18 FG 3.98 Modern K-133 19 FG 3.82 Modern K-133 20 FG 3.36 Modern K-133 1 LG 8.01 Modern K-133 2 LG 3.41 Modern K-133 3 LG 3.32 Modern K-133 4 LG 3.75 Modern K-133 5 LG 3.99 Modern K-133 6 LG 3.41 Modern K-133 7 LG 5.79 Modern K-133 8 LG 6.21 Modern K-133 9 LG 6.78 Modern K-133 10 LG 4.78 Modern K-133 11 LG 4.48 Modern K-133 12 LG 3.28

67

Age (Table 2.1) Specimen n Layer (Fig. 1.1) Needle Width (µm) Modern K-133 13 LG 3.50 Modern K-133 14 LG 4.05 Modern K-133 15 LG 4.02 Modern K-133 16 LG 5.78 Modern K-133 17 LG 6.16 Modern K-133 18 LG 3.88 Modern K-133 19 LG 3.23 Modern K-133 20 LG 5.02 Modern PT-1 1 FG 1.03 Modern PT-1 2 FG 0.72 Modern PT-1 3 FG 1.15 Modern PT-1 4 FG 1.00 Modern PT-1 5 FG 0.75 Modern PT-1 6 FG 0.72 Modern PT-1 7 FG 0.62 Modern PT-1 8 FG 0.75 Modern PT-1 9 FG 1.12 Modern PT-1 10 FG 1.12 Modern PT-1 11 FG 0.87 Modern PT-1 12 FG 1.25 Modern PT-1 13 FG 0.87 Modern PT-1 14 FG 0.84 Modern PT-1 15 FG 0.59 Modern PT-1 16 FG 0.93 Modern PT-1 17 FG 0.84 Modern PT-1 18 FG 0.69 Modern PT-1 19 FG 0.75 Modern PT-1 20 FG 0.90 Modern PT-1 1 LG 5.10 Modern PT-1 2 LG 3.02 Modern PT-1 3 LG 4.01 Modern PT-1 4 LG 4.10 Modern PT-1 5 LG 1.59 Modern PT-1 6 LG 2.33 Modern PT-1 7 LG 3.01 Modern PT-1 8 LG 2.31 Modern PT-1 9 LG 4.34 Modern PT-1 10 LG 2.92

68

Age (Table 2.1) Specimen n Layer (Fig. 1.1) Needle Width (µm) Modern PT-1 11 LG 2.86 Modern PT-1 12 LG 3.44 Modern PT-1 13 LG 2.33 Modern PT-1 14 LG 8.76 Modern PT-1 15 LG 3.81 Modern PT-1 16 LG 3.75 Modern PT-1 17 LG 3.54 Modern PT-1 18 LG 4.49 Modern PT-1 19 LG 1.32 Modern PT-1 20 LG 4.33 Modern PT-3 1 FG 3.50 Modern PT-3 2 FG 2.34 Modern PT-3 3 FG 3.63 Modern PT-3 4 FG 2.95 Modern PT-3 5 FG 3.77 Modern PT-3 6 FG 3.63 Modern PT-3 7 FG 3.26 Modern PT-3 8 FG 1.19 Modern PT-3 9 FG 1.81 Modern PT-3 10 FG 2.94 Modern PT-3 11 FG 2.57 Modern PT-3 12 FG 2.27 Modern PT-3 13 FG 3.03 Modern PT-3 14 FG 2.32 Modern PT-3 15 FG 2.88 Modern PT-3 16 FG 2.82 Modern PT-3 17 FG 2.78 Modern PT-3 18 FG 2.08 Modern PT-3 19 FG 3.07 Modern PT-3 20 FG 2.02 Modern PT-3 1 LG 3.36 Modern PT-3 2 LG 1.50 Modern PT-3 3 LG 2.15 Modern PT-3 4 LG 2.47 Modern PT-3 5 LG 3.06 Modern PT-3 6 LG 2.72 Modern PT-3 7 LG 2.90 Modern PT-3 8 LG 1.92

69

Age (Table 2.1) Specimen n Layer (Fig. 1.1) Needle Width (µm) Modern PT-3 9 LG 2.95 Modern PT-3 10 LG 4.65 Modern PT-3 11 LG 3.73 Modern PT-3 12 LG 1.37 Modern PT-3 13 LG 4.27 Modern PT-3 14 LG 2.72 Modern PT-3 15 LG 3.13 Modern PT-3 16 LG 3.00 Modern PT-3 17 LG 2.99 Modern PT-3 18 LG 2.86 Modern PT-3 19 LG 3.76 Modern PT-3 20 LG 2.06 5.35 ± 0.02 K-134 1 FG 1.19 5.35 ± 0.02 K-134 2 FG 1.54 5.35 ± 0.02 K-134 3 FG 1.69 5.35 ± 0.02 K-134 4 FG 2.70 5.35 ± 0.02 K-134 5 FG 0.75 5.35 ± 0.02 K-134 6 FG 0.77 5.35 ± 0.02 K-134 7 FG 1.63 5.35 ± 0.02 K-134 8 FG 0.88 5.35 ± 0.02 K-134 9 FG 1.13 5.35 ± 0.02 K-134 10 FG 1.89 5.35 ± 0.02 K-134 11 FG 1.88 5.35 ± 0.02 K-134 12 FG 2.26 5.35 ± 0.02 K-134 13 FG 0.78 5.35 ± 0.02 K-134 14 FG 4.01 5.35 ± 0.02 K-134 15 FG 2.00 5.35 ± 0.02 K-134 16 FG 2.33 5.35 ± 0.02 K-134 17 FG 0.75 5.35 ± 0.02 K-134 18 FG 1.02 5.35 ± 0.02 K-134 19 FG 0.84 5.35 ± 0.02 K-134 20 FG 1.14 5.52 ± 0.02 K-135 1 FG 0.19 5.52 ± 0.02 K-135 2 FG 0.09 5.52 ± 0.02 K-135 3 FG 0.53 5.52 ± 0.02 K-135 4 FG 0.13 5.52 ± 0.02 K-135 5 FG 0.09 5.52 ± 0.02 K-135 6 FG 0.28

70

Age (Table 2.1) Specimen n Layer (Fig. 1.1) Needle Width (µm) 5.52 ± 0.02 K-135 7 FG 0.00 5.52 ± 0.02 K-135 8 FG 0.09 5.52 ± 0.02 K-135 9 FG 0.07 5.52 ± 0.02 K-135 10 FG 0.31 5.52 ± 0.02 K-135 11 FG 0.15 5.52 ± 0.02 K-135 12 FG 0.06 5.52 ± 0.02 K-135 13 FG 0.28 5.52 ± 0.02 K-135 14 FG 0.30 5.52 ± 0.02 K-135 15 FG 0.36 5.52 ± 0.02 K-135 16 FG 0.00 5.52 ± 0.02 K-135 17 FG 0.07 5.52 ± 0.02 K-135 18 FG 0.01 5.52 ± 0.02 K-135 19 FG 0.00 5.52 ± 0.02 K-135 20 FG 0.21 41.7 ± 0.6 K-9 1 FG 0.85 41.7 ± 0.6 K-9 2 FG 1.27 41.7 ± 0.6 K-9 3 FG 0.95 41.7 ± 0.6 K-9 4 FG 1.60 41.7 ± 0.6 K-9 5 FG 1.05 41.7 ± 0.6 K-9 6 FG 0.72 41.7 ± 0.6 K-9 7 FG 0.87 41.7 ± 0.6 K-9 8 FG 1.25 41.7 ± 0.6 K-9 9 FG 0.87 41.7 ± 0.6 K-9 10 FG 0.52 41.7 ± 0.6 K-9 11 FG 1.12 41.7 ± 0.6 K-9 12 FG 1.25 41.7 ± 0.6 K-9 13 FG 0.55 41.7 ± 0.6 K-9 14 FG 1.25 41.7 ± 0.6 K-9 15 FG 0.72 41.7 ± 0.6 K-9 16 FG 1.37 41.7 ± 0.6 K-9 17 FG 2.05 41.7 ± 0.6 K-9 18 FG 1.15 41.7 ± 0.6 K-9 19 FG 0.75 41.7 ± 0.6 K-9 20 FG 1.12 62.5 ± 0.6 K-8 1 FG 3.54 62.5 ± 0.6 K-8 2 FG 3.70 62.5 ± 0.6 K-8 3 FG 3.75 62.5 ± 0.6 K-8 4 FG 3.29

71

Age (Table 2.1) Specimen n Layer (Fig. 1.1) Needle Width (µm) 62.5 ± 0.6 K-8 5 FG 0.83 62.5 ± 0.6 K-8 6 FG 5.07 62.5 ± 0.6 K-8 7 FG 2.75 62.5 ± 0.6 K-8 8 FG 1.92 62.5 ± 0.6 K-8 9 FG 2.27 62.5 ± 0.6 K-8 10 FG 2.55 62.5 ± 0.6 K-8 11 FG 0.94 62.5 ± 0.6 K-8 12 FG 2.71 62.5 ± 0.6 K-8 13 FG 1.62 62.5 ± 0.6 K-8 14 FG 1.28 62.5 ± 0.6 K-8 15 FG 2.00 62.5 ± 0.6 K-8 16 FG 0.82 62.5 ± 0.6 K-8 17 FG 2.09 62.5 ± 0.6 K-8 18 FG 1.33 62.5 ± 0.6 K-8 19 FG 3.70 62.5 ± 0.6 K-8 20 FG 2.48 92.1 ± 3.1 K-14 1 FG 1.82 92.1 ± 3.1 K-14 2 FG 0.97 92.1 ± 3.1 K-14 3 FG 1.13 92.1 ± 3.1 K-14 4 FG 0.79 92.1 ± 3.1 K-14 5 FG 2.94 92.1 ± 3.1 K-14 6 FG 1.08 92.1 ± 3.1 K-14 7 FG 1.33 92.1 ± 3.1 K-14 8 FG 1.01 92.1 ± 3.1 K-14 9 FG 2.08 92.1 ± 3.1 K-14 10 FG 1.25 92.1 ± 3.1 K-14 11 FG 0.96 92.1 ± 3.1 K-14 12 FG 1.58 92.1 ± 3.1 K-14 13 FG 1.34 92.1 ± 3.1 K-14 14 FG 1.20 92.1 ± 3.1 K-14 15 FG 0.95 92.1 ± 3.1 K-14 16 FG 1.08 92.1 ± 3.1 K-14 17 FG 1.41 92.1 ± 3.1 K-14 18 FG 1.25 92.1 ± 3.1 K-14 19 FG 1.40 92.1 ± 3.1 K-14 20 FG 0.89 92.1 ± 3.1 K-15 1 FG 2.54 92.1 ± 3.1 K-15 2 FG 0.91

72

Age (Table 2.1) Specimen n Layer (Fig. 1.1) Needle Width (µm) 92.1 ± 3.1 K-15 3 FG 2.59 92.1 ± 3.1 K-15 4 FG 1.16 92.1 ± 3.1 K-15 5 FG 2.39 92.1 ± 3.1 K-15 6 FG 2.83 92.1 ± 3.1 K-15 7 FG 2.11 92.1 ± 3.1 K-15 8 FG 1.66 92.1 ± 3.1 K-15 9 FG 1.88 92.1 ± 3.1 K-15 10 FG 1.77 92.1 ± 3.1 K-15 11 FG 1.67 92.1 ± 3.1 K-15 12 FG 1.21 92.1 ± 3.1 K-15 13 FG 1.49 92.1 ± 3.1 K-15 14 FG 0.66 92.1 ± 3.1 K-15 15 FG 1.35 92.1 ± 3.1 K-15 16 FG 1.21 92.1 ± 3.1 K-15 17 FG 1.71 92.1 ± 3.1 K-15 18 FG 0.86 92.1 ± 3.1 K-15 19 FG 1.71 92.1 ± 3.1 K-15 20 FG 1.32 107.0 ± 0.2 K-17 1 FG 4.23 107.0 ± 0.2 K-17 2 FG 4.27 107.0 ± 0.2 K-17 3 FG 3.01 107.0 ± 0.2 K-17 4 FG 4.58 107.0 ± 0.2 K-17 5 FG 5.64 107.0 ± 0.2 K-17 6 FG 3.68 107.0 ± 0.2 K-17 7 FG 4.93 107.0 ± 0.2 K-17 8 FG 5.31 107.0 ± 0.2 K-17 9 FG 4.70 107.0 ± 0.2 K-17 10 FG 5.41 107.0 ± 0.2 K-17 11 FG 4.36 107.0 ± 0.2 K-17 12 FG 5.40 107.0 ± 0.2 K-17 13 FG 3.63 107.0 ± 0.2 K-17 14 FG 5.86 107.0 ± 0.2 K-17 15 FG 5.40 107.0 ± 0.2 K-17 16 FG 3.88 107.0 ± 0.2 K-17 17 FG 2.62 107.0 ± 0.2 K-17 18 FG 4.48 107.0 ± 0.2 K-17 19 FG 6.45 107.0 ± 0.2 K-17 20 FG 2.87

73

Age (Table 2.1) Specimen n Layer (Fig. 1.1) Needle Width (µm) 107.0 ± 0.2 K-46 1 FG 4.77 107.0 ± 0.2 K-46 2 FG 1.68 107.0 ± 0.2 K-46 3 FG 3.43 107.0 ± 0.2 K-46 4 FG 1.58 107.0 ± 0.2 K-46 5 FG 4.70 107.0 ± 0.2 K-46 6 FG 1.99 107.0 ± 0.2 K-46 7 FG 6.43 107.0 ± 0.2 K-46 8 FG 4.27 107.0 ± 0.2 K-46 9 FG 8.14 107.0 ± 0.2 K-46 10 FG 4.69 107.0 ± 0.2 K-46 11 FG 5.52 107.0 ± 0.2 K-46 12 FG 2.19 107.0 ± 0.2 K-46 13 FG 7.37 107.0 ± 0.2 K-46 14 FG 5.37 107.0 ± 0.2 K-46 15 FG 3.01 107.0 ± 0.2 K-46 16 FG 5.23 107.0 ± 0.2 K-46 17 FG 5.12 107.0 ± 0.2 K-46 18 FG 5.16 107.0 ± 0.2 K-46 19 FG 4.56 107.0 ± 0.2 K-46 20 FG 5.17 119.1 ± 1.9 K-131 1 FG 1.98 119.1 ± 1.9 K-131 2 FG 4.19 119.1 ± 1.9 K-131 3 FG 2.92 119.1 ± 1.9 K-131 4 FG 2.21 119.1 ± 1.9 K-131 5 FG 2.37 119.1 ± 1.9 K-131 6 FG 2.29 119.1 ± 1.9 K-131 7 FG 1.98 119.1 ± 1.9 K-131 8 FG 2.79 119.1 ± 1.9 K-131 9 FG 2.19 119.1 ± 1.9 K-131 10 FG 1.85 119.1 ± 1.9 K-131 11 FG 3.39 119.1 ± 1.9 K-131 12 FG 3.05 119.1 ± 1.9 K-131 13 FG 3.62 119.1 ± 1.9 K-131 14 FG 1.93 119.1 ± 1.9 K-131 15 FG 3.72 119.1 ± 1.9 K-131 16 FG 2.71 119.1 ± 1.9 K-131 17 FG 1.77 119.1 ± 1.9 K-131 18 FG 1.87

74

Age (Table 2.1) Specimen n Layer (Fig. 1.1) Needle Width (µm) 119.1 ± 1.9 K-131 19 FG 2.06 119.1 ± 1.9 K-131 20 FG 3.57 134.1 ± 1.4 K-126 1 FG 4.15 134.1 ± 1.4 K-126 2 FG 3.79 134.1 ± 1.4 K-126 3 FG 3.77 134.1 ± 1.4 K-126 4 FG 5.89 134.1 ± 1.4 K-126 5 FG 4.30 134.1 ± 1.4 K-126 6 FG 3.90 134.1 ± 1.4 K-126 7 FG 3.09 134.1 ± 1.4 K-126 8 FG 4.57 134.1 ± 1.4 K-126 9 FG 2.95 134.1 ± 1.4 K-126 10 FG 3.62 134.1 ± 1.4 K-126 11 FG 5.81 134.1 ± 1.4 K-126 12 FG 4.02 134.1 ± 1.4 K-126 13 FG 5.62 134.1 ± 1.4 K-126 14 FG 5.11 134.1 ± 1.4 K-126 15 FG 6.88 134.1 ± 1.4 K-126 16 FG 6.43 134.1 ± 1.4 K-126 17 FG 3.92 134.1 ± 1.4 K-126 18 FG 4.70 134.1 ± 1.4 K-126 19 FG 4.57 134.1 ± 1.4 K-126 20 FG 2.95 134.1 ± 1.4 K-24 1 FG 3.20 134.1 ± 1.4 K-24 2 FG 1.95 134.1 ± 1.4 K-24 3 FG 1.79 134.1 ± 1.4 K-24 4 FG 2.46 134.1 ± 1.4 K-24 5 FG 1.85 134.1 ± 1.4 K-24 6 FG 2.08 134.1 ± 1.4 K-24 7 FG 1.34 134.1 ± 1.4 K-24 8 FG 1.57 134.1 ± 1.4 K-24 9 FG 3.02 134.1 ± 1.4 K-24 10 FG 2.22 134.1 ± 1.4 K-24 11 FG 1.76 134.1 ± 1.4 K-24 12 FG 3.01 134.1 ± 1.4 K-24 13 FG 1.43 134.1 ± 1.4 K-24 14 FG 3.40 134.1 ± 1.4 K-24 15 FG 1.68 134.1 ± 1.4 K-24 16 FG 2.55

75

Age (Table 2.1) Specimen n Layer (Fig. 1.1) Needle Width (µm) 134.1 ± 1.4 K-24 17 FG 1.99 134.1 ± 1.4 K-24 18 FG 2.47 134.1 ± 1.4 K-24 19 FG 1.77 134.1 ± 1.4 K-24 20 FG 2.57 198.7 ± 4.6 K-38 1 FG 2.66 198.7 ± 4.6 K-38 2 FG 2.21 198.7 ± 4.6 K-38 3 FG 3.59 198.7 ± 4.6 K-38 4 FG 3.48 198.7 ± 4.6 K-38 5 FG 3.05 198.7 ± 4.6 K-38 6 FG 3.45 198.7 ± 4.6 K-38 7 FG 3.21 198.7 ± 4.6 K-38 8 FG 2.83 198.7 ± 4.6 K-38 9 FG 3.60 198.7 ± 4.6 K-38 10 FG 2.42 198.7 ± 4.6 K-38 11 FG 3.93 198.7 ± 4.6 K-38 12 FG 5.32 198.7 ± 4.6 K-38 13 FG 2.03 198.7 ± 4.6 K-38 14 FG 3.44 198.7 ± 4.6 K-38 15 FG 2.50 198.7 ± 4.6 K-38 16 FG 3.13 198.7 ± 4.6 K-38 17 FG 2.44 198.7 ± 4.6 K-38 18 FG 1.81 198.7 ± 4.6 K-38 19 FG 2.58 198.7 ± 4.6 K-38 20 FG 3.91

