<<

PHITS Particle and Heavy Ion Transport code System

粒子・重イオン輸送コードPHITSの利用

Koji Niita: RIST, Japan Hiroshi Iwase: KEK, Japan (GSI, Germany) Tatsuhiko Sato, JAEA, Japan Yousuke Iwamoto, Norihito Matsuda, Yukio Sakamoto, Hiroshi Nakashima: JAEA, Japan Davide Mancusi, Lembit Sihver: Chalmers, Sweden

Title

ContentsContents

(1)(1) OverviewOverviewof of PPHIHITTSS

Physical Processes Models: JAM, JQMD

(2)(2) ApplicationApplication FieldsFieldsof of PPHIHITTSS

Accelerator Cancer Therapy Space Technology

(3)(3) UserUser InterfacesInterfacesof of PPHIHITTSS

Contents

1 PhysicalPhysical ProcessesProcesses includedincluded in in PPHIHITTSS

Magnetic Field Gravity External Field Super mirror (reflection) and Optical devices Transport Mechanical devices, T0 chopper between collisions Ionization process dE/dx : SPAR, ATIMA code for charge particle (new feature) Energy straggling Angle Straggling

Nuclear Data MCNP code, ENDF-B/VI, LA150, ….. + Event Generator Mode (new feature) Collisions Particle Induced JAM code with nucleus Collisions JAMQMD (new feature) Heavy Ion Collisions JQMD code

Physical Processes

OverviewOverviewof ofPPHIHITTSS(P(Particlearticle and and H Heavyeavy I Ionon T Transportransport code code S System)ystem)

1951 1983 1997 2001 2003 NMTC NMTC/JAERI NMTC/JAERI97 NMTC/JAM PHITS (ORNL) High Energy Fission CG geometry JAM, GG JQMD, MCNP Magnetic Field Gravity PHITS = MCNP + JAM + JQMD Transport Particle and Energy MCNP , Photon, Electron Transport by Nuclear Data Proton 0 ~ 200 GeV Neutron 10-5 eV ~ 200 GeV JAM Hadron-Nucleus Collisions Meson 0 ~ 200 GeV up to 200 GeV Barion 0 ~ 200 GeV Nucleus 0 ~ 100 GeV/u JQMD Nucleus-Nucleus Collisions Photon 1 keV ~ 1 GeV by Molecular Dynamics Electron 1 keV ~ 1 GeV

Geometry: CG and GG External Field: Magnetic Field, Gravity Optical and Mechanical Tally, Mesh and Graphic devices Tally: Track, Cross, Heat, Star, Language and Parallelism Time, DPA, Product, LET Mesh: cell, r-z, xyz FORTRAN 77 Counter: MPI Graphic: ANGEL (PS generator)

PHITS : H. Iwase et.al. J. Nucl. Sci.Technol. 39 (2002) 1142 Overview

2 MapMap ofof Models,Models, transporttransport particlesparticles andand energiesenergies inin PHITSPHITS

protons hadrons nucleus photons π , μ, K,Σ,.. electrons

200 GeV 200 GeV 200 GeV 100 GeV/u 100 GeV Å JAM, Hadron cascade model Æ (JQMD) (JQMD) (JQMD) JQMD In progress (Bertini) (Bertini) Å GEM, Evaporation and Fission process Æ 1 GeV Å SPAR, ATIMA, Ionization process Æ MCNP 20 MeV 10 MeV/u with Event Generator 1 MeV 1 MeV nuclear data

MCNP with only transport 1 keV nuclear data with dE/dx (SPAR, ATIMA)

thermal 0 MeV 0 MeV 0 MeV/u

Fermi Lab, USA, 2006/09/6-8

3 OverviewOverview ofof All-ParticleAll-Particle TransportTransport CodesCodes inin thethe WorldWorld

By G. W. McKinney in FNDA(Fast Neutron Detectors and Applications Conference) April 2006

