Nuclear Data Development at the European Spallation Source
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Computing ATOMIC NUCLEI
UNIVERSAL NUCLEAR ENERGY DENSITY FUNCTIONAL Computing ATOMIC NUCLEI Petascale computing helps disentangle the nuclear puzzle. The goal of the Universal Nuclear Energy Density Functional (UNEDF) collaboration is to provide a comprehensive description of all nuclei and their reactions based on the most accurate knowledge of the nuclear interaction, the most reliable theoretical approaches, and the massive use of computer power. Science of Nuclei the Hamiltonian matrix. Coupled cluster (CC) Nuclei comprise 99.9% of all baryonic matter in techniques, which were formulated by nuclear sci- the Universe and are the fuel that burns in stars. entists in the 1950s, are essential techniques in The rather complex nature of the nuclear forces chemistry today and have recently been resurgent among protons and neutrons generates a broad in nuclear structure. Quantum Monte Carlo tech- range and diversity in the nuclear phenomena that niques dominate studies of phase transitions in can be observed. As shown during the last decade, spin systems and nuclei. These methods are used developing a comprehensive description of all to understand both the nuclear and electronic nuclei and their reactions requires theoretical and equations of state in condensed systems, and they experimental investigations of rare isotopes with are used to investigate the excitation spectra in unusual neutron-to-proton ratios. These nuclei nuclei, atoms, and molecules. are labeled exotic, or rare, because they are not When applied to systems with many active par- typically found on Earth. They are difficult to pro- ticles, ab initio and configuration interaction duce experimentally because they usually have methods present computational challenges as the extremely short lifetimes. -
Nuclear Data
CNIC-00810 CNDC-0013 INDC(CPR)-031/L NUCLEAR DATA No. 10 (1993) China Nuclear Information Center Chinese Nuclear Data Center Atomic Energy Press CNIC-00810 CNDC-0013 INDC(CPR)-031/L COMMUNICATION OF NUCLEAR DATA PROGRESS No. 10 (1993) Chinese Nuclear Data Center China Nuclear Information Centre Atomic Energy Press Beijing, December 1993 EDITORIAL BOARD Editor-in-Chief Liu Tingjin Zhuang Youxiang Member Cai Chonghai Cai Dunjiu Chen Zhenpeng Huang Houkun Liu Tingjin Ma Gonggui Shen Qingbiao Tang Guoyou Tang Hongqing Wang Yansen Wang Yaoqing Zhang Jingshang Zhang Xianqing Zhuang Youxiang Editorial Department Li Manli Sun Naihong Li Shuzhen EDITORIAL NOTE This is the tenth issue of Communication of Nuclear Data Progress (CNDP), in which the achievements in nuclear data field since the last year in China are carried. It includes the measurements of 54Fe(d,a), 56Fe(d,2n), 58Ni(d,a), (d,an), (d,x)57Ni, 182~ 184W(d,2n), 186W(d,p), (d,2n) and S8Ni(n,a) reactions; theoretical calculations on n+160 and ,97Au, 10B(n,n) and (n,n') reac tions, channel theory of fission with diffusive dynamics; the evaluations of in termediate energy nuclear data for 56Fe, 63Cu, 65Cu(p,n) monitor reactions, and of 180Hf, ,8lTa(n,2n) reactions, revision on recommended data of 235U and 238U for CENDL-2; fission barrier parameters sublibrary, a PC software of EXFOR compilation, some reports on atomic and molecular data and covariance research. We hope that our readers and colleagues will not spare their comments, in order to improve the publication. Please write to Drs. -
Nuclear Data Library for Incident Proton Energies to 150 Mev