76

APPENDIX IV: DAILY GROWTH

Low Resolution Daily Band Thickness (µm) Sample K-133 PT-1 Shell Location FG LG FG LG 1 31.90 17.57 19.99 17.47 2 34.04 17.80 27.43 18.08 3 31.90 20.08 22.28 22.29 4 31.90 25.60 25.71 18.28 5 37.20 12.30 22.86 17.88 6 31.40 14.80 28.57 23.08 7 35.10 22.09 28.57 27.92 8 31.40 24.50 31.43 22.01 9 34.04 23.50 26.86 20.94 10 27.66 33.45 27.43 18.26 Average 32.65 21.17 26.11 20.62

77

APPENDIX V: DAYTIME AND NIGHTTIME GROWTH

High Resolution Band Thickness (µm) Sample K-133 Needle type Daytime Nighttime 1 30.30 10.65 2 46.80 5.15 3 27.50 10.40 4 29.26 13.30 5 33.84 7.69 6 36.97 9.95 7 32.80 13.30 8 30.72 5.68 9 31.60 11.60 10 42.99 15.14 11 35.10 9.10 12 23.60 4.43 Average 33.46 9.70

78

APPENDIX VI: HIGH TIDE DATA

Dreger Harbor, Papua New Guinea Lucinda, Australia (6.6500° S, 147.8667° E) (18.5167° S, 146.3333° E) Time of day of the highest Time of day of the highest Date tide Date tide 7-Apr-74 3:35:00 AM 8/7/76 8:00 PM 14-Apr-74 5:02:00 AM 8/14/76 11:25 PM 21-Apr-74 2:54:00 AM 8/21/76 7:14 PM 28-Apr-74 4:34:00 AM 8/28/76 10:34 AM 5-May-74 2:38:00 AM 9/4/76 7:06 PM 12-May-74 4:15:00 AM 9/11/76 10:15 AM 19-May-74 1:51:00 AM 9/18/76 6:18 PM 26-May-74 3:56:00 AM 9/25/76 9:34 AM 2-Jun-74 1:36:00 AM 10/2/76 6:06 PM 9-Jun-74 3:39:00 AM 10/9/76 9:22 AM 16-Jun-74 12:15:00 AM 10/16/76 5:07 PM 23-Jun-74 3:29:00 AM 10/23/76 8:42 AM 30-Jun-74 12:00:00 AM 10/30/76 4:53 PM 7-Jul-74 3:10:00 AM 11/6/76 8:39 AM 14-Jul-74 10:24:00 PM 11/13/76 2:35 PM 21-Jul-74 3:07:00 AM 11/20/76 7:56 AM 28-Jul-74 8:39:00 PM 11/27/76 3:03 PM 4-Aug-74 2:42:00 AM 12/4/76 8:04 AM 11-Aug-74 7:40:00 PM 12/11/76 11:59 AM 18-Aug-74 2:42:00 AM 12/18/76 7:12 AM 25-Aug-74 6:48:00 PM 12/25/76 12:32 PM 1-Sep-74 2:04:00 AM 1/1/77 7:35 AM 8-Sep-74 6:11:00 PM 1/8/77 10:43 AM 15-Sep-74 2:06:00 AM 1/15/77 6:27 AM 22-Sep-74 5:35:00 PM 1/22/77 11:02 AM 29-Sep-74 4:03:00 PM 1/29/77 7:04 AM 6-Oct-74 5:06:00 PM 2/5/77 9:41 AM 13-Oct-74 3:55:00 PM 2/12/77 5:29 AM 20-Oct-74 4:39:00 PM 2/19/77 9:53 AM 27-Oct-74 3:07:00 PM 2/26/77 6:24 AM

79

Dreger Harbor, Papua New Guinea Lucinda, Australia (6.6500° S, 147.8667° E) (18.5167° S, 146.3333° E) Time of day of the highest Time of day of the highest Date tide Date tide 3-Nov-74 4:14:00 PM 3/5/77 8:42 AM 10-Nov-74 3:03:00 PM 3/12/77 3:53 AM 17-Nov-74 3:53:00 PM 3/19/77 8:53 AM 24-Nov-74 2:18:00 PM 3/26/77 5:01 AM 1-Dec-74 3:33:00 PM 4/2/77 7:43 AM 8-Dec-74 2:28:00 PM 4/9/77 1:25 AM 15-Dec-74 3:18:00 PM 4/16/77 7:57 AM 22-Dec-74 3:22:00 PM 4/23/77 9:22 AM 29-Dec-74 2:27:00 PM 4/30/77 6:40 AM 5-Jan-75 3:29:00 PM 5/7/77 11:48 AM 12-Jan-75 2:23:00 PM 5/14/77 7:41 PM 19-Jan-75 7:31:00 AM 5/21/77 11:32 PM 26-Jan-75 1:56:00 PM 5/28/77 6:21 PM 2-Feb-75 6:08:00 AM 6/4/77 11:39 PM 9-Feb-75 1:54:00 PM 6/11/77 7:02 PM 16-Feb-75 5:39:00 AM 6/18/77 10:28 PM 23-Feb-75 1:04:00 PM 6/25/77 3:53 AM 2-Mar-75 4:55:00 AM 7/2/77 10:29 PM 9-Mar-75 1:48:00 PM 7/9/77 6:21 PM 16-Mar-75 4:30:00 AM 7/16/77 9:29 PM 23-Mar-75 6:08:00 AM 7/23/77 1:42 AM 30-Mar-75 3:55:00 AM 7/30/77 9:26 PM 6-Apr-75 5:35:00 AM 8/6/77 5:27 PM 13-Apr-75 3:30:00 AM 8/13/77 8:32 PM 20-Apr-75 5:18:00 AM 8/20/77 1:03 PM 27-Apr-75 3:01:00 AM 8/27/77 8:26 PM 4-May-75 4:56:00 AM 9/3/77 3:16 PM 11-May-75 2:33:00 AM 9/10/77 7:36 PM 18-May-75 4:51:00 AM 9/17/77 11:28 AM 25-May-75 2:10:00 AM 9/24/77 7:28 PM 1-Jun-75 4:31:00 AM 10/1/77 11:22 AM 8-Jun-75 1:33:00 AM 10/8/77 6:38 PM 15-Jun-75 4:32:00 AM 10/15/77 10:22 AM 22-Jun-75 1:12:00 AM 10/22/77 6:30 PM 29-Jun-75 4:11:00 AM 10/29/77 10:17 AM 6-Jul-75 12:04:00 AM 11/5/77 5:35 PM

80

Dreger Harbor, Papua New Guinea Lucinda, Australia (6.6500° S, 147.8667° E) (18.5167° S, 146.3333° E) Time of day of the highest Time of day of the highest Date tide Date tide 13-Jul-75 4:13:00 AM 11/12/77 9:28 AM 20-Jul-75 12:00:00 AM 11/19/77 5:26 PM 27-Jul-75 3:48:00 AM 11/26/77 9:28 AM 3-Aug-75 11:52:00 PM 12/3/77 3:55 PM 10-Aug-75 3:50:00 AM 12/10/77 8:40 AM 17-Aug-75 8:40:00 PM 12/17/77 4:01 PM 24-Aug-75 3:20:00 AM 12/24/77 8:47 AM 31-Aug-75 7:45:00 PM 12/31/77 12:43 PM 7-Sep-75 3:24:00 AM 1/7/78 7:54 AM 14-Sep-75 6:36:00 PM 1/14/78 1:40 PM 21-Sep-75 4:20:00 PM 1/21/78 8:08 AM 28-Sep-75 6:15:00 PM 1/28/78 11:12 AM 5-Oct-75 3:57:00 PM 2/4/78 7:07 AM 12-Oct-75 5:34:00 PM 2/11/78 11:40 AM 19-Oct-75 3:21:00 PM 2/18/78 7:28 AM 26-Oct-75 5:22:00 PM 2/25/78 10:06 AM 2-Nov-75 3:02:00 PM 3/4/78 6:12 AM 9-Nov-75 4:51:00 PM 3/11/78 10:23 AM 16-Nov-75 2:25:00 PM 3/18/78 6:39 AM 23-Nov-75 4:44:00 PM 3/25/78 9:06 AM 30-Nov-75 2:57:00 AM 4/1/78 4:57 AM 7-Dec-75 4:20:00 PM 4/8/78 9:21 AM 14-Dec-75 1:23:00 PM 4/15/78 5:27 AM 21-Dec-75 4:14:00 PM 4/22/78 8:40 PM 28-Dec-75 12:00:00 AM 4/29/78 3:02 AM 4-Jan-76 3:55:00 PM 5/6/78 9:04 PM 11-Jan-76 11:23:00 AM 5/13/78 2:46 AM 18-Jan-76 3:17:00 PM 5/20/78 7:53 PM 25-Jan-76 7:28:00 AM 5/27/78 12:59 AM 1-Feb-76 3:34:00 PM 6/3/78 8:22 PM 8-Feb-76 6:56:00 AM 6/10/78 11:14 AM 15-Feb-76 3:22:00 PM 6/17/78 7:07 PM 22-Feb-76 5:50:00 AM 6/24/78 11:36 AM 29-Feb-76 3:11:00 PM 7/1/78 7:42 PM 7-Mar-76 5:32:00 AM 7/8/78 11:11 PM 14-Mar-76 2:53:00 PM 7/15/78 6:19 PM

81

Dreger Harbor, Papua New Guinea Lucinda, Australia (6.6500° S, 147.8667° E) (18.5167° S, 146.3333° E) Time of day of the highest Time of day of the highest Date tide Date tide 21-Mar-76 4:44:00 AM 7/22/78 11:08 PM 28-Mar-76 4:46:00 AM 7/29/78 7:00 PM 4-Apr-76 4:27:00 AM 8/5/78 10:00 PM 11-Apr-76 4:16:00 AM 8/12/78 5:20 PM 18-Apr-76 3:49:00 AM 8/19/78 9:56 PM 25-Apr-76 4:07:00 AM 8/26/78 6:10 PM 2-May-76 3:32:00 AM 9/2/78 8:56 PM 9-May-76 4:05:00 AM 9/9/78 3:34 PM 16-May-76 3:03:00 AM 9/16/78 8:52 PM 23-May-76 4:04:00 AM 9/23/78 5:01 PM 30-May-76 2:43:00 AM 9/30/78 7:56 PM 6-Jun-76 4:45:00 AM 10/7/78 12:51 PM 13-Jun-76 2:23:00 AM 10/14/78 7:52 PM 20-Jun-76 11:51:00 PM 10/21/78 2:21 PM 27-Jun-76 1:56:00 AM 10/28/78 6:59 PM 4-Jul-76 4:57:00 AM 11/4/78 11:22 AM 11-Jul-76 1:48:00 AM 11/11/78 6:56 PM 18-Jul-76 7:56:00 PM 11/18/78 11:29 AM 25-Jul-76 12:58:00 AM 11/25/78 6:03 PM 1-Aug-76 7:00:00 PM 12/2/78 10:18 AM 8-Aug-76 1:01:00 AM 12/9/78 6:01 PM 15-Aug-76 6:21:00 PM 12/16/78 10:20 AM 22-Aug-76 12:00:00 AM 12/23/78 4:56 PM 29-Aug-76 5:40:00 PM 12/30/78 9:24 AM 5-Sep-76 12:00:00 AM 1/6/79 4:59 PM 12-Sep-76 5:10:00 PM 1/13/79 9:28 AM 19-Sep-76 6:42:00 PM 1/20/79 1:48 PM 26-Sep-76 4:36:00 PM 1/27/79 8:33 AM 3-Oct-76 5:46:00 PM 2/3/79 3:16 PM 10-Oct-76 4:09:00 PM 2/10/79 8:39 AM 17-Oct-76 5:51:00 PM 2/17/79 11:30 AM 24-Oct-76 3:40:00 PM 2/24/79 7:41 AM 31-Oct-76 5:09:00 PM 3/3/79 12:18 AM 7-Nov-76 3:16:00 PM 3/10/79 7:50 AM 14-Nov-76 5:32:00 PM 3/17/79 10:24 AM 21-Nov-76 4:29:00 AM 3/24/79 6:43 AM

82

Dreger Harbor, Papua New Guinea Lucinda, Australia (6.6500° S, 147.8667° E) (18.5167° S, 146.3333° E) Time of day of the highest Time of day of the highest Date tide Date tide 28-Nov-76 4:53:00 PM 3/31/79 11:57 PM 5-Dec-76 2:09:00 PM 4/7/79 6:56 AM 12-Dec-76 5:14:00 PM 4/14/79 10:12 PM 19-Dec-76 1:47:00 PM 4/21/79 5:35 AM 26-Dec-76 4:41:00 PM 4/28/79 10:47 PM 2-Jan-77 1:18:00 PM 5/5/79 5:50 AM 9-Jan-77 4:51:00 PM 5/12/79 9:26 PM 16-Jan-77 12:55:00 PM 5/19/79 4:02 AM 23-Jan-77 4:25:00 PM 5/26/79 9:54 PM 30-Jan-77 10:15:00 AM 6/2/79 4:11 AM 6-Feb-77 4:25:00 PM 6/9/79 8:40 PM 13-Feb-77 7:16:00 AM 6/16/79 2:02 AM 20-Feb-77 4:05:00 PM 6/23/79 9:06 PM 27-Feb-77 6:52:00 AM 6/30/79 1:00 AM 6-Mar-77 3:58:00 PM 7/7/79 7:53 PM 13-Mar-77 5:45:00 AM 7/14/79 12:18 AM 20-Mar-77 4:19:00 AM 7/21/79 8:19 PM 27-Mar-77 5:32:00 AM 7/28/79 11:45 PM 3-Apr-77 3:42:00 AM 8/4/79 7:05 PM 10-Apr-77 4:47:00 AM 8/11/79 11:46 PM 17-Apr-77 3:25:00 AM 8/18/79 7:31 PM 24-Apr-77 4:35:00 AM 8/25/79 10:24 PM 1-May-77 2:49:00 AM 9/1/79 6:12 PM 8-May-77 4:01:00 AM 9/8/79 10:26 PM 15-May-77 2:36:00 AM 9/15/79 6:38 PM 22-May-77 3:49:00 AM 9/22/79 9:17 PM 29-May-77 1:56:00 AM 9/29/79 5:03 PM 5-Jun-77 3:25:00 AM 10/6/79 9:04 AM 12-Jun-77 1:53:00 AM 10/13/79 5:35 PM 19-Jun-77 3:11:00 AM 10/20/79 8:24 AM 26-Jun-77 12:00:00 AM 10/27/79 2:58 PM 3-Jul-77 2:59:00 AM 11/3/79 8:15 AM 10-Jul-77 11:05:00 PM 11/10/79 4:04 PM 17-Jul-77 2:37:00 AM 11/17/79 7:44 AM 24-Jul-77 9:01:00 PM 11/24/79 12:32 PM 31-Jul-77 2:40:00 AM 12/1/79 7:31 AM

83

Dreger Harbor, Papua New Guinea Lucinda, Australia (6.6500° S, 147.8667° E) (18.5167° S, 146.3333° E) Time of day of the highest Time of day of the highest Date tide Date tide 7-Aug-77 7:53:00 PM 12/8/79 12:58 PM 14-Aug-77 1:59:00 AM 12/15/79 7:12 AM 21-Aug-77 6:53:00 PM 12/22/79 11:08 AM 28-Aug-77 2:15:00 AM 12/29/79 6:48 AM 4-Sep-77 6:19:00 PM 1/5/80 11:12 AM 11-Sep-77 12:56:00 AM 1/12/80 6:45 AM 18-Sep-77 5:37:00 PM 1/19/80 10:05 AM 25-Sep-77 1:29:00 AM 1/26/80 6:00 AM 2-Oct-77 5:12:00 PM 2/2/80 10:03 AM 9-Oct-77 4:16:00 PM 2/9/80 6:19 AM 16-Oct-77 4:38:00 PM 2/16/80 9:07 AM 23-Oct-77 4:18:00 PM 2/23/80 4:50 AM 30-Oct-77 4:17:00 PM 3/1/80 9:05 AM 3/8/80 5:29 AM 3/15/80 8:09 AM 3/22/80 2:29 AM 3/29/80 8:09 AM 4/5/80 10:22 AM 4/12/80 7:09 AM 4/19/80 12:15 AM 4/26/80 7:13 AM 5/3/80 11:13 PM 5/10/80 6:03 AM 5/17/80 10:46 AM 5/24/80 6:13 AM 5/31/80 10:20 PM 6/7/80 4:44 AM 6/14/80 10:50 PM 6/21/80 4:59 AM 6/28/80 9:28 PM 7/5/80 3:00 AM 7/12/80 9:48 PM 7/19/80 2:26 AM 7/26/80 8:35 PM 8/2/80 1:03 AM 8/9/80 8:51 PM

84

Lucinda, Australia (18.5167° S, 146.3333° E) Time of day of the highest Date tide 8/16/80 12:29 PM 8/23/80 7:41 PM 8/30/80 12:06 PM 9/6/80 7:56 PM 9/13/80 10:33 PM 9/20/80 6:44 PM 9/27/80 10:48 AM 10/4/80 7:01 PM 10/11/80 9:52 AM 10/18/80 5:41 PM 10/25/80 9:48 AM 11/1/80 6:02 PM 11/8/80 9:07 AM 11/15/80 4:13 PM 11/22/80 8:58 AM 11/29/80 4:48 PM 12/6/80 8:28 AM 12/13/80 1:43 PM 12/20/80 8:12 AM 12/27/80 2:32 PM

85

APPENDIX VII: SOLAR IRRADIANCE CALCULATIONS

Palm Island, Great Barrier Reef, Australia (18.517˚S, 146.3˚E)

Q = QA [(-0.5 • (p/Σp)) + (ΣQ/ΣQA) + 0.054] Σp: 1147.5 mm ΣQ: 161.4 ± 85.8 (cal/cm2/day) 2 ΣQA: 299.5 ± 149.2 (cal/cm /day)

Monthly Monthly Total Solar Insolation Rainfall Irradiance (cal/cm2/day) (mm) (cal/cm2/day)