General MCNPX GEANT4 FLUKA MARS PHITS Version 2.5.0 8.0 p1 2005 15 2.09 Lab. Affiliation LANL CERN,IN2P3 CERN FNAL JAEA,RIST INFN,KEK,SLAC INFN GSI TRIUMF,ESA Chalmers Univ. Language Fortran 90/C C++ Fortran 77 Fortran 95/C Fortran 77 Cost Free Free Free Free (US Gov.) Free Release Format Source & Source & binary Source & Binary Source & binary binary binary User Manual 470 pages 280 pages 387 pages 150 pages 176 pages Users ~2000 ~1000 ~1000 220 220 Web Site mcnpx.lanl.gov cern.ch/geant4 www.fluka.org www-ap.fnal. Under const. gov/MARS Workshops ~7/year ~4/year ~1/year ~2/year ~1/year Input Format Free C++ main Fixed or free Free Free Fixed geometry Input Cards ~120 N/A ~85 ~100 ~100 Parallel Yes Yes No Yes Yes Execution

JAMJAM codecode for for Hadron Hadron Nucleus Nucleus Collisions Collisions up up to to 200 200 GeV GeV

Introducing JAM (Jet AA Microscopic Transport Model) Y. Nara et.al. Phys. Rev. C61 (2000) 024901 JAM is a Hadronic Cascade Model, which explicitly treats all established hadronic states including resonances with explicit spin and isospin as well as their anti-particles. We have parameterized all Hadron-Hadron Cross Sections, based on Resonance Model and String Model by fitting the available experimental data.

Au+Au 200GeV/u in cm

JAM

4 JQMDJQMD codecode forfor Nucleus-Nucleus Nucleus-Nucleus Collisions Collisions up up to to 100 100 GeV/u GeV/u

JQMD (Jaeri Quantum Molecular Dynamics) for Simulation of Nucleus-Nucleus Collisions K. Niiita et.al. Phys. Rev. C52 (1995) 2620 http://hadron31.tokai.jaeri.go.jp/jqmd/

56Fe 800 MeV/u on 208Pb Analysis of Nucleus-Nucleus Collisions by JQMD

JQMD-1

Neutron Spectra from Thick Target

Introducing JQMD in PHITS : H. Iwase et.al. J. Nucl. Sci.Technol. 39 (2002) 1142

JQMD-2

5 MCNPMCNP codecode forfor Neutron Neutron Transport Transport below below 20 20 MeV MeV with with Nuclear Nuclear Data Data Monte Carlo N-Particle Transport Code System developed by Los Alamos National Lab. for Neutrons, Photons, Electrons by using Evaluated Nuclear Data, such as ENDF, JENDL, … Applications: Nuclear Criticality Safety, Radiation Shielding, Fission Reactor Design, … n-56Fe Reaction Cross Sections

MCNP

(2)(2) ApplicationApplication FieldsFieldsof of PPHIHITTSS

‹ Accelerator - (J-PARC) Target design, Beam loss, Heat, DPA, Shielding design, …… - Neutron Optics (J-PARC) Signal-to-background ratio, Shielding design - RIA, GSI, RIKEN, High intense Heavy Ion Accelerator Facilities, Heat, DPA, Beam loss, Shielding design, …… ‹ Cancer Therapy BNCT (neutron), Proton therapy, Heavy-Ion therapy ‹ Space Technology Damage and Shielding by Cosmic Ray, Atmospheric Cosmic-Ray ‹ Semiconductor Soft Error Secondary Charged Particle and Recoiled Nuclei

Applications

6 ApplicationApplication FieldsFieldsof of PPHIHITTSS

Accelerator Cancer Therapy Space Technology

J-PARC Spallation Neutron Source Neutron Optics Heavy Ion Facilities

Application (1)

J-PARCJ-PARC= = JapanJapan ProtonProton AcceleratorAccelerator ResearchResearch ComplexComplex

Nuclear and Particle Physics Materials and Life Science Experimental Facility Experimental Facility

Nuclear Transmutation

Neutrino to Kamiokande

50 GeV Synchrotron (0.75 MW)

Linac(350m) 3 GeV Synchrotron (25 Hz, 1MW)

J-PARC(1)

7 MaterialsMaterials andand LifeLife ScienceScience ExperimentalExperimental FacilityFacility

Building dimension : N Width : 70m eutr on S Length : 146m catt erin g Fa Height : 30m cili ty Exp. Hall Height : 22m Target remote handling room 1MW Sp alla tion Tar Cooling systems get Sta (Basement) tion M uo n S cie P nce roto Fa n be cili am ty line S pa llat ion t Me arg rcu 3GeV, 1MW et ry proton beam E xp eri me nta M 23 neutron beam lines will be Installed l h uo all n in experimental halls under present pro S du cra ct design. pe ion r tar get