LA-UR-00-1067 Approved for public release; distribution is unlimited. 7Li(p,n) Nuclear Data Library for Incident Proton Title: Energies to 150 MeV Author(s): S. G. Mashnik, M. B. Chadwick, P. G. Young, R. E. MacFarlane, and L. S. Waters Submitted to: http://lib-www.lanl.gov/la-pubs/00393814.pdf Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty- free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. FORM 836 (10/96) Li(p,n) Nuclear Data Library for Incident Proton Energies to 150 MeV S. G. Mashnik, M. B. Chadwick, P. G. Young, R. E. MacFarlane, and L. S. Waters Los Alamos National Laboratory, Los Alamos, NM 87545 Abstract Researchers at Los Alamos National Laboratory are considering the possibility of using the Low Energy Demonstration Accelerator (LEDA), constructed at LANSCE for the Ac- celerator Production of Tritium program (APT), as a neutron source. Evaluated nuclear data are needed for the p+ ¡ Li reaction, to predict neutron production from thin and thick lithium targets. -
Neutron-Induced Fission Cross Section of 240,242Pu up to En = 3 Mev
Neutron-induced fission cross section of 240;242Pu Paula Salvador-Castineira~ Supervisors: Dr. Franz-Josef Hambsch Dr. Carme Pretel Doctoral dissertation PhD in Nuclear Engineering and Ionizing Radiation Barcelona, September 2014 Curs acadèmic: Acta de qualificació de tesi doctoral Nom i cognoms Programa de doctorat Unitat estructural responsable del programa Resolució del Tribunal Reunit el Tribunal designat a l'efecte, el doctorand / la doctoranda exposa el tema de la seva tesi doctoral titulada __________________________________________________________________________________________ _________________________________________________________________________________________. Acabada la lectura i després de donar resposta a les qüestions formulades pels membres titulars del tribunal, aquest atorga la qualificació: NO APTE APROVAT NOTABLE EXCEL·LENT (Nom, cognoms i signatura) (Nom, cognoms i signatura) President/a Secretari/ària (Nom, cognoms i signatura) (Nom, cognoms i signatura) (Nom, cognoms i signatura) Vocal Vocal Vocal ______________________, _______ d'/de __________________ de _______________ El resultat de l’escrutini dels vots emesos pels membres titulars del tribunal, efectuat per l’Escola de Doctorat, a instància de la Comissió de Doctorat de la UPC, atorga la MENCIÓ CUM LAUDE: SÍ NO (Nom, cognoms i signatura) (Nom, cognoms i signatura) President de la Comissió Permanent de l’Escola de Doctorat Secretària de la Comissió Permanent de l’Escola de Doctorat Barcelona, _______ d'/de ____________________ de _________ Universitat Politecnica` -
ICANS XXI Dawn of High Power Neutron Sources and Science Applications
Book of Abstracts ICANS XXI Dawn of high power neutron sources and science applications 29 Sep - 3 Oct 2014, JAPAN Ibaraki Prefectural Culture Center Update : 12 Oct. 2014 Best photography in 7th Oarai Town Photo Contest. WELCOME TO ICANS XXI ICANS (International Collaboration on Advanced Neutron Sources) is a network for scientists who are involved in developing pulsed neutron sources and accelerator based spallation neutron sources. Since 1st ICANS meetings was held in 1977 at Argonne National Laboratory in the day of dawn of spallation neutron technique, ICANS has been continuously held already 20 times somewhere in the world. Now we are extremely happy to announce that the ICANS, the 21st meeting, will be held at Mito hosted by J-PARC this autumn. We have a large number of topics to be discussed, there are twelve topics, such as futuristic idea of neutron source, rapid progress in facilities, integration issues in target-moderator-development, etc. The details can be found in the agenda. The meeting has a two layered structure, one is plenary session and another is workshop. Two of them are complementary and tightly cooperate each other. In the meeting we would like to enhance "workshop style", which is an original and traditional way of ICANS. Actually 2/3 of topics will be discussed in the workshop sessions. It also will be essentially organized/ lead by the workshop chairs. Plenary session shows overall issues in a relevant workshop, whose details should be talked/discussed in the workshop. The venue for the meeting is Mito city, where the 2nd Shogun Family lived for a long period of time during Edo era from 17th to 19th century, when the Tokugawa shogunate ruled the country. -