Month QA p Q 30-Aug-76 708.1 0.9 419.7 30-Sep-76 819.1 3.2 484.6 30-Oct-76 912.0 22.9 531.8 30-Nov-76 972.3 70.6 546.7 30-Dec-76 998.1 317.8 453.7 30-Jan-77 989.5 97.6 544.7 28-Feb-77 946.5 478.4 364.0 30-Mar-77 869.0 271.8 412.5 30-Apr-77 757.2 84.6 421.1 30-May-77 651.3 180.8 335.0 30-Jun-77 597.1 0.2 354.1 30-Jul-77 620.4 0.4 367.8 30-Aug-77 708.1 22.2 413.1 30-Sep-77 819.1 20.4 478.5 30-Oct-77 912.0 2.4 539.9 30-Nov-77 972.3 33.4 562.4 30-Dec-77 998.1 127.6 536.4 30-Jan-78 989.5 436.6 398.6 28-Feb-78 946.5 210.2 474.6 30-Mar-78 869.0 76.4 486.4 30-Apr-78 757.2 115.2 411.0

86

Monthly Monthly Total Solar Insolation Rainfall Irradiance (cal/cm2/day) (mm) (cal/cm2/day)

Month QA p Q 30-May-78 651.3 37 375.8 30-Jun-78 597.1 2.6 353.4 30-Jul-78 620.4 21.8 362.0 30-Aug-78 708.1 29 411.0 30-Sep-78 819.1 18.4 479.2 30-Oct-78 912.0 13.4 535.6 30-Nov-78 972.3 49 555.8 30-Dec-78 998.1 60.8 565.5 30-Jan-79 989.5 183.6 507.6 28-Feb-79 946.5 217.4 471.6 30-Mar-79 869.0 309.6 398.1 30-Apr-79 757.2 53.2 431.5 30-May-79 651.3 5 384.9 30-Jun-79 597.1 34.4 345.2 30-Jul-79 620.4 9.4 365.4 30-Aug-79 708.1 0.4 419.8 30-Sep-79 819.1 10.8 481.9 30-Oct-79 912.0 15.8 534.6 30-Nov-79 972.3 0.4 576.4 30-Dec-79 998.1 185 511.5 30-Jan-80 989.5 257.4 475.8 29-Feb-80 946.5 94.8 522.2 30-Mar-80 869.0 153.6 457.2 30-Apr-80 757.2 21.4 442.0 15-May-80 651.3 41.1 374.6

87

Huon Peninsula, Papua New Guinea (6˚S, 147.5˚E)

Q = QA [(-0.5 • (p/Σp)) + (ΣQ/ΣQA) + 0.054] Σp: 2602.69 mm ΣQ: 173.2 ± 42.5 (cal/cm2/day) 2 ΣQA: 312.7 ± 63.3 (cal/cm /day)

Monthly Monthly Total Solar Insolation Rainfall Irradiance (cal/cm2/day) (mm) (cal/cm2/day)

Month QA p Q 15-Apr-74 851.0 434.0 446.2 15-May-74 783.8 305.0 430.5 15-Jun-74 746.8 338.0 405.4 15-Jul-74 761.5 84.0 450.5 15-Aug-74 816.5 133.0 475.4 15-Sep-74 869.0 96.0 512.1 15-Oct-74 903.4 265.0 503.1 15-Nov-74 903.4 279.0 500.7 15-Dec-74 903.4 488.0 464.4 15-Jan-75 912.0 383.0 487.2 15-Feb-75 920.7 449.0 480.1 15-Mar-75 903.4 352.0 488.0 15-Apr-75 851.0 308.0 466.8 15-May-75 783.8 306.0 430.3 15-Jun-75 746.8 349.0 403.8 15-Jul-75 761.5 345.0 412.3 15-Aug-75 816.5 443.0 426.8 15-Sep-75 869.0 240.0 488.1 15-Oct-75 903.4 614.0 442.5 15-Nov-75 903.4 233.0 508.6 15-Dec-75 903.4 322.0 493.2 15-Jan-76 912.0 344.0 494.0 15-Feb-76 920.7 231.0 518.7 15-Mar-76 903.4 277.0 501.0 15-Apr-76 851.0 548.0 427.6 15-May-76 783.8 329.0 426.8 15-Jun-76 746.8 126.0 435.8 88

Monthly Monthly Total Solar Insolation Rainfall Irradiance (cal/cm2/day) (mm) (cal/cm2/day)

Month QA p Q 15-Jul-76 761.5 184.0 435.9 15-Aug-76 816.5 159.0 471.3 15-Sep-76 869.0 22.0 524.5 15-Oct-76 903.4 120.0 528.2 15-Nov-76 903.4 233.0 508.6 15-Dec-76 903.4 322.0 493.2 15-Jan-77 912.0 244.0 511.6 15-Feb-77 920.7 285.0 509.1 15-Mar-77 903.4 356.0 487.3 15-Apr-77 851.0 211.0 482.7 15-May-77 783.8 480.0 404.1 15-Jun-77 746.8 216.0 422.9 15-Jul-77 761.5 58.0 454.3 15-Aug-77 816.5 64.0 486.2 15-Sep-77 869.0 79.0 515.0 15-Oct-77 903.4 215.0 511.8

89

APPENDIX VIII: PRECIPITATION AND GROWTH

Growth Thickness (per Precipitation Sample Date 29 day interval; µm) (mm) K-133 15-Apr-74 1095.8 434.0 K-133 15-May-74 1109.5 305.0 K-133 15-Jun-74 755.1 338.0 K-133 15-Jul-74 816.1 84.0 K-133 15-Aug-74 1151.2 133.0 K-133 15-Sep-74 1559.3 96.0 K-133 15-Oct-74 961.4 265.0 K-133 15-Nov-74 875.8 279.0 K-133 15-Dec-74 665.6 488.0 K-133 15-Jan-75 571.6 383.0 K-133 15-Feb-75 681.1 449.0 K-133 15-Mar-75 1015.4 352.0 K-133 15-Apr-75 820.7 308.0 K-133 15-May-75 801.4 306.0 K-133 15-Jun-75 1029.5 349.0 K-133 15-Jul-75 797.9 345.0 K-133 15-Aug-75 820.7 443.0 K-133 15-Sep-75 835.4 240.0 K-133 15-Oct-75 635.4 614.0 K-133 15-Nov-75 966.7 233.0 K-133 15-Dec-75 862.8 322.0 K-133 15-Jan-76 646.3 344.0 K-133 15-Feb-76 906.3 231.0 K-133 15-Mar-76 691.9 277.0 K-133 15-Apr-76 637.5 548.0 K-133 15-May-76 826.3 329.0 K-133 15-Jun-76 914.4 126.0 K-133 15-Jul-76 1067.0 184.0 K-133 15-Aug-76 917.9 159.0 K-133 15-Sep-76 1037.5 22.0 K-133 15-Oct-76 713.3 120.0 K-133 15-Nov-76 658.2 233.0

90

Growth Thickness (per Precipitation Sample Date 29 day interval; µm) (mm) K-133 15-Dec-76 693.0 322.0 K-133 15-Jan-77 633.7 244.0 K-133 15-Feb-77 850.9 285.0 K-133 15-Mar-77 655.4 356.0 K-133 15-Apr-77 691.2 211.0 K-133 15-May-77 612.3 480.0 K-133 15-Jun-77 496.5 216.0 K-133 15-Jul-77 575.8 58.0 K-133 15-Aug-77 582.8 64.0 K-133 15-Sep-77 656.8 79.0 K-133 15-Oct-77 520.4 215.0 PT-1 30-Aug-76 1348.8 0.9 PT-1 30-Sep-76 1045.7 3.2 PT-1 30-Oct-76 819.7 22.9 PT-1 30-Nov-76 974.5 70.6 PT-1 30-Dec-76 1338.1 317.8 PT-1 30-Jan-77 929.6 97.6 PT-1 28-Feb-77 925.8 478.4 PT-1 30-Mar-77 1484.5 271.8 PT-1 30-Apr-77 1603.0 84.6 PT-1 30-May-77 1355.3 180.8 PT-1 30-Jun-77 1621.6 0.2 PT-1 30-Jul-77 1361.7 0.4 PT-1 30-Aug-77 1205.8 22.2 PT-1 30-Sep-77 994.1 20.4 PT-1 30-Oct-77 833.1 2.4 PT-1 30-Nov-77 502.1 33.4 PT-1 30-Dec-77 968.6 127.6 PT-1 30-Jan-78 1158.1 436.6 PT-1 28-Feb-78 1353.5 210.2 PT-1 30-Mar-78 1051.4 76.4 PT-1 30-Apr-78 1381.6 115.2 PT-1 30-May-78 827.7 37 PT-1 30-Jun-78 867.4 2.6 PT-1 30-Jul-78 1532.9 21.8 PT-1 30-Aug-78 950.3 29 PT-1 30-Sep-78 1245.0 18.4 PT-1 30-Oct-78 1511.6 13.4

91

Growth Thickness (per Precipitation Sample Date 29 day interval; µm) (mm) PT-1 30-Nov-78 1203.4 49 PT-1 30-Dec-78 977.8 60.8 PT-1 30-Jan-79 744.4 183.6 PT-1 28-Feb-79 1228.2 217.4 PT-1 30-Mar-79 1727.7 309.6 PT-1 30-Apr-79 1329.3 53.2 PT-1 30-May-79 1431.8 5 PT-1 30-Jun-79 930.3 34.4 PT-1 30-Jul-79 913.6 9.4 PT-1 30-Aug-79 651.7 0.4 PT-1 30-Sep-79 863.1 10.8 PT-1 30-Oct-79 621.6 15.8 PT-1 30-Nov-79 752.5 0.4 PT-1 30-Dec-79 770.2 185 PT-1 30-Jan-80 767.7 257.4 PT-1 29-Feb-80 660.9 94.8 PT-1 30-Mar-80 662.5 153.6 PT-1 30-Apr-80 764.3 21.4 PT-1 15-May-80 354.5 41.1

Rainfall data from Madang, Papua-New Guinea (IAEA/WMO (2014) and Orpheus Island, Great Barrier Reef, Australia (Bureau of Meteorology, Government of Australia (2014).

92

APPENDIX VIX: RAMAN SPECTROSCOPY

Raman Scattering (arbitrary units) Huon Peninsula (K-133) Palm Island (PT-1) Wavelength External FG LG External FG LG 76.62 562.00 330.25 611.25 542.25 1408.50 969.00 77.91 673.00 362.50 634.00 618.00 1632.75 1050.00 79.20 739.00 397.50 721.00 660.25 1841.25 1163.50 80.47 797.00 415.00 735.00 715.00 1980.00 1251.25 81.76 825.33 411.75 765.25 767.25 2164.25 1265.50 83.05 843.67 419.50 770.00 778.25 2250.25 1361.75 84.35 886.00 435.25 798.00 811.25 2328.50 1367.75 85.64 866.00 439.75 807.50 793.75 2423.50 1410.00 86.93 880.33 438.25 846.75 852.25 2481.25 1469.25 88.20 891.33 447.00 853.75 836.00 2563.75 1459.75 89.49 895.00 450.50 852.75 873.25 2586.50 1509.50 90.78 920.33 438.50 868.50 922.50 2719.50 1607.00 92.07 945.00 466.25 919.50 937.00 2788.25 1630.50 93.36 1000.33 464.50 934.25 1017.00 2893.75 1679.50 94.63 1053.00 466.00 983.00 1060.25 2996.25 1764.25 95.92 1089.00 497.25 1031.50 1075.50 3085.00 1846.00 97.22 1158.67 527.50 1080.75 1155.25 3234.25 1952.75 98.48 1203.00 539.00 1138.75 1174.00 3360.00 2055.00 99.78 1237.33 567.25 1176.00 1251.75 3525.50 2116.75 101.07 1308.00 601.50 1249.25 1289.25 3692.00 2244.25 102.36 1347.00 586.50 1281.50 1339.75 3851.00 2278.25 103.63 1331.33 622.25 1296.50 1402.25 3967.75 2370.75 104.92 1382.67 636.75 1353.00 1397.75 4015.75 2467.00 106.21 1419.67 648.25 1416.00 1378.50 4070.00 2483.25 107.48 1413.67 611.00 1378.75 1448.50 4247.75 2485.50 108.77 1421.67 615.25 1408.25 1442.75 4242.00 2538.00 110.06 1399.33 615.25 1394.00 1409.00 4242.50 2534.00 111.33 1390.00 610.00 1398.00 1415.50 4237.25 2507.75 112.62 1408.33 637.50 1400.00 1445.75 4273.50 2510.00 113.91 1413.33 621.00 1394.00 1421.25 4271.50 2510.25

93

Huon Peninsula (K-133) Palm Island (PT-1) Wavelength External FG LG External FG LG 115.18 1382.67 642.50 1395.25 1403.00 4232.25 2544.50 116.47 1406.00 624.75 1385.75 1434.00 4265.00 2465.00 117.74 1393.67 613.00 1384.50 1371.50 4188.50 2510.50 119.03 1395.33 601.00 1370.00 1412.25 4207.00 2462.25 120.32 1374.00 603.00 1337.50 1409.00 4195.75 2443.00 121.59 1428.33 615.50 1382.00 1405.25 4254.25 2422.25 122.88 1399.00 609.25 1360.75 1429.75 4206.75 2464.00 124.15 1408.67 596.00 1354.75 1403.50 4274.75 2414.00 125.44 1361.67 611.00 1354.75 1393.50 4222.50 2463.25 126.71 1398.67 589.25 1315.75 1413.00 4248.75 2488.00 128.00 1404.33 611.50 1346.75 1429.50 4211.00 2459.00 129.27 1389.33 620.00 1375.00 1412.75 4239.50 2504.75 130.56 1420.33 614.25 1354.75 1444.25 4257.25 2484.50 131.83 1421.67 623.00 1378.50 1488.00 4347.50 2520.50 133.12 1448.33 622.50 1378.00 1478.75 4316.00 2522.00 134.39 1441.33 625.50 1380.25 1524.75 4396.75 2567.25 135.68 1427.00 639.75 1401.25 1585.75 4390.50 2706.75 136.95 1425.00 700.25 1439.75 1617.00 4525.50 2708.75 138.24 1450.67 701.50 1474.50 1680.50 4550.25 2879.00 139.51 1532.33 756.75 1524.75 1767.50 4635.25 2938.50 140.80 1514.67 770.50 1570.75 1836.75 4819.00 3083.25 142.07 1573.33 801.25 1669.25 1931.25 5061.75 3232.75 143.33 1607.00 854.25 1765.50 2056.25 5179.75 3400.25 144.63 1636.33 918.75 1824.50 2208.25 5403.75 3564.50 145.89 1696.33 983.75 1987.75 2372.00 5771.50 3792.00 147.18 1733.00 1061.25 2117.00 2523.00 6009.75 4120.00 148.45 1738.67 1149.25 2232.75 2727.00 6323.00 4429.00 149.72 1844.00 1256.00 2495.00 2966.75 6685.50 4766.00 151.01 1901.33 1355.50 2708.75 3099.25 6961.25 5018.50 152.28 1929.67 1417.50 2833.25 3003.50 7138.00 5176.25 153.55 1897.00 1347.00 2872.25 2910.00 7129.00 5189.00 154.84 1832.67 1211.50 2798.00 2642.75 7050.50 4918.50 156.10 1718.33 1064.75 2663.50 2418.25 6790.25 4473.25 157.37 1632.00 970.25 2387.75 2147.25 6486.50 4185.00 158.66 1589.33 921.50 2187.75 2015.00 6033.25 3862.25 159.93 1554.33 851.25 1997.75 1869.25 5638.00 3584.50 161.20 1520.00 810.75 1798.00 1776.75 5336.25 3369.00

94

Huon Peninsula (K-133) Palm Island (PT-1) Wavelength External FG LG External FG LG 162.49 1518.00 740.50 1664.75 1701.00 5081.00 3108.75 163.76 1484.00 697.75 1555.25 1601.50 4856.50 2935.50 165.02 1422.00 674.25 1471.00 1593.75 4729.25 2767.00 166.29 1433.33 595.75 1417.25 1497.00 4590.50 2599.25 167.58 1441.67 619.75 1355.00 1492.25 4544.50 2550.75 168.85 1472.33 582.50 1313.50 1488.25 4453.00 2471.50 170.12 1431.00 582.75 1297.50 1496.50 4385.75 2470.25 171.39 1428.33 565.25 1288.25 1487.75 4394.00 2469.00 172.68 1420.33 574.00 1277.75 1500.50 4410.75 2472.00 173.94 1446.33 582.50 1303.50 1509.75 4390.25 2438.50 175.21 1449.67 580.00 1278.75 1584.00 4431.25 2555.75 176.48 1507.67 603.25 1297.00 1631.50 4522.75 2566.50 177.75 1478.00 648.75 1374.25 1596.25 4616.25 2642.25 179.01 1493.67 623.50 1352.00 1627.00 4630.25 2622.75 180.31 1516.33 614.00 1389.50 1658.75 4596.75 2674.25 181.57 1478.00 608.00 1385.50 1604.50 4586.00 2644.25 182.84 1472.33 596.25 1361.50 1569.00 4589.75 2572.50 184.11 1484.00 566.50 1336.00 1571.75 4630.50 2601.75 185.37 1450.33 592.75 1343.00 1591.75 4515.00 2567.75 186.64 1474.00 580.50 1330.50 1573.75 4556.75 2495.25 187.91 1502.33 572.00 1312.00 1537.00 4497.50 2528.25 189.20 1505.67 606.50 1289.50 1556.00 4513.25 2505.00 190.47 1426.33 588.75 1284.00 1575.50 4586.00 2541.75 191.74 1507.00 574.00 1302.00 1585.75 4506.00 2517.50 193.00 1481.67 574.25 1305.25 1597.00 4505.50 2546.75 194.27 1444.00 572.00 1277.00 1579.00 4519.00 2520.50 195.54 1443.00 575.75 1316.75 1592.50 4511.25 2542.00 196.80 1474.67 572.00 1324.00 1637.25 4605.25 2597.50 198.07 1490.33 584.25 1360.50 1700.25 4700.50 2643.25 199.34 1470.00 638.75 1396.25 1791.50 4782.50 2782.75 200.61 1524.00 681.00 1481.75 1892.50 4896.00 2947.75 201.87 1559.67 723.00 1568.75 2017.00 5114.25 3087.50 203.14 1623.00 821.00 1678.50 2163.00 5380.00 3316.00 204.41 1686.67 909.50 1842.50 2269.75 5517.75 3577.25 205.67 1733.67 934.25 2007.75 2298.25 5726.00 3750.25 206.94 1724.00 934.75 2069.50 2162.75 5711.50 3745.50 208.21 1662.00 805.50 2080.00 2102.75 5742.75 3579.25