J-PARC(2)

SpallationSpallation Neutron Neutron SourceSource inin ProtonProton AcceleratorAccelerator FacilitiesFacilities

PHITS has been extensively used for Optimization and Shielding design around Hg target of J-PARC Energytt == 021001000410 nsecDeposition nsec nsec nsec Be reflector Fe reflector

Moderators

Proton

Hg target Proton window Neutron window

Moderators Hg target Neutron window

Spallation (2)

8 AGSAGS BenchmarkBenchmark ExperimentsExperiments forfor SpallationSpallation Neutron Neutron SourceSource

AGS

FunctionsFunctionsof ofPPHIHITTSS forfor BeamBeam transport transport

‹ Charged particles and Heavy ions - Dipole and Quadrupole Magnetic field

‹ Low energy neutrons - Dipole, Quadrupole and Sextupole Magnetic field coupled with neutron spin. - Pulse (Time dependent) Magnetic field - Optical devices; Supper mirror - Mechanical devices; T0 chopper, …. - Gravity z PHITS can simulate not only the trajectories, but also the collisions and the ionization at the same time. z PHITS can estimate the radiation damage of the magnets and the surroundings, and shielding as well as signal-to-background ratio in neutron beam line.

Summary of Accelerator

9 NeutronNeutron longlong beambeam lineline calculationcalculation: : Neutron Neutron Optics Optics

Curved Guide T0 chopper Super mirror

J-PARC: High Resolution Powder 100 m

RIKEN RI Beam Factory

PPHIHITTSSforfor HighHigh IntensityIntensity HeavyHeavy IonIon facilitiesfacilities

GSI FAIR : Super-FRS facility

RIA Beam production area

10 RIA Beam production area

48Ca beam track Heating in whole system

Beam stop

22C track 4He track

Target

11 RIKENRIKEN RIBF: RIBF: RI RI Beam Beam Factory Factory

12 PPHIHITTSSforfor ShieldingShielding ofof CarbonCarbon TherapyTherapy FacilitiesFacilities

3D view by PHITS

13 ShieldingShielding ofof ProtonProton andand CarbonCarbon therapytherapy facilitiesfacilities

Dose distribution calculated by PHITS

ApplicationApplication FieldsFieldsof of PPHIHITTSS

Accelerator Cancer Therapy Space Technology

BNCT Proton and Heavy Ion Therapy

Application (2)

14 JCDSJCDS(Jaeri(Jaeri Computational Computational Dosimetry Dosimetry System) System) for for BNCT BNCT JCDS creates the Voxel data from CT and MRI data Boron Therapy for MCNP ( PHITS ) calculation. at Dept. , JAERI 3D view by PHITS DoseVoxelCT distribution data data JRR-4 research reactor

Irradiation Room Core

BNCT

EventEvent GeneratorGenerator ModeModeof of PPHIHITTSS How to estimate the deposit energy of charged particles and nuclei for neutron transport below 20 MeV

MCNP type PHITS Transport based on Boltzmann equation Event Generator Mode with nuclear data with nucleus transport Local Approximation (Kerma factor) Energy Deposition in event by event Average Values Deposit energy distribution

This assumption is not valid for : ¾ Size of system is smaller than Range of charged particles Treat all ejectiles of collisions. ¾ Distribution is necessary Energy and Momentum are conserved instead of average value in each collision.

Energy is conserved in average No correlation Any observables Beyond one-body observables Only one-body observables

Event Generator Mode

15 EventEvent GeneratorGenerator ModeMode for for low low energy energy neutrons neutrons in in PPHIHITTSS

Neutron data + Special Evaporation Model

We use the channel cross sections and neutron energy spectrum of the first neutron and assume the binary decay of recoiled nucleus.

capture charged particle and photon decay Γn = 0 elastic final state is uniquely determined Neutron channels (n,n’) Γ = 0 charged particle and photon decay n after the first neutron emission (n,Nn’) Γn ≠ 0 all particle and photon decay after the first neutron emission

By this model, we can determine all ejectiles (neutrons, charged particles, nucleus and photons) with keeping energy and momentum conservation. PHITS can transport all charged particle and nucleus down to zero energy and estimate deposit energy without local approximation (kerma factor).