Nuclear Energy Agency Nuclear Data Committee
NUCLEAR ENERGY AGENCY NUCLEAR DATA COMMITTEE SUMMARY RECORD OF THE lWEEFPY-FIRST MEETING (Technical Sessions) CBNM, Gee1 (Belgium) 24th-28th September 1979 Compiled by C. COCEVA (Scientific Secretary) OECD NUCLEAR ENERGY AGENCY 38 Bd. Suchet, 75016 Paris TABLE OF CONTENTS TECHNICAL SESSIONS Participants in meeting 1. Isotopes 2. National Progress Reports 3. Meetings 4. Technical Discussions 5. Topical Meeting on "Progress in Neutron Data of Structural Materials for Fast ~eactors" 6. Neutron and Related Nuclear Data Compilations and Evaluations Appendices 1 Meetings of the IAEA/NDS planned for 1980, 1981 and 1982 2 Progranme of the Topical Meeting on "Progress in Neutron Data of Structural Materials for Fast Reactors " 3 Summary of the general discussion on the works presented at the Topical Meeting TECmTICAL SESSIONS Perticipants in the 21st Meeting were as follows : For Canada : Dr. W.G. Cross Atomic Energy of Canada Ltd. Chalk River For Japan : Dr. K. Tsukada Japan Atomic Energy Research Institute Tokai-blur a For the United States of America : Dr. R.E. Chrien (Chairman) Brookhaven National Laboratory Dr. S.L. Wl~etstone U.S. Department of Energy Dr. 8.T. Motz Los Alamos Scientific Laboratory Dr. F.G. Perey Oak Ridge National Laboratory For the countries of the European Communities and the European Commission acting together : Dr. R. Iiockhoff (Local Secretary) Central Bureau for Nuclear Pleasurements Geel, Belgium Dr. C. Coceva (Scientific Secretary) Comitato Nazionale per 1'Energia Nucleare Bologna, Italy Dr. S. Cierjacks Kernforschungszentrum Karlsruhe Federal Republic of Germany Dr. C. Fort Conunissariat i 1'Energie Atomique Cadaroche, France Dr. A. Michaudon (Vice-chairman) Commissariat 2 1'Energie Atomique Bruysrcs-1.e-ChZtel Dr. -
Φ()Edeat∆≡ Nedeavt () [ ∆ ] (2)
22.54 Neutron Interactions and Applications (Spring 2002) Lecture Notes on Neutronics of Multiplying Media This is a set of notes for the four lectures on neutron interactions in a reactor system in which a neutron population can change as a result of capture and fission reactions, in addition to scattering. We will discuss the concept of criticality as a way of describing any self-sustaining chain reaction which, in principle, can be just as well chemical in nature, and focus on the fundamental understanding of neutron diffusion and slowing down, and the interplay between materials constants (expressed through cross sections) and geometric factors (system size and shape) in determining criticality. The four lectures are: Lec 14. Neutronics of Multiplying Media – criticality, moderation, leakage Lec 15. Elements of Neutron Diffusion Theory Lec 16. Neutron Slowing Down Lec.17. The Two-Group Two-Region Reactor As a start the following references are recommended for supplemental reading: J. Lemarsh, Introduction to Nuclear Reactor Theory K. M. Case, F. deHoffmann, G. Placzek, Introduction to The Theory of Neutron Diffusion, vol. 1, LASL, 1953. I. Some Basic Notions of Neutron Multiplication Consider a homogeneous beam of neutrons having a distribution of energies. Define distribution function n(E) such that n(E)dE = expected no, of neutrons with energies in dE about E per cm3 (1) Suppose we ask how many neutrons in a certain energy range will cross an area during a time interval ∆t. Call this number φ()EdEAt∆≡ nEdEAvt () [ ∆ ] (2) since all the neutrons in a certain volume Av ∆t will cross during ∆t. -
The JEFF-3.1.1 Nuclear Data Library