95

Huon Peninsula (K-133) Palm Island (PT-1) Wavelength External FG LG External FG LG 209.48 1561.33 734.00 1963.75 1986.25 5603.25 3422.50 210.74 1539.67 683.50 1753.25 1862.25 5412.00 3159.25 212.01 1521.00 659.25 1660.25 1750.75 5213.50 2993.50 213.28 1563.00 660.00 1522.00 1717.50 4992.25 2794.75 214.54 1541.33 641.25 1456.00 1674.50 4861.50 2712.25 215.81 1501.00 602.75 1390.75 1585.25 4761.50 2650.75 217.08 1482.00 608.75 1337.25 1587.50 4624.25 2546.50 218.32 1546.33 599.00 1313.50 1520.50 4550.25 2487.00 219.59 1522.67 585.25 1273.75 1474.00 4511.00 2458.00 220.86 1502.00 558.00 1252.00 1472.75 4436.75 2401.75 222.12 1451.00 556.25 1222.75 1480.25 4305.25 2357.25 223.39 1489.67 554.50 1213.25 1404.50 4256.25 2348.75 224.66 1456.33 547.50 1172.75 1441.00 4325.75 2282.75 225.92 1444.67 536.00 1157.25 1407.25 4262.50 2265.75 227.19 1461.00 544.25 1148.75 1413.00 4280.75 2249.50 228.43 1433.33 521.25 1084.75 1420.75 4171.75 2280.75 229.70 1463.33 551.00 1117.50 1402.00 4128.50 2236.25 230.97 1472.33 517.25 1094.25 1364.50 4171.00 2216.50 232.24 1459.67 524.50 1129.00 1419.00 4094.25 2214.00 233.50 1466.00 505.25 1143.50 1394.00 4148.00 2209.00 234.75 1419.67 506.00 1079.75 1430.25 4180.25 2236.50 236.01 1458.67 509.25 1089.00 1389.50 4150.25 2234.25 237.28 1468.67 499.75 1101.00 1426.00 4127.75 2209.50 238.55 1444.67 518.75 1095.50 1410.75 4099.00 2236.50 239.79 1451.33 509.25 1081.00 1386.25 4178.25 2263.25 241.06 1439.67 506.75 1092.75 1429.00 4146.00 2196.00 242.32 1487.00 505.75 1097.25 1402.00 4208.75 2294.50 243.59 1443.33 509.50 1114.75 1434.00 4247.75 2259.25 244.83 1447.33 524.75 1121.75 1460.50 4213.25 2279.00 246.10 1452.33 511.00 1145.75 1449.50 4223.50 2317.50 247.37 1458.00 511.50 1138.50 1456.25 4218.75 2313.25 248.64 1416.67 489.00 1129.00 1462.50 4247.75 2356.50 249.88 1423.67 519.25 1129.50 1460.25 4250.75 2256.25 251.14 1417.67 499.50 1150.75 1415.50 4273.50 2315.50 252.39 1462.33 484.50 1153.50 1435.25 4199.00 2276.00 253.65 1454.67 501.50 1138.50 1438.75 4276.00 2282.75 254.92 1444.33 492.50 1128.00 1457.75 4178.25 2283.00

96

Huon Peninsula (K-133) Palm Island (PT-1) Wavelength External FG LG External FG LG 256.16 1425.00 487.25 1157.00 1463.50 4191.25 2262.75 257.43 1449.00 499.50 1133.75 1483.00 4224.00 2304.75 258.70 1446.67 513.50 1137.25 1457.50 4249.75 2314.00 259.94 1446.33 503.25 1145.00 1453.25 4248.00 2311.25 261.21 1438.67 495.00 1153.25 1460.00 4286.00 2328.00 262.48 1447.00 489.00 1135.00 1459.50 4288.50 2290.50 263.72 1430.33 480.00 1157.00 1480.25 4307.25 2274.50 264.98 1443.00 503.00 1113.00 1427.50 4252.00 2289.75 266.23 1433.33 495.75 1096.50 1473.25 4248.50 2283.50 267.49 1412.00 489.50 1136.25 1431.75 4170.25 2236.00 268.74 1486.67 479.25 1111.75 1455.00 4242.75 2296.50 270.00 1461.33 503.25 1117.00 1483.25 4222.25 2257.75 271.25 1497.33 502.25 1120.75 1473.50 4218.25 2274.25 272.51 1460.33 485.00 1156.75 1439.50 4229.00 2258.75 273.78 1425.67 495.50 1134.75 1448.00 4234.50 2284.75 275.02 1471.00 495.00 1114.25 1471.00 4254.25 2261.25 276.29 1460.33 469.00 1098.00 1437.75 4257.00 2241.75 277.53 1441.00 488.00 1107.75 1458.00 4249.25 2253.25 278.77 1488.33 488.00 1118.75 1438.25 4254.50 2295.75 280.04 1455.33 505.25 1105.00 1424.75 4253.75 2279.00 281.28 1491.67 496.25 1108.50 1441.00 4228.00 2293.25 282.55 1468.00 493.50 1099.50 1448.75 4240.50 2263.75 283.79 1469.33 503.50 1104.25 1406.75 4203.50 2237.75 285.06 1428.33 482.25 1078.25 1435.50 4186.25 2237.00 286.30 1454.33 474.25 1109.00 1425.00 4233.25 2249.25 287.57 1434.67 471.00 1114.50 1409.00 4182.75 2241.00 288.81 1424.33 459.25 1098.75 1399.75 4177.25 2220.00 290.06 1439.33 449.00 1064.50 1423.25 4192.25 2177.75 291.32 1465.00 452.25 1064.75 1425.50 4146.50 2214.00 292.57 1403.67 455.50 1055.00 1394.50 4093.25 2136.75 293.83 1447.33 425.25 1049.50 1381.25 4085.00 2209.25 295.07 1455.67 429.25 1032.00 1431.00 4077.75 2159.25 296.32 1438.00 433.50 1067.25 1396.75 4096.00 2128.25 297.58 1435.67 443.00 1023.75 1367.50 4102.50 2131.00 298.83 1393.00 455.25 1021.25 1373.25 4069.00 2174.25 300.07 1447.33 427.50 1064.00 1377.50 4079.75 2159.50 301.34 1405.00 446.50 1063.00 1400.25 4125.00 2157.25

97

Huon Peninsula (K-133) Palm Island (PT-1) Wavelength External FG LG External FG LG 302.58 1406.33 410.75 1018.00 1400.50 4083.50 2110.75 303.82 1397.67 431.75 1002.75 1379.50 4054.75 2135.00 305.09 1411.33 425.00 1034.00 1353.50 4067.25 2160.25 306.33 1407.00 420.00 1029.75 1379.50 4065.50 2149.25 307.57 1404.33 427.75 1026.50 1397.50 4111.50 2118.50 308.84 1410.33 417.00 1045.00 1407.50 4119.50 2147.00 310.08 1392.00 424.50 1028.50 1400.00 4044.75 2152.75 311.32 1432.33 431.75 1014.00 1400.75 4086.25 2134.75 312.57 1386.67 416.25 1037.50 1379.50 4108.00 2165.75 313.83 1399.67 427.25 1000.50 1371.50 4115.75 2127.00 315.08 1392.33 419.00 1036.50 1403.00 4096.00 2102.50 316.32 1410.33 414.25 1013.75 1378.25 4045.25 2114.50 317.56 1399.00 432.50 999.50 1399.75 4053.25 2111.25 318.80 1391.67 398.75 1006.50 1369.50 4029.25 2153.25 320.07 1421.67 419.50 1030.75 1374.50 4029.25 2120.00 321.31 1447.33 410.25 1060.75 1386.00 4039.25 2138.50 322.56 1419.67 416.00 1035.75 1409.25 4008.25 2147.00 323.80 1453.00 410.25 1016.25 1379.00 4078.75 2152.50 325.04 1366.67 411.00 1006.75 1357.00 4113.25 2124.75 326.31 1414.67 418.50 1012.50 1411.50 4083.25 2163.25 327.55 1411.33 397.50 1019.75 1398.50 4088.25 2118.25 328.79 1373.67 413.50 1037.50 1362.25 4072.25 2110.25 330.03 1407.67 414.75 1042.75 1386.00 4042.25 2113.00 331.28 1395.00 410.75 997.25 1405.25 4073.75 2113.00 332.52 1416.33 418.25 1014.75 1412.25 4089.50 2102.50 333.76 1400.33 429.00 1022.50 1357.25 4046.25 2159.00 335.00 1434.33 405.75 1015.50 1401.50 4056.25 2155.00 336.27 1385.00 408.00 1006.00 1368.25 4087.25 2143.00 337.51 1435.67 406.00 1016.75 1375.75 4077.75 2129.00 338.76 1429.67 408.75 1024.75 1396.75 4050.25 2126.25 340.00 1402.33 406.25 1001.50 1363.25 4052.50 2121.75 341.24 1408.00 417.25 1010.00 1377.50 4064.25 2153.50 342.48 1381.00 418.50 1004.25 1388.00 4084.50 2124.25 343.73 1433.00 405.25 1010.00 1397.50 4028.75 2112.25 344.97 1427.00 409.25 998.00 1372.75 4029.25 2091.00 346.21 1402.67 434.50 1027.25 1385.25 4048.50 2104.00 347.45 1377.67 398.00 998.00 1388.25 4146.00 2119.25

98

Huon Peninsula (K-133) Palm Island (PT-1) Wavelength External FG LG External FG LG 348.69 1363.00 409.50 1012.50 1385.00 3978.50 2133.25 349.94 1367.67 423.50 1019.50 1389.75 4010.25 2142.00 351.18 1419.67 427.75 985.00 1382.25 4025.75 2133.00 352.42 1414.33 404.75 1027.00 1386.00 4096.00 2127.50 353.66 1375.00 422.50 1004.50 1365.00 4064.50 2106.00 354.91 1437.67 408.00 989.25 1386.25 4062.00 2140.00 356.15 1387.33 395.00 1002.50 1408.25 4070.25 2121.50 357.39 1416.67 412.50 993.75 1374.75 4105.00 2120.50 358.63 1395.33 404.25 994.50 1373.00 4047.25 2083.00 359.88 1418.33 415.75 1005.50 1381.00 3980.75 2134.75 361.12 1452.33 420.50 1000.25 1385.75 4032.75 2113.75 362.34 1408.67 428.00 1014.25 1412.75 4090.00 2121.75 363.58 1401.00 408.75 1030.00 1414.25 4040.50 2058.00 364.82 1370.33 402.00 1013.50 1397.50 4010.00 2140.25 366.06 1391.33 409.25 1033.75 1408.75 4062.75 2129.75 367.31 1447.00 400.50 1001.00 1393.00 4055.00 2128.25 368.55 1387.67 413.00 992.50 1406.00 4062.50 2125.00 369.79 1411.33 419.50 1021.50 1412.25 4103.00 2123.75 371.03 1463.00 428.50 979.75 1397.50 4056.25 2109.25 372.25 1418.33 418.50 1009.00 1364.00 4050.75 2134.75 373.49 1414.33 416.50 1028.50 1383.50 4086.75 2098.00 374.73 1399.00 412.75 1004.25 1429.25 4133.25 2113.75 375.98 1418.67 396.50 1002.75 1430.50 4081.00 2127.75 377.22 1423.00 423.50 1030.50 1392.75 4056.00 2128.25 378.46 1411.00 399.75 1019.75 1376.00 4092.50 2101.00 379.68 1453.33 426.75 1036.50 1383.25 4047.75 2114.75 380.92 1412.00 431.00 1014.75 1394.00 4059.00 2136.75 382.16 1411.67 416.00 1024.00 1421.25 4108.00 2158.25 383.41 1402.00 406.75 1006.75 1409.50 4049.25 2145.00 384.62 1394.67 402.50 1009.25 1366.50 4065.25 2125.25 385.87 1454.33 434.25 1020.75 1344.25 3998.75 2107.25 387.11 1445.67 413.25 1021.75 1399.75 4122.50 2172.25 388.35 1398.33 406.75 1029.00 1387.75 4124.50 2162.50 389.57 1455.67 419.25 1000.00 1389.25 4072.00 2121.50 390.81 1417.33 409.25 1045.00 1420.75 4077.00 2146.75 392.05 1430.67 409.50 1018.50 1384.00 4048.50 2127.50 393.30 1413.33 398.25 998.75 1410.50 4089.75 2144.25

99

Huon Peninsula (K-133) Palm Island (PT-1) Wavelength External FG LG External FG LG 394.51 1414.67 415.00 1035.00 1401.50 4081.50 2108.75 395.76 1439.67 411.50 1020.00 1422.25 4119.50 2100.75 397.00 1421.67 414.50 1005.25 1401.00 4082.50 2138.75 398.22 1395.33 406.50 1012.00 1388.25 4075.50 2120.00 399.46 1404.67 406.50 999.25 1410.00 4044.50 2144.25 400.70 1395.33 410.00 988.00 1419.00 4038.00 2130.25 401.92 1419.00 411.75 996.50 1418.00 4016.25 2110.25 403.16 1402.33 410.25 1010.00 1390.75 4119.75 2132.75 404.40 1394.67 419.50 1021.75 1411.75 4048.50 2131.00 405.62 1399.00 410.50 1018.75 1382.00 4058.50 2131.75 406.86 1392.00 416.50 1006.00 1419.50 4074.25 2143.25 408.08 1433.33 415.75 991.00 1417.00 4058.25 2117.50 409.32 1412.00 402.25 1035.25 1432.75 4052.50 2089.75 410.54 1395.00 417.25 1020.75 1386.75 4052.50 2133.00 411.78 1445.33 417.75 1009.25 1409.75 4047.75 2118.75 413.02 1418.67 411.75 996.75 1373.00 4077.25 2133.00 414.24 1395.67 409.50 1010.00 1380.50 4085.25 2082.25 415.48 1429.67 410.75 1014.75 1410.00 4077.25 2093.75 416.70 1442.33 403.00 1012.25 1413.00 4028.50 2149.25 417.94 1410.33 415.75 997.75 1382.00 4091.00 2103.25 419.16 1417.67 415.50 1002.00 1392.50 4121.75 2144.00 420.40 1438.00 411.25 1022.75 1389.00 4056.75 2107.25 421.62 1381.33 393.25 1024.00 1408.00 4087.75 2097.50 422.86 1428.33 401.00 1003.00 1399.50 4091.00 2114.75 424.08 1373.67 414.00 1005.25 1411.50 4107.50 2110.75 425.32 1399.00 409.75 1015.50 1389.00 4061.75 2146.75 426.54 1410.33 404.00 1027.00 1382.00 4043.00 2134.75 427.78 1405.00 428.75 997.50 1406.50 3986.75 2163.00 429.00 1393.00 411.00 1008.75 1395.75 4053.50 2118.75 430.24 1395.00 399.25 988.00 1423.50 4037.00 2153.75 431.46 1414.33 418.00 1047.75 1425.50 3973.75 2122.25 432.70 1388.67 409.50 999.75 1385.75 3998.00 2132.75 433.92 1393.33 416.25 1013.25 1385.75 4014.75 2144.00 435.14 1399.00 406.25 1001.25 1419.50 4059.25 2116.75 436.38 1432.00 412.50 1022.00 1393.25 4037.75 2092.75 437.60 1404.00 418.50 964.50 1407.00 4029.50 2113.00 438.84 1406.00 404.00 1029.75 1375.00 4081.00 2105.75

100

Huon Peninsula (K-133) Palm Island (PT-1) Wavelength External FG LG External FG LG 440.06 1400.00 402.75 1013.50 1370.75 4044.00 2123.25 441.28 1408.33 425.00 1024.50 1388.75 4053.50 2099.75 442.52 1411.67 400.50 984.25 1367.50 4042.25 2103.25 443.74 1403.67 387.25 991.50 1392.25 4051.25 2131.00 444.95 1378.00 413.00 1008.00 1425.25 4034.50 2091.75 446.20 1434.00 401.25 989.25 1399.00 4078.75 2096.50 447.41 1412.33 405.00 982.25 1370.50 4035.50 2148.25 448.63 1408.00 398.50 1005.75 1403.75 4049.00 2073.75 449.87 1411.67 403.50 1010.50 1401.00 4024.00 2098.00 451.09 1415.67 417.00 990.75 1389.00 4060.00 2123.75 452.31 1379.67 407.50 1012.00 1412.75 4068.25 2124.25 453.55 1424.67 415.00 1011.25 1386.75 3994.00 2055.00 454.77 1392.00 423.50 1002.75 1396.50 4075.25 2112.25 455.98 1400.00 400.75 1018.25 1403.25 4024.75 2085.75 457.23 1350.00 418.75 990.50 1423.50 4026.50 2124.25 458.44 1421.33 403.25 1009.50 1415.25 4028.00 2087.75 459.66 1430.33 403.75 1018.00 1402.50 4048.25 2117.25 460.88 1415.33 410.75 996.75 1416.50 4050.75 2144.50 462.10 1411.33 418.75 994.50 1417.25 4046.25 2090.25 463.34 1419.67 393.00 1003.25 1421.25 4006.00 2099.00 464.56 1399.00 418.00 1009.75 1408.50 4029.50 2093.00 465.77 1401.00 408.50 996.50 1428.50 3989.25 2112.25 466.99 1389.33 418.25 1000.00 1402.50 4023.00 2069.25 468.23 1417.00 418.00 1006.75 1434.75 4040.50 2125.00 469.45 1401.00 397.75 1011.25 1384.25 4085.00 2125.75 470.67 1405.67 407.00 1018.50 1406.75 3998.00 2137.00 471.89 1420.00 407.25 994.25 1391.25 4074.75 2106.50 473.10 1393.00 410.25 994.25 1391.75 4027.00 2099.00 474.32 1428.00 420.75 1000.25 1412.25 4050.75 2117.75 475.56 1396.00 408.75 1025.50 1408.75 4076.50 2092.50 476.78 1387.67 417.00 982.00 1425.75 4077.25 2134.00 478.00 1396.00 406.75 992.00 1396.00 4039.00 2117.25 479.22 1401.00 419.50 1005.75 1373.00 3999.00 2136.25 480.43 1421.00 407.75 1029.25 1404.00 4004.75 2129.75 481.65 1419.67 394.25 1010.50 1435.00 4044.00 2125.75 482.87 1421.33 398.25 1022.75 1404.00 4057.25 2120.50 484.09 1424.67 433.75 1002.50 1399.75 4012.25 2128.25