Event Generator Mode

ValidationValidation of ofEvent Event Generator Generator Mode Mode

C target, Inclusive

Total energy of charged particles Total energy of Photon ( kerma factor )

Event Generator Mode

16 ValidationValidation of ofEvent Event Generator Generator Mode Mode

C target, DDX

Neutron Photon

Alpha Alpha

Event Generator Mode

AnAn example example of ofEvent Event Generator Generator Mode Mode

Neutron-induced semiconductor soft error SEU: single event upset

Deposit Energy Distribution by PHITS Leakage of recoil nucleus from Si Neutron 19 MeV

Kerma

Si 3μm

Event Generator Mode

17 MicrodosimetricMicrodosimetric Treatments Treatmentsof of BNCT BNCT

Event Generator Mode = treat all ejectiles with energy and mom. conservation

10B + n Æ 11B 15 7Li (0.84MeV) + α (1.47MeV) 2.79MeV 7Li (0.84MeV) + α (1.47MeV) 1 γ =478keV

ground 7Li (1.02MeV) + α (1.78MeV)

7Li (1.02MeV) + α (1.78MeV)

Energy Distribution of α Particle and 7Li Ion after 10B (n,α) 7Li capture reaction

MicroscopicMicroscopic ToyToy ModelModel forfor BNCTBNCT

6μm radius spherical cell, 3μm nucleus (target region), 7μm radius, all material is pure water 1μm thickness Boron 500μg/g

Materials are all pure water position of 10B 1μm 3μm

6μm 3μm radius, 1μm thickness Boron 500μg/g

18 Dose in nucleus vs. LET radiation of thermal neutron total = 6.9meV α track Li track

total = 33.3meV

19 20 HeavyHeavy Ion Ion Therapy Therapyby by HIMAC HIMAC in in NIRS NIRS (1) (1)

Design study of small size carbon therapy system Compact size transverse distribution 3D Monte Carlo simulation PHITS

Heavy Ion Therapy (1)

HeavyHeavy Ion Ion Therapy Therapyby by HIMAC HIMAC in in NIRS NIRS (2) (2)

Dose distributions in the water phantom with Wobbler magnet, Scatter, and Ridge filter. Transverse and Longitudinal distribution of dose in the water phantom can be well reproduced by 3D Monte Carlo calculation of PHITS.

H. Nose et.al., J. Nucl. Sci. Technol., 42 (2005) 250 Heavy Ion Therapy (2)

21 BenchmarkBenchmark TestTest ofof BraggBragg PeakPeak

Depth Dose Distribution in Water Phantom

Bragg Peak

BenchmarkBenchmark TestTest ofof BraggBragg PeakPeak withwith SPARSPAR andand ATIMAATIMA

SPAR and ATIMA

22 200 500MeV/u 950MeV/u MeV/u

(ATIMA)

SecondarySecondary ParticlesParticles ProductionProduction CrossCross SectionSection From 200 MeV/u Carbon beam on 12.78 cm depth Water

0 deg

30 deg

Fluence

23 “The Japan Taiwan Symposium on Simulation in Medicine” Tsukuba, Japan, 2006/12/13-14

24 ApplicationApplication FieldsFieldsof of PPHIHITTSS

Accelerator Cancer Therapy Space Technology

Dose in Space Shuttle Atmospheric Cosmic-Ray

Application (3)

SpaceSpace RadiationRadiation

5 Neutron 10 –2 Solar Minimum 10 Proton 51.6 deg 380km altitude

10–4 Proton

/(MeV/A)) Neutron By PHITS 2 100

/s/(MeV/n)) α 2

–6 4He 10 12C Flux (/cm Flux 12C Fluence (/sr/s/m –8 56 –5 56 10 10 Fe Fe

100 102 104 102 104 Energy (MeV/A) Incident Energy (MeV/n) Spectra outside spacecraft Spectra inside spacecraft by CREME96 by PHITS

by T. Sato

25 SpaceSpace RadiationRadiation

Dose estimation in Space Shuttle Galactic Cosmic Ray High energy proton, Heavy Ion (Z<28) Trapped Proton Proton, Heavy Ion Transport, Neutron produced by Shuttle and Atmosphere of Earth Neutron Spectra (Albedo neutron) in Space Shuttle

PHITS calculation

PHITSPHITS can can simulate simulate HeavyHeavy Ion Ion transport transport and and lowlow energy energy Neutron Neutron in in 3D 3D Geometry Geometry