Data Bank ISBN 978-92-64-99074-6 The JEFF-3.1.1 Nuclear Data Library JEFF Report 22 Validation Results from JEF-2.2 to JEFF-3.1.1 A. Santamarina, D. Bernard, P. Blaise, M. Coste, A. Courcelle, T.D. Huynh, C. Jouanne, P. Leconte, O. Litaize, S. Mengelle, G. Noguère, J-M. Ruggiéri, O. Sérot, J. Tommasi, C. Vaglio, J-F. Vidal Edited by A. Santamarina, D. Bernard, Y. Rugama © OECD 2009 NEA No. 6807 NUCLEAR ENERGY AGENCY Organisation for Economic Co-operation and Development ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT The OECD is a unique forum where the governments of 30 democracies work together to address the economic, social and environmental challenges of globalisation. The OECD is also at the forefront of efforts to understand and to help governments respond to new developments and concerns, such as corporate governance, the information economy and the challenges of an ageing population. The Organisation provides a setting where governments can compare policy experiences, seek answers to common problems, identify good practice and work to co-ordinate domestic and international policies. The OECD member countries are: Australia, Austria, Belgium, Canada, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Korea, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, the Slovak Republic, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The Commission of the European Communities takes part in the work of the OECD. OECD Publishing disseminates widely the results of the Organisation’s statistics gathering and research on economic, social and environmental issues, as well as the conventions, guidelines and standards agreed by its members. -
Conceptual Design Report Jülich High
General Allgemeines ual Design Report ual Design Report Concept Jülich High Brilliance Neutron Source Source Jülich High Brilliance Neutron 8 Conceptual Design Report Jülich High Brilliance Neutron Source (HBS) T. Brückel, T. Gutberlet (Eds.) J. Baggemann, S. Böhm, P. Doege, J. Fenske, M. Feygenson, A. Glavic, O. Holderer, S. Jaksch, M. Jentschel, S. Kleefisch, H. Kleines, J. Li, K. Lieutenant,P . Mastinu, E. Mauerhofer, O. Meusel, S. Pasini, H. Podlech, M. Rimmler, U. Rücker, T. Schrader, W. Schweika, M. Strobl, E. Vezhlev, J. Voigt, P. Zakalek, O. Zimmer Allgemeines / General Allgemeines / General Band / Volume 8 Band / Volume 8 ISBN 978-3-95806-501-7 ISBN 978-3-95806-501-7 T. Brückel, T. Gutberlet (Eds.) Gutberlet T. Brückel, T. Jülich High Brilliance Neutron Source (HBS) 1 100 mA proton ion source 2 70 MeV linear accelerator 5 3 Proton beam multiplexer system 5 4 Individual neutron target stations 4 5 Various instruments in the experimental halls 3 5 4 2 1 5 5 5 5 4 3 5 4 5 5 Schriften des Forschungszentrums Jülich Reihe Allgemeines / General Band / Volume 8 CONTENT I. Executive summary 7 II. Foreword 11 III. Rationale 13 1. Neutron provision 13 1.1 Reactor based fission neutron sources 14 1.2 Spallation neutron sources 15 1.3 Accelerator driven neutron sources 15 2. Neutron landscape 16 3. Baseline design 18 3.1 Comparison to existing sources 19 IV. Science case 21 1. Chemistry 24 2. Geoscience 25 3. Environment 26 4. Engineering 27 5. Information and quantum technologies 28 6. Nanotechnology 29 7. Energy technology 30 8. -
THE SPALLATION NEUTRON SOURCE (SNS) PROJECT Jose Alonso
THE SPALLATION NEUTRON SOURCE (SNS) PROJECT Jose Alonso The SNS is currently the US Department of Energy's activation and residual-radiation levels in the tunnels are largest accelerator construction project, and is being low enough to allow quick access and hands-on carried out by a partnership of five DOE National maintenance, and is driven by the very high reliability and Laboratories for building the world's most powerful availability specifications associated with the strong user- accelerator-based pulse spallation source. At its planned orientation of the SNS facility. Areas where unusable 2 MW operating level, it will produce neutron fluxes at beam is diverted (so-called "controlled" beam-loss least a factor of ten greater than Rutherford Appleton points), such as collimators, scrapers and dumps, must be Laboratory’s ISIS, currently the world’s leading spallation designed to collect these particles in a way that contribute source. The current design of the SNS, shown in Figure only minimally to background levels in the tunnels where 1, calls for a full-energy (1 GeV) linac delivering 