101

Huon Peninsula (K-133) Palm Island (PT-1) Wavelength External FG LG External FG LG 485.30 1405.67 418.75 1014.75 1427.25 3996.75 2090.75 486.52 1424.67 407.25 1005.50 1391.75 4062.50 2085.50 487.74 1396.00 400.25 1009.50 1433.75 3972.00 2093.25 488.98 1416.33 406.50 1000.25 1373.00 4038.75 2121.50 490.20 1420.33 412.00 1004.75 1404.25 4017.50 2098.50 491.42 1425.00 396.25 1013.00 1437.00 4069.50 2064.00 492.63 1389.67 406.25 991.75 1410.75 4016.25 2116.25 493.85 1400.00 389.25 995.75 1427.00 4046.75 2120.50 495.07 1425.67 408.00 977.50 1397.75 4062.00 2128.50 496.29 1396.33 396.75 991.50 1397.75 3995.50 2127.00 497.50 1380.33 407.75 1008.50 1385.50 4013.25 2103.75 498.72 1417.00 391.75 1003.75 1390.50 3985.75 2110.75 499.94 1421.33 403.50 998.75 1409.25 4071.25 2091.50 501.16 1378.33 391.50 976.50 1398.75 4013.75 2095.00 502.37 1424.67 407.50 1000.00 1408.50 4037.75 2075.75 503.57 1392.00 383.25 971.00 1430.75 4064.25 2110.25 504.78 1407.00 390.75 978.50 1379.50 3929.75 2076.50 506.00 1415.00 407.75 966.50 1375.50 4039.50 2105.25 507.22 1398.33 406.00 983.75 1404.25 3995.25 2086.25 508.44 1379.67 382.00 959.50 1380.25 4010.00 2072.25 509.65 1416.67 388.75 980.75 1384.75 3964.75 2106.00 510.87 1389.33 393.00 945.25 1397.50 4001.50 2044.75 512.09 1388.67 387.50 982.00 1406.75 4012.50 2060.25 513.31 1371.67 393.25 971.25 1364.75 3935.50 2061.50 514.52 1436.67 394.00 993.75 1401.50 3975.50 2037.50 515.74 1389.00 392.00 983.50 1367.75 3936.50 2067.75 516.94 1351.00 409.00 967.25 1402.75 4000.25 2123.75 518.15 1390.33 401.25 960.50 1402.00 4003.25 2084.75 519.37 1370.67 404.00 978.75 1389.50 3979.75 2064.25 520.59 1386.33 406.75 974.00 1393.75 3961.25 2080.50 521.81 1441.33 389.25 946.50 1364.50 3895.25 2060.75 523.02 1398.67 394.25 973.50 1371.50 3967.75 2070.25 524.22 1412.67 386.25 963.25 1353.75 4013.75 2013.75 525.43 1393.33 391.75 963.00 1359.50 3968.00 2041.75 526.65 1383.67 389.50 974.25 1390.25 3964.25 2035.25 527.87 1407.00 398.25 956.25 1367.75 3941.00 2068.75 529.09 1346.33 402.25 957.50 1392.50 3997.00 2065.25

102

Huon Peninsula (K-133) Palm Island (PT-1) Wavelength External FG LG External FG LG 530.28 1378.67 391.75 969.25 1360.00 3999.75 2058.25 531.50 1345.00 370.75 962.50 1394.50 3931.00 2051.00 532.71 1385.00 374.75 949.00 1356.75 3964.50 2062.75 533.93 1387.33 391.25 948.50 1322.25 3883.50 2058.25 535.12 1406.67 388.25 966.25 1370.75 3914.25 2051.25 536.34 1402.00 403.25 961.75 1344.75 3932.50 2019.25 537.56 1384.33 390.25 929.50 1363.25 3905.00 2032.75 538.75 1360.67 402.00 962.50 1376.25 3873.50 2037.25 539.97 1393.33 394.50 970.50 1378.50 3891.50 2020.75 541.19 1383.33 379.25 977.25 1356.25 3947.75 2029.50 542.40 1361.67 398.00 966.75 1341.75 3949.25 2076.50 543.60 1358.33 399.25 952.75 1373.50 3906.50 2013.50 544.81 1373.00 376.75 944.25 1389.50 3897.50 2037.50 546.03 1357.67 400.25 945.00 1364.75 3872.00 2047.50 547.22 1394.00 374.25 948.75 1387.75 3955.50 2016.25 548.44 1369.00 387.25 946.50 1383.50 3817.00 2028.50 549.66 1381.33 391.00 962.25 1388.00 3956.00 2072.75 550.85 1385.67 404.25 934.00 1378.75 3942.00 2066.50 552.07 1390.00 397.25 957.25 1391.00 3893.50 2055.50 553.26 1367.67 377.25 920.00 1355.00 3885.75 2069.50 554.48 1400.33 394.50 950.00 1410.25 3923.00 2027.00 555.70 1354.00 377.75 945.50 1359.00 3890.75 2024.00 556.89 1363.33 377.00 963.50 1379.00 3894.00 2041.50 558.11 1367.33 396.50 959.00 1361.00 3871.25 1993.00 559.30 1371.67 376.50 941.00 1404.50 3880.00 2039.00 560.52 1378.67 398.75 937.00 1372.25 3934.75 2020.00 561.71 1362.33 386.00 928.00 1355.50 3901.25 2017.50 562.93 1398.67 384.25 931.50 1384.75 3875.50 2009.75 564.14 1374.67 367.00 962.50 1373.25 3896.25 2043.50 565.34 1357.67 387.00 964.00 1373.00 3874.00 2062.25 566.55 1377.67 402.75 936.75 1383.25 3867.00 2013.75 567.75 1381.33 398.00 965.75 1376.00 3970.25 2032.00 568.96 1377.33 390.25 946.00 1378.50 3890.75 2023.00 570.16 1392.00 383.50 937.25 1372.50 3896.50 2016.75 571.38 1388.00 377.25 961.25 1357.25 3866.50 2021.75 572.57 1357.00 392.00 949.25 1393.25 3911.00 2015.00 573.79 1405.00 401.25 939.50 1367.00 3937.00 2069.50

103

Huon Peninsula (K-133) Palm Island (PT-1) Wavelength External FG LG External FG LG 574.98 1390.00 387.25 959.50 1408.75 3935.25 2003.25 576.20 1360.67 390.50 964.75 1389.25 3915.25 2016.25 577.39 1403.33 389.00 950.50 1388.75 3882.75 2031.50 578.58 1399.67 387.50 942.25 1391.00 3948.50 2005.00 579.80 1365.00 379.50 923.50 1361.50 3913.25 2034.00 580.99 1381.33 383.75 973.75 1373.75 3915.25 2023.50 582.21 1420.33 398.50 940.00 1363.00 3925.75 2018.75 583.40 1381.00 401.75 955.75 1410.75 3930.50 2039.25 584.62 1378.33 388.25 928.50 1405.50 3896.25 1991.50 585.81 1351.33 405.75 931.75 1398.00 3859.50 2012.50 587.00 1361.33 407.75 930.75 1367.25 3915.75 1994.25 588.22 1389.67 396.25 939.25 1396.25 3935.25 2047.00 589.41 1416.67 395.00 955.75 1372.50 3918.50 2033.50 590.61 1418.00 391.50 969.50 1401.50 3949.25 2005.50 591.82 1413.00 389.50 959.50 1390.50 3938.00 2043.50 593.02 1408.00 385.25 918.00 1365.00 3915.75 2038.00 594.21 1354.33 392.00 920.75 1390.75 3923.00 2067.50 595.43 1427.00 406.50 958.50 1381.25 3951.50 2013.75 596.62 1423.33 377.50 943.25 1391.00 4008.00 2078.00 597.81 1398.67 379.25 938.50 1400.75 3963.75 2038.75 599.03 1393.33 393.50 953.75 1411.75 3935.00 2028.75 600.22 1370.67 385.00 946.25 1378.00 3927.00 2073.00 601.42 1388.33 386.00 947.00 1379.25 3947.00 1992.25 602.63 1381.67 399.00 952.25 1377.75 3932.50 1997.25 603.83 1413.33 388.50 937.25 1371.50 4004.25 2038.00 605.02 1414.33 387.25 936.75 1393.50 3886.00 2053.25 606.21 1421.00 369.75 952.75 1381.25 3941.75 2055.25 607.43 1385.00 395.75 957.75 1400.25 3892.75 2082.00 608.62 1392.33 381.00 965.25 1395.75 3929.50 2030.50 609.81 1393.33 375.75 934.00 1433.75 3889.50 2064.00 611.01 1417.33 383.00 956.25 1399.25 3879.25 2038.00 612.22 1413.33 375.50 956.25 1396.50 3884.50 2015.25 613.42 1402.00 400.00 937.25 1351.25 3920.75 2011.50 614.61 1433.33 383.25 927.50 1383.50 3880.50 2029.50 615.80 1404.00 372.75 932.75 1408.00 3933.00 2029.75 616.99 1382.33 401.25 949.75 1396.25 3902.50 1992.50 618.21 1395.33 375.25 937.50 1393.25 3921.00 2049.75

104

Huon Peninsula (K-133) Palm Island (PT-1) Wavelength External FG LG External FG LG 619.40 1452.67 381.50 926.75 1396.75 3912.75 2027.25 620.60 1394.67 398.25 937.75 1386.50 3851.00 2044.00 621.79 1354.67 387.25 940.00 1375.50 3879.00 2047.00 622.98 1383.67 386.25 939.75 1365.75 3911.00 2064.25 624.18 1404.33 399.75 939.00 1381.50 3939.25 2033.25 625.37 1430.33 391.00 934.00 1377.00 3906.75 2029.00 626.59 1388.00 388.75 957.75 1353.00 3883.50 2038.25 627.78 1425.33 393.00 962.00 1410.50 3929.00 2073.00 628.97 1413.67 372.50 914.00 1395.75 3933.75 2015.75 630.16 1368.00 385.75 949.25 1393.00 3894.00 2057.00 631.36 1422.00 368.00 943.50 1369.75 3886.50 1995.00 632.55 1374.00 378.00 937.75 1361.75 3903.25 2017.25 633.74 1369.00 384.00 939.75 1404.50 3856.25 1998.75 634.93 1457.33 379.00 950.75 1385.25 3902.00 1954.25 636.13 1389.67 393.00 920.75 1408.50 3854.00 2004.50 637.32 1383.67 374.25 926.50 1393.25 3897.00 2023.00 638.51 1410.00 380.50 931.25 1378.00 3886.25 2052.00 639.70 1390.33 388.75 925.25 1391.00 3820.00 1994.75 640.90 1408.33 395.00 916.50 1399.75 3865.50 2009.75 642.09 1413.67 393.00 927.75 1355.00 3911.75 2054.00 643.28 1417.00 380.50 925.00 1373.00 3915.00 2009.75 644.48 1370.33 384.50 927.00 1356.50 3866.75 2013.00 645.67 1406.33 381.75 950.50 1359.25 3906.75 2062.50 646.86 1400.67 368.50 939.25 1381.75 3871.00 2023.00 648.05 1372.67 386.75 948.25 1390.00 3915.00 2039.25 649.25 1379.67 386.75 928.00 1387.50 3911.00 2029.75 650.44 1370.67 380.25 959.25 1388.75 3870.25 1994.75 651.63 1431.33 388.50 951.75 1365.00 3945.00 2045.25 652.82 1418.00 377.00 929.75 1399.25 3836.50 2003.50 654.02 1400.00 386.25 932.50 1354.25 3838.00 2053.25 655.21 1406.67 384.25 950.75 1342.75 3843.25 2039.25 656.40 1428.67 376.50 928.00 1394.00 3843.50 1988.00 657.59 1397.67 378.75 922.50 1373.50 3878.50 1959.50 658.79 1396.00 373.75 940.50 1363.00 3797.75 2022.75 659.98 1401.67 365.00 928.75 1352.50 3803.50 2027.00 661.17 1411.33 387.00 940.00 1370.50 3850.25 2010.75 662.34 1400.67 370.50 941.75 1351.00 3863.50 1999.25

105

Huon Peninsula (K-133) Palm Island (PT-1) Wavelength External FG LG External FG LG 663.53 1382.67 374.75 929.25 1364.00 3898.75 1993.25 664.73 1378.00 370.50 952.00 1390.50 3864.50 1995.25 665.92 1382.67 358.00 936.25 1363.00 3815.50 2006.25 667.11 1400.33 392.00 910.50 1374.50 3849.00 2022.00 668.30 1341.67 381.50 928.25 1358.50 3786.75 2002.50 669.50 1397.33 389.25 923.50 1366.50 3820.75 1953.25 670.66 1402.00 381.50 938.75 1360.00 3815.50 2007.25 671.86 1357.00 381.50 932.50 1355.75 3865.25 1997.00 673.05 1406.00 387.75 911.75 1374.00 3847.75 1996.00 674.24 1424.33 379.50 918.25 1371.50 3871.50 1985.25 675.44 1399.67 378.00 934.75 1362.50 3792.25 2031.75 676.60 1386.67 362.75 922.50 1374.75 3840.25 1990.00 677.80 1382.67 369.50 926.75 1389.50 3805.75 2010.50 678.99 1393.33 384.75 940.25 1370.75 3871.00 2012.75 680.18 1371.00 381.25 923.25 1356.25 3849.00 2019.50 681.35 1398.00 381.75 909.00 1357.75 3903.00 2015.50 682.54 1400.33 362.50 936.00 1378.50 3827.75 1981.75 683.73 1384.67 383.75 909.50 1378.00 3825.25 1981.25 684.93 1347.67 386.50 938.25 1386.50 3850.75 2005.25 686.09 1346.00 380.00 913.25 1365.25 3812.50 2002.00 687.29 1438.00 379.50 914.25 1386.50 3849.75 1985.75 688.48 1381.33 371.25 916.25 1408.00 3857.50 2022.75 689.65 1342.33 390.25 932.25 1386.25 3853.75 1981.25 690.84 1400.00 375.25 922.00 1387.75 3850.50 2021.50 692.03 1374.00 388.00 934.75 1395.75 3829.00 2007.50 693.20 1354.00 370.75 920.25 1425.25 3871.25 2019.00 694.39 1406.00 404.00 911.50 1441.25 3899.25 2074.25 695.59 1366.33 411.00 967.75 1462.50 4003.25 2084.75 696.75 1427.67 400.75 937.25 1493.50 4051.00 2168.25 697.95 1463.00 420.25 987.25 1549.75 4167.75 2212.25 699.14 1480.67 452.75 979.75 1641.50 4241.50 2307.25 700.31 1557.67 539.25 1081.50 1729.00 4338.00 2436.25 701.50 1541.33 569.75 1181.00 1751.00 4511.50 2520.25 702.69 1521.33 551.25 1266.75 1766.75 4526.75 2572.50 703.86 1526.67 536.25 1259.50 1755.25 4589.75 2601.00 705.05 1598.67 585.00 1256.50 1715.25 4581.00 2540.00 706.22 1538.00 552.25 1283.00 1671.75 4620.25 2578.00

106

Huon Peninsula (K-133) Palm Island (PT-1) Wavelength External FG LG External FG LG 707.41 1465.67 470.00 1263.00 1570.50 4486.25 2483.50 708.58 1415.33 437.00 1193.25 1459.25 4345.50 2303.00 709.77 1464.67 418.25 1085.75 1426.75 4244.00 2219.00 710.97 1379.67 399.00 1024.50 1397.50 4044.75 2158.25 712.13 1366.33 383.50 986.50 1393.50 4070.25 2056.50 713.33 1403.00 389.25 979.00 1399.00 3986.25 2078.00 714.49 1363.00 388.50 942.00 1408.00 3920.00 2024.00 715.69 1413.33 387.25 981.75 1389.50 3929.50 2068.75 716.86 1387.33 388.50 964.50 1394.00 3900.75 2037.50 718.05 1389.00 371.00 937.00 1360.00 3882.25 2067.50 719.22 1377.67 379.25 938.00 1335.25 3853.25 2033.00 720.41 1414.67 387.00 912.50 1385.50 3849.25 1972.00 721.58 1373.33 389.25 922.50 1354.75 3837.75 2016.00 722.77 1393.33 374.75 918.00 1346.25 3812.50 2000.50 723.94 1374.00 383.75 911.50 1364.00 3856.50 1994.25 725.13 1405.00 370.25 908.00 1367.25 3862.00 1969.75 726.30 1383.67 365.00 908.75 1362.25 3785.50 1971.25 727.47 1373.33 375.75 921.25 1363.50 3838.00 1997.00 728.66 1409.00 367.25 907.50 1332.50 3799.00 1984.00 729.83 1368.67 366.75 916.75 1354.50 3750.50 1983.50 731.02 1366.00 356.50 895.50 1338.50 3827.50 1967.75 732.19 1396.67 378.75 907.50 1337.50 3778.25 1924.75 733.38 1375.67 365.50 907.75 1346.75 3816.75 1989.25 734.55 1378.33 363.75 913.75 1340.00 3779.25 1951.25 735.71 1394.00 370.50 915.00 1377.75 3810.25 1954.50 736.91 1345.33 384.25 899.50 1377.50 3849.50 1961.75 738.07 1383.33 378.50 936.00 1343.00 3758.00 1933.50 739.24 1403.33 382.25 898.25 1333.25 3747.50 1995.25 740.44 1358.33 377.25 898.00 1342.00 3740.50 1955.75 741.60 1413.67 359.00 888.00 1337.25 3779.75 1984.00 742.80 1393.00 354.75 894.50 1334.50 3837.25 1984.00 743.96 1370.33 354.00 896.25 1352.00 3752.25 1988.00 745.13 1381.00 369.75 924.50 1344.00 3712.75 1894.75 746.32 1360.67 366.75 894.75 1349.50 3741.75 1955.50 747.49 1384.33 361.00 864.75 1373.25 3776.50 1944.50 748.66 1403.67 376.25 891.75 1326.50 3763.50 1931.25 749.83 1378.00 375.25 894.75 1347.75 3806.25 1932.25

107

Huon Peninsula (K-133) Palm Island (PT-1) Wavelength External FG LG External FG LG 751.02 1383.33 366.75 864.50 1342.00 3783.75 1910.25 752.19 1394.00 379.25 887.00 1343.00 3742.50 1957.50 753.36 1404.67 382.00 905.75 1331.75 3812.25 1969.00 754.52 1401.67 369.25 882.25 1318.25 3755.75 1967.25 755.72 1373.67 370.75 904.25 1311.50 3723.25 1939.00 756.88 1406.00 356.00 891.75 1340.75 3739.75 1957.00 758.05 1391.33 368.00 896.00 1329.00 3732.00 1922.00 759.22 1368.00 367.50 863.50 1354.50 3688.25 1913.75 760.41 1390.00 366.25 928.00 1337.00 3799.75 1952.75 761.58 1426.33 371.00 882.50 1328.00 3733.75 1959.75 762.75 1426.67 369.75 887.00 1348.75 3753.25 1933.00 763.92 1376.33 364.75 913.75 1350.00 3752.25 1929.50 765.08 1384.00 375.75 897.25 1328.75 3778.50 1908.75 766.28 1391.33 369.75 907.50 1337.50 3719.75 1936.00 767.44 1375.67 372.25 899.75 1338.00 3738.75 1950.75 768.61 1386.67 352.50 883.00 1368.50 3694.50 1978.75 769.78 1387.00 362.50 908.75 1320.50 3720.75 1933.25 770.95 1381.33 370.75 892.25 1321.25 3728.75 1926.75 772.12 1360.33 358.50 893.00 1315.25 3759.75 1970.50 773.31 1368.33 371.75 858.75 1340.75 3730.75 1961.50 774.48 1395.67 347.75 884.75 1358.25 3752.25 1953.25 775.64 1394.33 373.25 897.25 1310.50 3718.75 1950.00 776.81 1349.00 364.00 870.50 1328.25 3770.25 1970.50 777.98 1368.33 376.25 879.25 1314.75 3773.25 1901.25 779.15 1393.00 367.50 912.50 1355.00 3790.25 1949.00 780.31 1415.00 372.75 876.00 1296.50 3773.75 1953.25 781.48 1368.33 361.50 898.50 1362.00 3735.75 1951.50 782.65 1389.67 352.25 871.50 1303.75 3769.75 1953.25 783.82 1390.67 363.25 891.25 1330.50 3768.00 1951.75 785.01 1385.67 366.25 884.25 1353.75 3722.75 1916.50 786.18 1350.33 360.75 887.00 1340.25 3719.75 1968.50 787.35 1375.33 359.75 891.00 1315.75 3703.25 1934.25 788.51 1389.00 366.50 869.50 1334.50 3742.50 1940.75 789.68 1361.67 366.50 866.50 1300.50 3742.25 1958.25 790.85 1386.00 370.75 877.00 1330.00 3750.50 1890.00 792.02 1383.33 379.75 891.75 1333.50 3743.50 1932.50 793.19 1380.33 361.25 899.50 1318.25 3682.50 1955.75