T. Sato et.al. Radiat. Meas. 41 (2006) 1142 Space Radiation /s) 2 3 10 *Exp. (STS-89) Cal. (Total)

100

10-3 Cal. (Earth albedo neutron) Cal. (Locally produced neutron) (/MeV/cm Flux Neutron 10-6 10-3 100 103 Energy (MeV)

Neutron Spectra inside Space Shuttle by T. Sato

26 /s) 2 2 10

100

2 10–2 0 g/cm 20 g/cm2 40 g/cm2 2 –4 80 g/cm 10 *Exp. in MIR (40 g/cm2) Neutron Fluence (/MeV/cm Neutron 10–4 10–2 100 102 Neutron Energy (MeV)

Neutron Spectra inside Cylindrical Shell by T. Sato

1.5 d = 101 g/cm2 (~16.0 km) rc = 0.7 GV smin NeutronNeutron spectrumspectrum inin atmosphereatmosphere 1 Exp. (Goldhagen et al.) Simulation

) 0.5 Analytical Function –1

0 d = 201 g/cm2 (~11.8km) lethargy = 4.3 GV –1 rc

s 0.4 smin –2

0.2

0 d = 1030 g/cm2 (ground level) Neutron Flux (cm 0.0015 rc = 2.7 GV smin CREME96 0.001 + 0.0005

PHITS with JENDL-HEfile 0 10–8 10–4 100 104 Neutron Energy (MeV) T. Sato and K. Niita, Radiat. Res., 166 (2006) 544 Space Radiation

27 EXPACSEXPACS ::Excel-basedExcel-based Program Programfor for calculating calculating Atmospheric Atmospheric Spectrum Spectrum

http//www3.tokai-sc.jaea.go.jp/rphpwww/radiation-protection/expacs/expacs.html

by T. Sato

Muon and Proton Spectra on the earth

At 2 m )

–1 10–6 10–6 MeV /s/sr) 2 –1 sr –1 s –7 –2 10

FLUKA PHITS Allkofer Total CAPRICE94 Muon+ PHITS –8 Sanuki et al. 10–8 CAPRICE94 Muon– 10 Barber et al. Vertical Flux (/MeV/cm

Vertical Flux (cm Sembroski et al. Kocharian

–9 2 4 10 10 10 102 104 Muon Energy (MeV) Proton Energy (MeV)

by T. Sato

28 600

宇宙線被ばく線量率 nSv/h

20

2006年6月の地表面における宇宙線被ばく線量率マップ 標高の高いチベット高原や,磁極に近いグリーンランドや南極で線量率が高くなる by T. Sato

UserUser InterfacesInterfacesof of PPHIHITTSS

3D view of the calculation model

Utilities (1)

29 UserUser InterfacesInterfacesof of PPHIHITTSS

2D view and 2D output of the final results by color clusters and contour plots with geometry

User Interfaces (2)

2D output of the intermediate results of a certain interval of histories. This function is very powerful for optimization study !!!

Magnetite Optimization of this part Fe Concrete Fe 36 cm, Concrete 55 cm 1020301 hour min

set: c1[65.036.0] Fe 65 $cm concrete, Concrete [cm] 75 cm 201020302 hourshours min set: c2[75.055.0] $ Fe [cm] set: c50[60] $ x-top of duct

[surface] 1pxc50+c1 2 px c50+c1+c2 3 …… ……

User Interfaces (3)

30 PresentPresent andand FutureFutureof of PPHIHITTSS

Typical Features of the present PHITS code. ‹ Heavy Ion transport ( JQMD and Ionizaiton Processes ). ‹ Low Energy Neutron Transport ( By Evaluated Nuclear Data ). ‹ Functions of Beam Transport ( Magnetic Field and the other Devices ). ‹ Event Generator Mode: ¾ Deposit Energy (Heat) without Local Approximation. ¾ Deposit Energy Distribution ( Beyond One-Body Observables ).

In future: z Microscopic treatment of ionization processes.

z DCHAIN-SP, Radioactivity Calculation z Photo-Nuclear Reaction z EGS4, High Energy Photon and Electron Transport

Future

DistributionDistribution ofofPPHIHITTSS

PHITS ver.2.13 and ANGEL ver.4.35 have been released from JAEA.

[email protected] RIST. Code Center: http://www.rist.or.jp

distribution

31