1 ms access is required. Normal loss mechanisms must receive pulses to an Accumulator Ring which compresses these particular attention to meet this specification. This into 600 ns proton pulses that strike a liquid mercury implies very tight control over beam emittance, and target at a 60 Hz rate. Room-temperature and cryogenic emittance growth; designing for the largest-possible stay- moderators produce beams of slow neutrons suitable for clear apertures in linac, transport and ring structures; materials research with an initial suite of at least 10 understanding of space-charge and halo effects in linac and ring; ensuring highest-possible vacuum in areas neutron-scattering instruments. -
Neutron Capture Cross Sections of Cadmium Isotopes
Neutron Capture Cross Sections of Cadmium Isotopes By Allison Gicking A thesis submitted to Oregon State University In partial fulfillment of the requirements for the degree of Bachelor of Science Presented June 8, 2011 Commencement June 17, 2012 Abstract The neutron capture cross sections of 106Cd, 108Cd, 110Cd, 112Cd, 114Cd and 116Cd were determined in the present project. Four different OSU TRIGA reactor facilities were used to produce redundancy in the results and to measure the thermal cross section and resonance integral separately. When the present values were compared with previously measured values, the differences were mostly due to the kind of detector used or whether or not the samples were natural cadmium. Some of the isotopes did not have any previously measured values, and in that case, new information about the cross sections of those cadmium isotopes has been provided. Table of Contents I. Introduction………………………………………………………………….…….…1 II. Theory………………………………………………………………………...…...…3 1. Neutron Capture…………………………………………………….….……3 2. Resonance Integral vs. Effective Thermal Cross Section…………...………5 3. Derivation of the Activity Equations…………………………………....…..8 III. Methods………………………………………………………….................…...…...12 1. Irradiation of the Samples………………………………………….….....…12 2. Sample Preparation and Parameters………………..………...………..……16 3. Efficiency Calibration of Detectors…………………………..………....…..18 4. Data Analysis…………………………………...…….………………...…..19 5. Absorption by 113Cd……………………………………...……...….………20 IV. Results………………………………………………….……………..……….…….22 -
EVALUATION of NEUTRON CROSS SECTIONS for Cm-242, -243, -244
XA0100537 -67- UDC 539.172 EVALUATION OF NEUTRON CROSS SECTIONS FOR Cm-242, -243, -244 A.I. Blokhin, A.S. Badikov, A.V. Ignatyuk, V.P. Lunev, V.N. Manokhin, G. Ya. Tertychny, K.I. Zolotarev Institute of Physics and Power Engineering, Obninsk, Russia EVALUATION OF NEUTRON CROSS SECTIONS FOR Cm-242, -243, -244. The work is devoted to the analysis of available experimental and evaluated data on the neutron cross sections for Cm-242, Cm-243, Cm-244. A comparison of experimental data with the results of theoretical calculations and the evaluations of the most important cross sections were performed. As a result the new version of complete files of evaluated neutron cross sections for Cm-242, Cm-243, Cm- 244 were performed. These files were included into the BROND-3 library the formations of which is under development in Russian Nuclear Data Center. For curium isotopes there are considerably less experimental data than for americium isotopes. The measurements of the total and radiative capture cross sections are restricted to the neutron resonance region and only the fission cross sections were measured in the fast neutron energy region. That is why all the neutron cross section evaluations are mainly based on the analysis of the available measured fission cross sections and on the statistical calculations of other cross sections. For Cm-245 and Cm-246 the new experimental fission cross sections, obtained in the framework of the Project [18] agree good enough with the available experimental data and the new cross section evaluations made by Minsk's group in 1996 [1, 2].