108

Huon Peninsula (K-133) Palm Island (PT-1) Wavelength External FG LG External FG LG 794.35 1382.00 348.25 869.00 1330.50 3683.75 1932.75 795.52 1399.33 367.75 898.25 1326.50 3732.75 1910.00 796.69 1374.00 356.50 872.75 1340.75 3725.25 1878.75 797.86 1395.00 381.25 897.75 1338.50 3657.25 1914.50 799.02 1356.00 377.25 889.25 1336.75 3713.75 1916.75 800.19 1430.33 346.75 892.50 1324.75 3695.25 1904.00 801.36 1395.67 368.25 875.50 1314.25 3728.00 1934.00 802.50 1369.00 368.50 885.50 1321.00 3788.50 1918.25 803.67 1372.33 351.25 880.50 1348.75 3685.25 1878.75 804.84 1364.33 380.00 909.00 1326.25 3707.50 1962.75 806.01 1390.33 379.25 881.75 1318.75 3731.00 1905.25 807.17 1392.00 359.75 899.25 1330.50 3714.50 1908.25 808.34 1390.00 342.25 891.75 1291.75 3707.75 1919.25 809.51 1369.67 356.75 868.25 1307.75 3735.75 1933.50 810.68 1397.33 361.50 875.50 1326.25 3705.75 1890.75 811.85 1368.00 372.50 888.75 1330.75 3772.50 1898.75 813.01 1396.67 347.75 885.50 1319.75 3707.75 1938.50 814.16 1414.00 363.50 868.25 1306.25 3672.75 1906.50 815.32 1383.67 378.75 875.75 1334.00 3698.50 1915.50 816.49 1381.33 358.75 875.75 1323.00 3713.75 1900.00 817.66 1428.67 367.75 869.25 1301.75 3665.25 1928.50 818.83 1379.33 362.75 915.75 1307.50 3686.25 1943.25 820.00 1378.00 349.75 890.50 1307.25 3741.75 1922.00 821.14 1383.00 364.00 895.00 1273.75 3702.00 1946.00 822.31 1381.33 356.50 889.00 1284.75 3705.75 1943.50 823.47 1375.33 358.75 899.00 1315.25 3715.00 1930.75 824.64 1385.00 351.75 892.75 1351.50 3657.00 1884.50 825.81 1417.33 351.00 878.25 1330.75 3685.00 1963.25 826.95 1392.67 364.00 846.50 1315.75 3659.75 1929.00 828.12 1371.00 362.00 870.25 1287.00 3659.00 1934.50 829.29 1373.00 352.75 858.50 1323.00 3653.75 1927.75 830.46 1400.00 373.75 859.25 1314.00 3794.00 1882.25 831.60 1411.67 351.50 891.75 1288.50 3704.50 1965.50 832.77 1402.33 368.25 881.75 1282.50 3725.25 1918.50 833.94 1348.00 342.75 862.50 1320.25 3688.50 1925.00 835.10 1409.33 353.50 876.75 1315.50 3746.75 1938.00 836.25 1382.00 357.25 878.75 1324.00 3711.25 1918.25

109

Huon Peninsula (K-133) Palm Island (PT-1) Wavelength External FG LG External FG LG 837.41 1385.67 361.75 861.25 1282.50 3737.25 1895.75 838.58 1347.67 374.50 847.75 1310.75 3736.50 1882.25 839.72 1430.67 358.50 890.25 1296.00 3687.00 1955.50 840.89 1407.00 374.50 874.25 1285.00 3696.75 1903.50 842.06 1385.33 345.25 858.25 1295.00 3666.00 1914.50 843.20 1411.00 359.75 899.50 1304.00 3668.75 1933.00 844.37 1379.67 361.75 866.50 1356.75 3703.25 1952.50 845.54 1392.67 354.25 866.25 1300.00 3631.25 1914.25 846.68 1396.67 345.50 876.50 1309.50 3732.50 1931.25 847.85 1390.67 369.25 862.75 1279.25 3678.50 1905.50 849.02 1363.33 367.00 851.00 1317.25 3667.00 1918.25 850.16 1376.33 349.00 873.75 1275.00 3722.00 1923.50 851.33 1440.00 361.00 862.25 1332.75 3723.00 1934.25 852.50 1397.33 369.50 873.50 1313.25 3691.75 1879.75 853.64 1372.00 369.00 897.50 1316.50 3678.50 1910.25 854.81 1352.33 355.25 892.25 1337.25 3710.25 1949.50 855.95 1376.00 353.00 891.00 1338.50 3724.75 1940.50 857.12 1384.67 353.75 862.75 1343.25 3712.50 1909.50 858.26 1381.00 340.75 883.00 1303.75 3622.75 1946.75 859.43 1425.67 365.75 868.75 1300.25 3635.50 1926.25 860.60 1362.67 356.25 875.75 1302.50 3701.25 1877.50 861.74 1380.00 351.25 872.75 1311.75 3678.25 1936.75 862.91 1376.67 369.75 873.25 1297.00 3650.75 1865.25 864.05 1357.67 362.50 855.00 1308.00 3656.00 1906.50 865.22 1408.00 360.00 843.25 1307.25 3643.25 1884.50 866.36 1388.33 366.00 890.50 1301.50 3701.00 1904.50 867.53 1385.00 355.50 865.75 1308.00 3675.00 1926.50 868.67 1360.67 369.25 867.25 1306.25 3623.75 1913.00 869.84 1361.00 363.00 861.00 1292.00 3631.50 1885.25 870.98 1355.00 370.25 877.25 1295.25 3731.00 1929.25 872.15 1398.00 366.25 842.00 1304.00 3701.00 1863.75 873.29 1379.67 363.00 855.00 1326.50 3654.75 1870.25 874.46 1404.67 356.75 852.50 1301.00 3721.75 1888.25 875.60 1384.33 347.50 853.25 1312.50 3622.25 1880.75 876.77 1374.67 363.00 879.75 1299.75 3649.50 1899.00 877.91 1374.00 358.25 834.75 1272.25 3668.50 1880.75 879.06 1399.00 359.50 859.75 1310.25 3628.75 1882.50

110

Huon Peninsula (K-133) Palm Island (PT-1) Wavelength External FG LG External FG LG 880.23 1406.33 371.25 853.00 1298.75 3675.00 1902.50 881.37 1368.67 348.25 868.00 1274.50 3601.75 1898.00 882.54 1365.33 349.00 850.75 1298.75 3645.75 1889.00 883.68 1358.67 357.75 866.75 1311.50 3667.00 1882.75 884.82 1376.67 355.00 861.00 1278.00 3685.50 1847.00 885.99 1405.67 362.00 836.00 1291.50 3627.25 1905.25 887.13 1381.67 356.75 850.50 1310.00 3624.25 1868.75 888.30 1361.33 375.00 875.00 1303.50 3594.25 1899.25 889.44 1394.33 361.00 852.75 1289.00 3602.75 1934.25 890.59 1390.00 342.25 878.25 1306.25 3660.75 1918.75 891.75 1376.33 351.50 871.75 1275.75 3637.00 1876.00 892.90 1393.00 353.00 872.75 1297.00 3659.50 1882.50 894.04 1391.00 361.50 864.00 1278.00 3625.75 1846.25 895.21 1406.33 365.00 867.50 1280.25 3608.50 1911.00 896.35 1381.00 338.50 855.00 1275.00 3611.75 1856.25 897.49 1407.67 342.50 847.50 1311.25 3596.75 1914.00 898.66 1389.00 354.75 861.50 1312.00 3617.50 1866.00 899.81 1376.67 348.25 862.00 1272.50 3605.25 1909.00 900.95 1423.33 351.75 868.00 1273.75 3646.50 1901.50 902.09 1392.00 349.75 844.25 1293.75 3620.25 1884.00 903.26 1375.67 355.00 853.00 1290.50 3643.00 1889.25 904.40 1415.33 358.25 861.25 1312.50 3662.00 1880.25 905.54 1393.67 360.50 841.25 1259.25 3652.75 1888.00 906.69 1409.67 362.00 868.25 1304.50 3618.75 1908.25 907.86 1389.33 369.00 835.25 1280.00 3653.25 1883.75 909.00 1401.67 354.25 863.50 1322.75 3652.50 1880.75 910.14 1415.00 347.75 868.50 1318.75 3662.75 1857.25 911.28 1388.67 359.25 839.75 1312.75 3625.75 1885.00 912.45 1353.33 353.75 881.50 1321.50 3623.50 1896.50 913.60 1371.33 343.50 850.25 1316.50 3585.25 1898.25 914.74 1432.67 348.00 861.50 1310.75 3660.75 1863.50 915.88 1402.00 351.25 864.50 1275.75 3647.00 1875.75 917.02 1348.00 359.25 863.00 1323.25 3626.75 1865.75 918.19 1401.33 353.75 844.25 1258.50 3617.50 1897.75 919.33 1387.00 363.75 863.00 1297.00 3565.75 1872.50 920.48 1380.67 356.75 860.00 1289.50 3681.25 1905.25 921.62 1424.00 355.50 845.25 1306.75 3696.00 1851.25

111

Huon Peninsula (K-133) Palm Island (PT-1) Wavelength External FG LG External FG LG 922.76 1393.33 353.75 864.25 1287.50 3668.75 1870.25 923.91 1390.33 341.50 854.25 1301.50 3632.50 1902.25 925.05 1411.67 352.75 859.00 1270.75 3651.75 1872.50 926.19 1392.33 368.00 866.50 1287.75 3637.00 1886.75 927.36 1381.00 348.25 855.50 1296.00 3666.00 1864.00 928.50 1399.00 349.25 863.50 1292.50 3618.00 1879.75 929.65 1414.33 350.00 864.00 1279.50 3660.25 1856.00 930.79 1387.33 342.25 864.50 1273.00 3633.00 1874.50 931.93 1378.00 341.75 888.00 1305.00 3670.50 1914.00 933.08 1410.67 352.25 851.25 1293.50 3619.00 1894.25 934.22 1397.00 354.00 841.00 1299.50 3638.25 1897.50 935.36 1416.67 369.50 855.75 1288.50 3647.00 1837.50 936.50 1405.00 355.50 860.50 1299.00 3627.00 1893.00 937.65 1392.33 356.25 846.25 1261.50 3612.25 1882.50 938.79 1419.33 341.75 849.25 1293.25 3673.75 1856.25 939.93 1403.67 347.00 853.25 1258.25 3646.00 1892.75 941.08 1419.00 355.75 871.00 1290.00 3621.50 1890.00 942.22 1382.33 342.75 870.50 1265.75 3625.75 1887.00 943.36 1379.67 364.25 859.25 1262.50 3652.75 1873.50 944.51 1375.00 348.75 861.25 1305.00 3647.50 1901.25 945.65 1398.00 340.50 845.25 1271.75 3628.75 1878.25 946.79 1401.67 353.00 846.75 1291.75 3618.25 1871.75 947.93 1395.67 346.75 853.00 1270.25 3602.75 1908.75 949.08 1391.33 366.75 845.00 1309.75 3632.50 1914.75 950.22 1411.00 345.25 840.75 1265.25 3625.25 1873.75 951.36 1401.33 355.50 849.75 1271.00 3604.25 1866.25 952.51 1447.00 361.75 837.50 1310.00 3628.25 1863.25 953.65 1404.67 358.50 830.00 1268.50 3615.50 1892.75 954.79 1396.67 355.00 865.25 1305.25 3663.00 1890.75 955.93 1381.33 361.50 832.75 1283.50 3613.25 1880.75 957.08 1370.33 360.50 852.00 1317.25 3579.75 1888.25 958.22 1387.67 355.75 856.50 1282.00 3629.00 1855.50 959.36 1422.00 350.25 877.00 1293.75 3582.25 1859.25 960.48 1404.33 366.25 842.75 1306.00 3617.50 1869.50 961.62 1369.67 350.25 871.00 1241.75 3632.00 1833.00 962.77 1430.00 350.75 849.50 1273.50 3614.50 1891.50 963.91 1407.00 348.25 856.25 1277.00 3643.00 1847.00

112

Huon Peninsula (K-133) Palm Island (PT-1) Wavelength External FG LG External FG LG 965.05 1413.33 357.50 843.75 1283.50 3648.00 1879.00 966.20 1421.33 345.75 848.75 1308.25 3630.00 1890.75 967.34 1403.33 357.50 809.25 1287.25 3562.50 1828.50 968.46 1382.67 339.75 838.75 1296.00 3626.50 1860.25 969.60 1401.00 352.50 853.50 1281.75 3607.50 1881.25 970.74 1391.00 335.75 846.00 1274.00 3639.25 1894.75 971.89 1396.00 353.50 829.00 1272.50 3637.25 1883.50 973.03 1378.33 362.75 857.75 1276.25 3635.00 1869.75 974.17 1376.00 347.25 856.00 1304.00 3619.25 1858.50 975.29 1431.33 339.25 824.00 1275.50 3653.00 1856.00 976.43 1393.33 352.25 824.00 1277.50 3662.50 1852.00 977.58 1423.00 352.00 837.50 1252.75 3585.25 1834.25 978.72 1367.33 362.75 821.75 1259.75 3623.75 1868.50 979.84 1382.00 367.50 817.50 1256.00 3622.50 1893.25 980.98 1347.33 346.00 843.25 1255.50 3549.25 1881.00 982.12 1422.67 340.00 832.25 1274.25 3611.75 1873.50 983.27 1411.67 360.50 828.50 1289.75 3559.25 1870.75 984.38 1391.67 363.00 830.50 1255.25 3595.00 1871.25 985.53 1396.67 353.00 837.25 1248.25 3608.00 1870.00 986.67 1386.33 351.00 862.50 1282.25 3588.00 1890.25 987.81 1387.67 355.50 831.00 1246.75 3568.50 1861.75 988.93 1393.33 339.75 859.50 1296.50 3621.00 1847.25 990.07 1407.67 342.25 843.00 1263.00 3589.50 1891.25 991.22 1389.33 335.00 844.50 1266.00 3598.50 1864.25 992.34 1402.00 348.50 820.25 1267.00 3551.25 1842.00 993.48 1386.33 347.25 838.50 1226.50 3508.50 1849.50 994.62 1367.67 336.25 841.25 1256.25 3602.75 1823.50 995.74 1382.00 355.50 800.25 1285.50 3508.75 1868.50 996.88 1405.33 348.75 836.75 1269.25 3547.00 1850.50 998.03 1386.00 336.25 845.00 1264.25 3572.75 1859.00 999.14 1412.00 348.75 828.75 1279.25 3556.50 1839.25 1000.29 1382.00 364.25 841.50 1255.50 3571.25 1853.50 1001.40 1393.67 344.25 838.00 1244.50 3586.25 1853.25 1002.55 1391.67 355.50 843.75 1275.00 3566.50 1845.75 1003.69 1398.00 342.00 859.25 1278.50 3580.00 1851.75 1004.81 1381.00 354.25 851.00 1282.00 3584.25 1853.50 1005.95 1373.33 350.25 840.25 1262.25 3553.75 1860.25

113

Huon Peninsula (K-133) Palm Island (PT-1) Wavelength External FG LG External FG LG 1007.09 1366.67 352.50 847.75 1274.50 3497.75 1866.50 1008.21 1399.67 332.75 837.75 1271.25 3603.25 1882.25 1009.36 1455.33 360.75 825.25 1240.50 3645.00 1825.75 1010.47 1394.67 352.00 834.50 1254.50 3517.25 1844.00 1011.62 1375.00 354.25 837.75 1236.75 3557.00 1824.50 1012.73 1409.67 331.75 816.00 1241.75 3490.00 1845.25 1013.88 1393.33 330.00 817.00 1261.50 3575.25 1841.75 1015.00 1352.67 356.75 826.00 1223.75 3636.00 1830.75 1016.14 1355.67 354.25 835.00 1277.50 3550.00 1803.25 1017.26 1413.33 364.75 814.75 1253.25 3589.25 1836.75 1018.40 1380.67 369.25 864.75 1262.75 3534.50 1817.50 1019.52 1397.00 349.75 842.00 1260.25 3575.00 1863.00 1020.66 1426.67 335.75 834.75 1241.75 3530.50 1848.75 1021.78 1401.67 355.25 842.25 1253.75 3590.00 1847.75 1022.92 1404.67 327.75 836.00 1223.00 3562.75 1820.50 1024.04 1397.67 343.75 833.75 1239.75 3483.00 1869.50 1025.18 1387.00 353.50 839.75 1260.00 3530.25 1831.50 1026.30 1425.33 336.75 825.00 1257.25 3593.50 1824.00 1027.44 1395.33 340.50 859.25 1264.00 3627.00 1875.75 1028.56 1396.67 350.75 827.50 1278.25 3539.50 1870.50 1029.71 1391.33 340.00 824.75 1252.25 3509.75 1855.50 1030.82 1434.67 353.50 820.75 1222.00 3521.25 1845.25 1031.94 1387.00 354.75 849.75 1275.50 3589.75 1834.25 1033.08 1386.67 347.50 845.25 1249.25 3610.50 1827.50 1034.20 1387.33 355.25 834.25 1231.50 3568.50 1828.50 1035.35 1384.33 361.00 828.00 1256.75 3521.25 1844.75 1036.46 1369.67 349.50 853.25 1246.50 3499.00 1816.50 1037.58 1394.67 354.00 810.00 1261.75 3582.50 1826.00 1038.72 1404.00 346.00 821.25 1233.25 3483.50 1829.00 1039.84 1405.67 366.50 814.25 1258.00 3538.00 1801.25 1040.96 1394.00 362.00 830.25 1239.50 3544.75 1877.75 1042.10 1423.33 347.25 841.50 1261.50 3597.50 1858.50 1043.22 1402.00 354.50 841.00 1250.75 3592.00 1842.50 1044.37 1428.67 371.50 854.25 1267.75 3588.00 1882.25 1045.48 1407.00 349.75 823.25 1236.25 3553.25 1858.75 1046.60 1484.00 338.00 841.00 1284.75 3607.75 1842.00 1047.74 1400.00 356.75 820.75 1293.25 3547.50 1867.25

114

Huon Peninsula (K-133) Palm Island (PT-1) Wavelength External FG LG External FG LG 1048.86 1422.33 341.25 822.50 1270.50 3583.25 1873.25 1049.98 1442.00 355.00 829.50 1244.50 3541.50 1829.50 1051.10 1413.33 337.25 832.25 1264.50 3580.50 1839.25 1052.24 1379.33 348.00 823.75 1245.75 3560.00 1822.25 1053.36 1376.33 360.00 854.50 1254.00 3552.25 1836.00 1054.48 1416.33 322.00 812.25 1269.50 3610.50 1875.00 1055.62 1425.00 363.00 838.75 1279.50 3542.50 1854.00 1056.74 1441.00 355.50 817.75 1251.25 3562.50 1838.25 1057.86 1419.00 367.25 840.25 1239.00 3553.75 1863.50 1058.98 1414.33 363.75 845.50 1302.50 3571.50 1880.00 1060.09 1424.67 367.75 862.50 1258.25 3577.75 1863.50 1061.24 1434.00 365.25 855.50 1261.00 3632.50 1848.00 1062.35 1456.00 366.50 853.00 1290.25 3601.50 1904.50 1063.47 1432.00 364.25 846.75 1253.75 3621.00 1840.00 1064.59 1390.00 375.50 837.50 1288.75 3588.75 1886.25 1065.73 1417.00 368.50 834.50 1263.00 3604.25 1889.50 1066.85 1402.33 363.25 890.00 1276.75 3614.00 1884.00 1067.97 1435.33 361.25 888.50 1289.50 3602.25 1897.00 1069.09 1418.67 377.00 860.75 1311.00 3626.25 1887.25 1070.21 1412.67 381.25 872.00 1287.25 3650.75 1917.25 1071.32 1409.00 395.50 890.25 1296.75 3680.50 1931.50 1072.47 1435.00 379.25 899.50 1317.25 3689.00 1965.50 1073.59 1405.33 392.75 881.00 1324.75 3706.00 1983.50 1074.70 1485.00 394.75 920.50 1392.00 3722.25 2011.75 1075.82 1470.67 424.75 969.50 1432.75 3783.75 2139.25 1076.94 1461.67 425.75 1001.50 1595.25 3887.50 2199.75 1078.06 1481.67 470.75 1066.75 1799.50 4047.75 2455.50 1079.18 1542.67 509.00 1195.25 2140.00 4482.25 2768.50 1080.29 1590.33 618.50 1389.00 2451.75 5129.75 3363.50 1081.44 1767.67 814.50 1704.25 2974.25 5944.50 4042.25 1082.56 2113.33 1219.75 2164.75 3650.25 6794.50 4921.75 1083.67 2840.67 2112.00 2901.25 4539.25 7756.00 6110.75 1084.79 3769.67 3140.75 4050.25 4962.25 8660.75 7468.75 1085.91 3234.00 2739.75 5081.50 4057.00 9321.75 8096.25 1087.03 2084.00 1523.25 5211.00 2931.25 9204.50 6640.75 1088.15 1678.00 851.00 3729.75 2145.00 8058.00 4843.25 1089.26 1548.33 554.75 2456.75 1670.75 6848.25 3609.00

115

Huon Peninsula (K-133) Palm Island (PT-1) Wavelength External FG LG External FG LG 1090.38 1452.67 462.50 1764.50 1427.00 5720.75 2812.00 1091.50 1464.00 398.75 1311.25 1355.25 4712.75 2318.75 1092.62 1460.67 385.00 1061.75 1289.25 4143.25 2096.25 1093.74 1415.00 376.00 966.75 1247.00 3817.50 1966.00 1094.85 1417.00 381.75 902.00 1286.25 3693.25 1936.75 1095.97 1432.00 367.25 873.50 1277.75 3657.25 1915.75 1097.09 1461.67 346.50 867.25 1257.25 3596.75 1889.25 1098.21 1440.67 363.75 847.25 1252.25 3593.75 1882.50 1099.33 1450.33 356.00 838.25 1258.75 3538.50 1831.25 1100.45 1437.67 358.50 838.75 1231.25 3581.00 1850.00 1101.56 1471.67 345.75 829.50 1216.50 3601.75 1825.50 1102.68 1384.67 339.00 821.75 1228.50 3566.50 1828.75 1103.80 1374.33 347.50 814.75 1239.50 3550.00 1849.00 1104.92 1418.33 348.00 819.75 1243.25 3590.75 1827.00 1106.04 1412.00 348.75 792.50 1267.00 3525.50 1802.25 1107.15 1451.67 347.50 780.25 1238.25 3537.25 1800.25 1108.27 1437.67 343.25 804.75 1217.50 3513.00 1816.75 1109.37 1451.67 340.50 805.75 1209.75 3536.25 1809.25 1110.48 1416.00 343.00 803.75 1239.75 3487.00 1793.75 1111.60 1411.00 339.25 802.75 1236.50 3572.00 1847.00 1112.72 1434.00 329.50 812.75 1215.00 3511.50 1796.75 1113.84 1431.00 337.00 817.00 1222.25 3440.75 1851.00 1114.96 1432.06 340.08 806.59 1235.20 3506.24 1808.31 1116.07 1379.53 335.03 801.87 1212.74 3495.75 1809.59 1117.19 1391.29 353.98 793.22 1221.93 3478.59 1763.85 1118.29 1392.89 345.06 814.06 1226.44 3495.15 1755.63 1119.40 1433.24 342.48 808.69 1223.01 3530.06 1831.88 1120.52 1413.14 359.98 786.75 1224.64 3470.30 1795.13 1121.64 1442.73 344.02 797.84 1207.83 3536.55 1776.75 1122.76 1387.34 337.08 778.41 1219.20 3475.77 1790.94 1123.88 1418.64 328.42 812.60 1226.01 3453.91 1784.25 1124.97 1411.68 338.14 790.16 1229.47 3496.10 1788.69 1126.09 1402.04 338.70 788.19 1202.39 3473.79 1763.50 1127.21 1434.97 339.80 796.72 1220.56 3476.95 1793.09 1128.32 1412.62 358.61 797.63 1212.32 3482.33 1799.28 1129.44 1408.78 345.61 791.62 1215.18 3439.19 1747.44 1130.54 1414.02 348.28 785.13 1193.42 3460.51 1788.03

116

Huon Peninsula (K-133) Palm Island (PT-1) Wavelength External FG LG External FG LG 1131.65 1376.25 345.70 794.00 1217.24 3461.37 1799.03 1132.77 1392.14 340.06 811.91 1191.36 3464.05 1761.97 1133.89 1417.15 339.41 795.03 1203.09 3465.78 1785.97 1134.98 1371.55 337.91 786.47 1193.66 3428.05 1773.69 1136.10 1409.04 339.86 793.16 1212.45 3467.29 1777.22 1137.22 1377.67 334.08 789.19 1184.25 3423.35 1797.22 1138.34 1400.27 333.72 783.06 1215.95 3453.06 1748.38 1139.43 1385.85 339.09 779.59 1198.47 3442.55 1730.28 1140.55 1411.61 327.02 778.19 1196.33 3379.24 1759.28 1141.67 1375.46 331.98 797.56 1194.03 3438.44 1749.25 1142.76 1403.30 327.39 776.31 1195.29 3457.33 1752.41 1143.88 1396.59 342.91 768.81 1221.11 3384.91 1758.53 1145.00 1387.07 340.75 785.47 1203.67 3386.94 1741.75 1146.09 1413.70 334.14 780.50 1220.44 3400.82 1736.97 1147.21 1376.11 336.08 764.28 1191.97 3355.54 1748.88 1148.33 1382.68 334.06 786.44 1199.08 3395.49 1719.07 1149.42 1366.92 338.34 755.09 1197.04 3327.79 1745.81 1150.54 1390.99 340.16 789.00 1208.31 3402.07 1721.31 1151.66 1413.11 331.95 778.56 1181.12 3357.70 1743.97 1152.75 1449.42 334.06 765.31 1200.27 3383.01 1751.91 1153.87 1429.60 319.73 781.60 1201.14 3388.63 1707.85 1154.96 1387.64 329.66 771.25 1203.99 3396.49 1745.78 1156.08 1378.45 332.53 759.72 1182.12 3361.22 1709.94 1157.20 1377.39 336.64 781.00 1178.56 3370.88 1732.16 1158.29 1394.19 330.84 783.16 1157.86 3374.59 1768.50 1159.41 1397.91 329.89 757.44 1201.21 3346.36 1725.53 1160.50 1376.67 314.13 778.88 1188.83 3383.19 1725.09 1161.62 1386.08 328.53 788.81 1169.57 3389.64 1743.22 1162.74 1407.61 326.86 783.25 1210.43 3305.41 1742.44 1163.83 1395.11 324.03 764.25 1185.15 3400.71 1738.97 1164.95 1347.32 320.20 750.09 1181.20 3337.25 1738.13 1166.04 1358.94 339.47 769.00 1188.33 3321.56 1750.53 1167.16 1404.23 316.56 762.94 1185.95 3388.71 1748.19 1168.25 1399.56 336.48 747.75 1167.59 3343.36 1726.63 1169.37 1404.67 322.17 776.56 1186.52 3346.60 1731.10 1170.46 1385.95 334.84 769.16 1175.14 3300.08 1732.50 1171.58 1382.42 330.39 752.03 1192.19 3353.94 1722.47

117

Huon Peninsula (K-133) Palm Island (PT-1) Wavelength External FG LG External FG LG 1172.68 1385.42 325.09 766.41 1197.28 3368.74 1740.72 1173.79 1354.33 327.64 745.72 1186.60 3345.37 1726.06 1174.89 1404.48 325.73 771.03 1161.46 3372.66 1729.34 1176.01 1402.88 324.45 755.56 1187.93 3329.64 1730.85 1177.10 1401.24 320.52 752.28 1190.61 3332.61 1743.81 1178.22 1391.39 333.78 769.00 1172.45 3347.67 1730.47 1179.31 1403.97 330.16 770.88 1177.12 3316.34 1733.28 1180.43 1359.40 330.36 771.53 1184.94 3322.10 1702.16 1181.52 1389.07 325.97 765.44 1208.59 3319.03 1724.28 1182.61 1377.80 324.42 749.28 1169.19 3269.04 1719.91 1183.73 1394.03 315.75 754.03 1180.55 3291.07 1694.63 1184.83 1375.52 323.45 750.09 1169.72 3311.06 1716.88 1185.94 1383.80 322.53 774.09 1153.08 3302.27 1720.25 1187.04 1382.73 329.36 753.34 1192.14 3297.40 1711.00 1188.13 1371.86 325.42 750.47 1167.31 3278.84 1695.06 1189.25 1386.73 329.03 749.50 1175.54 3300.06 1714.60 1190.34 1376.76 322.92 760.19 1180.99 3270.56 1693.10 1191.46 1368.32 325.97 755.10 1183.73 3291.48 1705.60 1192.55 1365.26 318.59 767.56 1181.07 3285.96 1713.47 1193.65 1354.36 317.33 757.94 1168.52 3295.40 1707.94 1194.77 1358.73 323.20 741.19 1162.97 3272.48 1685.44 1195.86 1374.27 314.81 752.09 1173.10 3279.53 1730.91 1196.95 1365.45 326.13 759.38 1171.46 3289.11 1695.72 1198.07 1368.52 332.67 732.31 1170.71 3291.79 1704.94 1199.16 1377.64 324.36 761.84 1159.96 3260.84 1721.84 1200.26 1354.47 319.08 768.00 1173.52 3258.31 1702.78

118

APPENDIX X: STABLE ISOTOPIC ANALYSIS

Figure A.3, Powder for stable carbon and oxygen isotope analysis was milled from the external (EL) and internal (IL) layers of modern T. gigas shells: K-133 (PNG; left) and PT-1 (GBR; right). The pallial line (dashed black line) separates the shell layers.

Measurements: External: Distance from initial milled trench; Internal: Distance from pallial line Sample Layer (Fig. 1.1) Distance (µm) δ13C (‰VPBD) δ18O (‰VPBD) K-133 EL -800 2.56 -1.59 K-133 EL -750 2.24 -1.68 K-133 EL -700 2.57 -1.45 K-133 EL -650 2.28 -1.56 K-133 EL -600 2.52 -1.47 K-133 EL -550 2.77 -1.40 K-133 EL -500 2.63 -1.43 K-133 EL -450 2.55 -1.48 K-133 EL -400 2.42 -1.47 K-133 EL -350 2.89 -1.36 K-133 EL -300 3.24 -1.70 K-133 EL -250 3.20 -1.80 K-133 EL -200 3.23 -1.61 K-133 EL -150 2.23 -1.67 K-133 EL -100 2.29 -1.68 K-133 EL -50 2.33 -1.54 119

Sample Layer (Fig. 1.1) Distance (µm) δ13C (‰VPBD) δ18O (‰VPBD) K-133 IL 0 2.23 -1.51 K-133 IL 50 2.19 -1.62 K-133 IL 100 2.19 -1.54 K-133 IL 150 2.11 -1.47 K-133 IL 200 2.14 -1.44 K-133 IL 250 2.20 -1.18 K-133 IL 300 2.20 -1.56 K-133 IL 350 2.16 -1.44 K-133 IL 400 2.25 -1.21 K-133 IL 450 2.15 -1.41 K-133 IL 500 2.27 -1.22 K-133 IL 550 2.20 -1.33 K-133 IL 600 2.19 -1.41 K-133 IL 650 2.18 -1.37 K-133 IL 700 2.17 -1.43 K-133 IL 750 2.18 -1.34 K-133 IL 800 2.17 -1.80 K-133 IL 850 2.22 -1.19 K-133 IL 900 2.12 -1.24 K-133 IL 950 2.19 -1.27 K-133 IL 1000 2.16 -1.15 K-133 IL 1050 2.30 -1.29 K-133 IL 1100 2.13 -1.21 K-133 IL 1150 2.16 -1.12 K-133 IL 1200 2.11 -1.24 K-133 IL 1250 2.22 -1.04 K-133 IL 1300 2.10 -1.22 K-133 IL 1350 2.13 -1.20 K-133 IL 1400 2.10 -1.31 K-133 IL 1450 2.06 -1.27 K-133 IL 1500 2.06 -1.27 K-133 IL 1550 2.09 -1.08 K-133 IL 1600 2.02 -1.23 K-133 IL 1650 2.04 -1.20 K-133 IL 1700 2.12 -1.14 K-133 IL 1750 2.16 -1.15 K-133 IL 1800 2.01 -1.15 K-133 IL 1850 2.04 -1.47

120

Sample Layer (Fig. 1.1) Distance (µm) δ13C (‰VPBD) δ18O (‰VPBD) K-133 IL 1900 2.17 -1.41 K-133 IL 1950 2.10 -1.12 K-133 IL 2000 2.21 -1.07 K-133 IL 2050 2.27 -1.26 K-133 IL 2100 2.09 -1.36 K-133 IL 2150 2.16 -1.27 K-133 IL 2200 2.04 -1.29 K-133 IL 2250 1.98 -1.20 K-133 IL 2300 2.13 -1.52 K-133 IL 2350 2.21 -1.18 K-133 IL 2400 2.09 -1.19 K-133 IL 2450 2.03 -1.42 K-133 IL 2500 2.17 -1.09 K-133 IL 2550 2.15 -1.48 K-133 IL 2600 2.02 -1.43 K-133 IL 2650 2.05 -1.64 K-133 IL 2700 2.14 -1.41 K-133 IL 2750 2.17 -1.60 K-133 IL 2800 2.12 -1.50 PT-1 EL -950 2.95 -0.35 PT-1 EL -900 2.60 -0.43 PT-1 EL -850 3.06 -0.58 PT-1 EL -800 3.05 -0.33 PT-1 EL -750 3.25 -0.59 PT-1 EL -700 2.17 -0.24 PT-1 EL -650 3.59 -0.59 PT-1 EL -600 3.40 -0.58 PT-1 EL -550 3.22 -0.48 PT-1 EL -500 3.67 -0.61 PT-1 EL -450 3.43 -0.68 PT-1 EL -400 3.57 -0.74 PT-1 EL -350 3.52 -0.55 PT-1 EL -300 3.62 -0.76 PT-1 EL -250 3.42 -0.67 PT-1 EL -200 2.98 -0.55 PT-1 EL -150 3.09 -0.71 PT-1 EL -100 3.04 -0.59 PT-1 EL -50 3.43 -0.67

121

Sample Layer (Fig. 1.1) Distance (µm) δ13C (‰VPBD) δ18O (‰VPBD) PT-1 IL 0 1.63 -1.14 PT-1 IL 50 1.42 -1.75 PT-1 IL 100 1.78 -1.14 PT-1 IL 150 1.71 -1.04 PT-1 IL 200 1.73 -0.93 PT-1 IL 250 1.70 -1.12 PT-1 IL 300 1.75 -1.02 PT-1 IL 350 1.69 -1.01 PT-1 IL 400 1.71 -0.99 PT-1 IL 450 1.76 -0.86 PT-1 IL 500 1.67 -1.01 PT-1 IL 550 1.60 -0.80 PT-1 IL 600 1.61 -0.88 PT-1 IL 650 1.66 -0.68 PT-1 IL 700 1.55 -0.75 PT-1 IL 750 1.62 -0.71 PT-1 IL 800 1.63 -0.92 PT-1 IL 850 1.50 -0.39 PT-1 IL 900 1.70 -0.30 PT-1 IL 950 1.62 -0.42 PT-1 IL 1000 1.66 -0.30 PT-1 IL 1050 1.64 -0.21 PT-1 IL 1100 1.61 0.06 PT-1 IL 1150 1.67 -0.04 PT-1 IL 1200 1.48 -0.30 PT-1 IL 1250 1.56 -0.04 PT-1 IL 1300 1.60 -0.13 PT-1 IL 1350 1.58 -0.06 PT-1 IL 1400 1.61 0.03 PT-1 IL 1450 1.61 -0.01 PT-1 IL 1500 1.48 -0.05 PT-1 IL 1550 1.60 0.05

122

APPENDIX XI: TERRACE CORRELATIONS

The Huon Peninsula is not the only location where raised coral reef terraces have been investigated for paleoclimate studies. Chrono-correlated terraces show the same glacio-eustatic features through morphological and chemical analyses (Aharon, 1983; Dodge et al., 1983;

Radtke and Schellmann, 2005). Differences arise in the terrace building mechanisms with only minor discrepancies in geologic age. Along the coastal shores of Kenya in the Kilifi District, terraces have been associated with times of interglacial, high sea level for the past 25ka. During these times, significant coral reefs built up causing isostatic loading. When sea level dropped, the land rebounded due to transgression (Åse, 1981).

Terraces in Haiti, Indonesia, and Barbados are preserved due to tectonic uplift, similar to the

Huon Peninsula. The Northwest Peninsula of Haiti contains reef crests composed of nearly exclusively Acropora palmate corals, which typically thrive in less than 5m of water. Several reef crests were dated using U/Th and produced ages of 130ka, 108ka, and 81ka (Dodge et al.,

1983). Barbados terraces are also primarily composed of A. palmate, indicating there were low tides during the time they built up (Radtke and Schellmann, 2005). These have been radiometrically dated using electron spin resonance (ESR), concluding the ages for one (N1) of the many studied sites to be: 106 ± 8ka, 85 ± 5ka, and 76 ± 4ka (Radke and Schellmann, 2006).

Some of these ages are within error of dates from other terraces in Haiti and Papua New Guinea

(Radtke and Schellmann, 2006). The calculated sea level elevations in Haiti correlate to those seen in Barbados and Huon Peninsula for similar time period (Dodge et al., 1983). Uplifted

123

Indonesian terraces on Sumba Island record the past 1-million years of sea level. Terraces in this location were dated using ESR in order to obtain ages for early Pleistocene terraces where

Uranium-Thorium might not have been reliable. This allowed for sea level reconstruction through MIS 25 (Pirazzoli et al., 1991). While T. gigas do not inhabit the Atlantic regions, their use in the Huon Peninsula could help further global climate research due to the associations between preserved terraces in these and other locations.

124

APPENDIX X: TERRACE AGES

This table represents all of the dates that have been calculated from the major projects assessing geologic age of the raised coral reef terraces of the Huon Peninsula, Papua-New Guinea. Bolded entries are thought to be valid and have been included in the age assignment for this study.

(Fig. 2.1) (Fig.

Notes

Error

(Type)

Source

Date (ka) Date

SampleType

Methodology

Sample Name SampleName Terrace Aharon, Tridacna I 14C personal 5.35 20 K-134 gigas communication

Aharon, Tridacna I 14C personal 5.52 20 K-135 gigas communication

It is not possible to determine age from Bloom et al., Hydnophora these I U/Th 5.5 0.4 28-1351I 1974 microconos samples though it is constrained to between 5-9 ka.

Veeh and I U/Th 6 1 ANU 165 coral Chappell, 1970 Veeh and 0.0 I 14C 6.7 ANU 165 coral Chappell, 1970 6

125

Notes

Error

(Type)

Source

Date (ka) Date

SampleType

Methodology

Sample Name SampleName Terrace (Fig. 2.1) (Fig. Terrace Not reliable Veeh and Tridacna I U/Th 6.8 0.1 ANU 153 because Chappell, 1970 gigas uses Tridacna

3 Tridacna Aharon, I 14C 7.2 0.5 Reef I crest gigas; 5 Chappell 1986 coral

Aharon, I U/Th 8.2 1.9 Reef I crest 5 coral Chappell 1986

It is not possible to determine age from Bloom et al., Favia these I U/Th 9.2 0.6 33b-1351D 1974 stelligera samples though it is constrained to between 5-9 ka.

126

(Fig. 2.1) (Fig.

Notes

Error

(Type)

Source

Date (ka) Date

Sample Type Sample

Methodology

Sample Name Name Sample Terrace

It is not possible to determine age from Bloom et al., Goniastrea these I U/Th 9.4 0.6 2-1351H 1974 retiformis samples though it is constrained to between 5-9 ka.

It is not possible to determine age from Bloom et al., Leptoria these I U/Th 9.4 0.6 29-1347H 1974 phygia samples though it is constrained to between 5-9 ka.

127

Notes

Error

(Type)

Source

Date (ka) Date

SampleType

Methodology

Sample Name SampleName Terrace (Fig. 2.1) (Fig. Terrace

It is not possible to determine age from Bloom et al., Favia these I U/Th 9.7 0.6 1-1351F 1974 stelligera samples though it is constrained to between 5-9 ka.

It is not possible to determine age from Bloom et al., Favia these I U/Th 20 2 1-1351F 1974 stelligera samples though it is constrained to between 5-9 ka.

Cannot be confirmed Bloom et al., but 29 ka is II U/Th 3.3 0.2 21-1353B Favia sp. 1974 used for tectonic purposes

Cannot be confirmed Bloom et al., Leptoria but 29 ka is II U/Th 5.8 0.4 30-1355A 1974 phygia used for tectonic purposes

128

Notes

Error

(Type)

Source

Date (ka) Date

SampleType

Methodology

Sample Name SampleName Terrace (Fig. 2.1) (Fig. Terrace Aharon, Chappell Not using II 14C 28.9 0.6 Reef II crest 2 Tridacna 1986 14C

Considered Veeh and Tridacna more II 14C 29.3 0.9 ANU 156 Chappell, 1970 gigas reliable than Bloom

Aharon, II U/Th 31 2.5 Reef II crest coral Chappell 1986 Cutler et al., No II Pa/U 35.2 0.9 KNM-T-2 (b) Porites sp. 2003 diagenesis

Cutler et al., No II Pa/U 36.3 1.6 KNM-T-2 (a) Porites sp. 2003 diagenesis

Cutler et al., 0.4 No II U/Th 36.76 KNM-T-2 (b) Porites sp. 2003 2 diagenesis

Cutler et al., No II U/Th 36.8 0.2 KNM-T-2 (a) Porites sp. 2003 diagenesis

Some II Pa/U Cutler et al., 2003 44.7 0.6 KWA-I-1 (B) Porites sp. diagenesis

Some II Pa/U Cutler et al., 2003 45.1 0.9 KWA-I-1 (A) Porites sp. diagenesis

Some II U/Th Cutler et al., 2003 46.41 0.2 KWA-I-1 (B) Porites sp. diagenesis

0.4 Some II U/Th Cutler et al., 2003 46.64 KWA-I-1 (A) Porites sp. 5 diagenesis

129

Notes

Error

(Type)

Source

Date (ka) Date

SampleType

Methodology

Sample Name SampleName Terrace (Fig. 2.1) (Fig. Terrace No diagenesis; Ages are II Pa/U Cutler et al., 2003 49 1 KWA-N-1 (A) Porites sp. too old, maybe from III?

No diagenesis; Ages are II U/Th Cutler et al., 2003 50.23 0.4 KWA-N-1 (A) Porites sp. too old, maybe from III?

No diagenesis; 0.2 Ages are II U/Th Cutler et al., 2003 50.8 KWA-N-1 (B) Porites sp. 6 too old, maybe from III?

No diagenesis; Ages are II Pa/U Cutler et al., 2003 50.8 1.2 KWA-N-1 (B) Porites sp. too old, maybe from III?

Disregarde Bloom et al., Lobophyllia III U/Th 4.9 1.4 39b-1351J d by 1974 corynbosa author.

Disregarde Bloom et al., Lobophyllia III U/Th 7.5 5 39b-1351J d by 1974 corynbosa author.

130

Notes

Error

(Type)

Source

Date (ka) Date

SampleType

Methodology

Sample Name SampleName Terrace (Fig. 2.1) (Fig. Terrace Not reliable Veeh and Tridacna III U/Th 23 2 AUN 117 because Chappell, 1970 gigas uses Tridacna.

Ages too Veeh and Tridacna young, III 14C 30.9 0.9 ANU 150 Chappell, 1970 gigas maybe from II?

Some IIIb Pa/U Cutler et al., 2003 31.3 0.9 KAN-C-2 Favia laxa diagenesis

Ages too Aharon, Chappell 4 Tridacna young, IIIb 14C 33.8 2.3 Reef IIIb crest 1986 gigas maybe from II?

Not reliable Veeh and Tridacna III U/Th 34 4 ANU 116 because Chappell, 1970 gigas uses Tridacna.

IIIb is accepted s Bloom et al., Favia 41 ka, III U/Th 35 3 24-1353C 1974 speciosa maybe there are from II

Ages too Veeh and Tridacna young, III 14C 35.4 1.3 AUN 117 Chappell, 1970 gigas maybe from II?

131

Notes

Error

(Type)

Source

Date (ka) Date

SampleType

Methodology

Sample Name SampleName Terrace (Fig. 2.1) (Fig. Terrace

Ages too Veeh and Tridacna young, III 14C 35.8 1.5 ANU 116 Chappell, 1970 gigas maybe from II?

Some IIIb Pa/U Cutler et al., 2003 37.9 0.9 KWA-K-1 (B) Porites sp. diagenesis

Aharon, IIIb U/Th 40.3 3.5 Reef IIIb crest 4 coral Chappell 1986 IIIb is Bloom et al., Hydnophor accepted III U/Th 42 3 25-1353D 1974 a exesa as 41 ka by author

IIIb is Bloom et al., Goniastrea accepted III U/Th 42 3 26-1347D 1974 parvistella as 41 ka by author

IIIb is Bloom et al., Symphyllia accepted III U/Th 42 3 42-1351E 1974 mobilis as 41 ka by author

Some IIIb Pa/U Cutler et al., 2003 43.9 1.5 KWA-K-1 (A) Porites sp. diagenesis

Not reliable Veeh and Tridacna III U/Th 46 3 ANU 150 because Chappell, 1970 gigas uses Tridacna

132

)

Notes

Error

(Type)

Source

Date (ka Date

SampleType

Methodology

Sample Name SampleName Terrace (Fig. 2.1) (Fig. Terrace

Some IIIa Pa/U Cutler et al., 2003 46.3 1.3 KAN-D-4 Porites sp. diagenesis

Some IIIb U/Th Cutler et al., 2003 47.18 0.2 KWA-K-1 (B) Porites sp. diagenesis

0.3 Some IIIb U/Th Cutler et al., 2003 48.56 KAN-C-2 Favia laxa 2 diagenesis

0.3 Some IIIa U/Th Cutler et al., 2003 48.76 KAN-D-4 Porites sp. 6 diagenesis

Veeh and III U/Th 49 3 NG 601 (C) coral Chappell, 1970 Some IIIb U/Th Cutler et al., 2003 49.81 0.2 KWA-K-1 (A) Porites sp. diagenesis

Aharon, Reef IIIa IIIa U/Th 51 2.8 2 coral Chappell 1986 transgression Veeh and III U/Th 53 3 NG 600 coral Chappell, 1970 No diagenesis; 0.2 Gardinerose Ages are IIIa U/Th Cutler et al., 2003 60.57 KWA-Q-1 6 ris planulata too old, maybe from IV?

No diagenesis; Gardinerose Ages are IIIa Pa/U Cutler et al., 2003 60.8 0.8 KWA-Q-1 ris planulata too old, maybe from IV?

133

Notes

Error

(Type)

Source

Date (ka) Date

SampleType

Methodology

Sample Name SampleName Terrace (Fig. 2.1) (Fig. Terrace

Species thought to Bloom et al., Acropora IV U/Th 48 3 6-1351A not be 1974 sp. reliable by author.

Bloom et al., Favia IV U/Th 57 4 7-1351G 1974 pallida Bloom et al., Favia IV U/Th 58 4 3-1347A 1974 stelligera Veeh and Tridacna Judged IV U/Th 60 6 NG 623 Chappell, 1970 gigas reliable.

1 Tridacna Aharon, IV U/Th 60.4 3.5 Reef IV crest gigas; 4 Chappell 1986 coral

Bloom et al., Favia IV U/Th 61 4 4-1351C 1974 pallida Bloom et al., Hydnophor IV U/Th 66 4 45-1347E 1974 a micronos 0.3 Montipora Some IV U/Th Cutler et al., 2003 68.07 SIAL-E-1 1 sp. diagenesis

Veeh and Tridacna Judged IV U/Th 74 4 NG 625 Chappell, 1970 gigas reliable.

Disregarde d by Bloom et al., Platygyra author, V U/Th 61 4 8-1347F 1974 lamellina probably from terrace IV.

134

Notes

Error

(Type)

Source

Date (ka) Date

SampleType

Methodology

Sample Name SampleName Terrace (Fig. 2.1) (Fig. Terrace

Author Bloom et al., Porites accepts V U/Th 84 4 12-1347B 1974 lutea age of 85 ka.

Some V Pa/U Cutler et al., 2003 84.6 4.9 KWA-U-1 (A) Porites sp. diagenesis

Aharon, V U/Th 85 1.4 Reef V crest 2 coral Chappell 1986 Author Bloom et al., Goniastrea accepts V U/Th 86 4 38-1353E 1974 pectinata age of 85 ka.

0.5 Some V U/Th Cutler et al., 2003 91.61 KWU-U-1 (B) Porites sp. 2 diagenesis

Cutler et al., 0.4 No V U/Th 92.57 KWA-S-1 (A) Porites sp. 2003 5 diagenesis

Cutler et al., 0.5 No V U/Th 92.6 KWA-S-1 (B) Porites sp. 2003 1 diagenesis

Cutler et al., No V Pa/U 92.7 5.2 KWA-S-1 (A) Porites sp. 2003 diagenesis

1.8 Some V U/Th Cutler et al., 2003 93.06 KWA-U-1 (A) Porites sp. 9 diagenesis

Cutler et al., No V Pa/U 94.4 2.3 KWA-S-1 (B) Porites sp. 2003 diagenesis

Aharon, VI U/Th 107 7.5 Reef VI crest 2 coral Chappell 1986

135

Notes

Error

(Type)

Source

Date (ka) Date

SampleType

Methodology

Sample Name SampleName Terrace (Fig. 2.1) (Fig. Terrace

Author Bloom et al., Favia accepts VI U/Th 107 9 14b-1353A 1974 speciosa age of 107 ka.

Author Bloom et al., Hydnophor accepts VI U/Th 107 6 20-1347C 1974 a micronos age of 107 ka.

Some VI Pa/U Cutler et al., 2003 117.6 6.7 SIAL-Q-1 Porites sp. diagenesis

0.7 Some VI U/Th Cutler et al., 2003 119.34 SIAL-Q-1 Porites sp. 6 diagenesis

0.7 Some VI U/Th Cutler et al., 2003 121.87 SIAL-Q-2 Porites sp. 8 diagenesis

Some VI Pa/U Cutler et al., 2003 126.7 8.1 SIAL-Q-2 Porites sp. diagenesis

Some VIIb Pa/U Cutler et al., 2003 98.7 5.5 KIL-5 Porites sp. diagenesis

Gardinerose Some VIIb Pa/U Cutler et al., 2003 109.8 2.8 KIL-3 (c) ris planulata diagenesis

0.6 Gardinerose Some VIIb U/Th Cutler et al., 2003 113.9 KIL-3 (b) 5 ris planulata diagenesis

0.6 Gardinerose Some VIIb U/Th Cutler et al., 2003 115.36 KIL-3 (D) 6 ris planulata diagenesis

136

Notes

Error

Source

Date (ka) Date

SampleType

Methodology

Terrace (Fig. 2.1) (Fig. Terrace Sample Name (Type) SampleName *Bloom et al. (1974) Veeh and calls this V* U/Th 116 7 NG 618 coral Chappell, 1970 sample terrace VIIb

Gardinerose Some VIIb U/Th Cutler et al., 2003 116.16 1.8 KIL-3 (c) ris planulata diagenesis

Porites VIIb U/Th Stein et al., 1992 116.4 1.8 KIL-5b lutea 1.1 Some VIIb U/Th Cutler et al., 2003 116.8 KIL-5 Porites sp. 5 diagenesis

Porites VIIb U/Th Stein et al., 1992 117.6 1.2 KIL-5 (a-2) lutea 0.6 Gardinerose Some VIIb U/Th Cutler et al., 2003 117.77 KIL-3 (a) 9 ris planulata diagenesis

Aharon, Reef VIIb VIIb U/Th 118 2 coral Chappell 1986 crest Gardinerose VIIb U/Th Stein et al., 1992 118.1 1 HP-47 ris planulata

KAM-A Platygyra are VIIa U/Th Stein et al., 1992 118.7 1.4 KAM-A-1 lamellina different but valid

137

Notes

Error

Source

Date (ka) Date

SampleType

Methodology

Terrace (Fig. 2.1) (Fig. Terrace Sample Name (Type) SampleName *Bloom et al. (1974) Veeh and calls this V* U/Th 119 7 NG 618 coral Chappell, 1970 sample terrace VIIb

Porites VIIb U/Th Stein et al., 1992 119.5 1.2 KIL-5 (a-1) lutea Cyphastrea VIIc U/Th Stein et al., 1992 123.8 1.3 SIAL-M-3 serailia

Gardinerose VIIb U/Th Stein et al., 1992 131.9 1.2 HP-23b ris *Bloom et al. (1974) Veeh and calls this V* U/Th 133 10 NG 616 coral Chappell, 1970 sample terrace VIIa

Platygyra Substantial VIIc U/Th Stein et al., 1992 134 1.9 PI-155 n.i. diagenesis

Gardinerose VIIb U/Th Stein et al., 1992 134.7 1.3 HP-23a ris Gardinerose VIIb U/Th Stein et al., 1992 135.8 1.9 HP-22 ris planulata

Favia VIIa U/Th Stein et al., 1992 136.2 2.5 HP-16c pallida

138

Notes

Error

(Type)

Source

Date (ka) Date

SampleType

Methodology

Sample Name SampleName Terrace (Fig. 2.1) (Fig. Terrace

Porites VIIb U/Th Stein et al., 1992 136.5 2.3 KIL-4 lutea Aharon, Reef VIIa VIIb U/Th 138 5 2 coral Chappell 1986 crest *Bloom et al. (1974) Veeh and calls this V* U/Th 140 10 NG 616 coral Chappell, 1970 sample terrace VIIa

Favia VIIa U/Th Stein et al., 1992 140.8 1.5 HP-16b pallida

Author suggests VIIa Bloom et al., Porites VII U/Th 142 8 15-1347G underlies 1974 lutea VIIb and grades up into VIIb.

Favia VIIa U/Th Stein et al., 1992 146.4 2.6 HP-17 pallida All HP are different, Favia VIIa U/Th Stein et al., 1992 151.7 2.4 HP-16a although pallida from same specimen.

Platygyra VIIb U/Th Stein et al., 1992 166.9 3.5 SIAL-M-1 sinesis

139

Notes

Error

Source

Date (ka) Date

SampleType

Methodology

Terrace (Fig. 2.1) (Fig. Terrace Sample Name (Type) SampleName

Hydnophora VIIa U/Th Stein et al., 1992 196.1 3.4 KAM-A-2 microconos

Plesiastea VIII U/Th Stein et al., 1992 198.7 4.6 SIAL-B-1 curta Favia Likely not VIII U/Th Stein et al., 1992 225.9 3.1 SIAL-D-1 pallida reliable.

140