Human Brain Transcriptomics: Towards Understanding Multiple System Atrophy

Total Page:16

File Type:pdf, Size:1020Kb

Human Brain Transcriptomics: Towards Understanding Multiple System Atrophy Human brain transcriptomics: towards understanding multiple system atrophy James Dominic Mills Athesissubmittedinfulfilmentoftherequirementsforthedegreeof Doctor of Philosophy School of Biotechnology and Biomolecular Sciences Faculty of Science The University of New South Wales Sydney, Australia October 28, 2015 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Mills First name: James Other name/s: Dominic Abbreviation for degree as given In the University calendar: BIOC8608 School: The School of Biotechnology and Biomolecular Sciences Faculty: Science Title: Human brain transcriptomlcs: towards understanding multiple system atrophy Abstract 350 words maximum: (PLEASE TYPE) The human brain is a remarkably complex organ. It is a heterogeneous collection of billions of neurons and glial cells that are interconnected to form a finely tuned network capable of higher cognition. It is thought that the transcriptome may hold the key to understanding the complexity of the human brain. Next-generation sequencing allows the brain's transcriptome to be probed at an unmatched resolution. This has uncovered a myriad of RNA elements. including a number of long intervening non-coding RNAs (lincRNAs) that appear to be vital to the development and fun ction of the brain. The complexity of the human brain also makes it prone to a variety of different neurodegenerative diseases. One such disorder is multiple system atrophy (MSA). MSA is a sporadic, rapidly progressing neurodegenerative disease. Currently no treatment exists and very little is known about the molecular basis of MSA. In an attempt to understand the complexity of the human brain, transcriptome profiling of grey matter (GM) and white matter (WM) from lhe prefrontal cortex was performed. This revealed high expression of numerous lincRNAs, including the oligodendrocyte maturation-associated lincRNA (OLMALINC) in WM. To further establish the role of OLMALINC In the human brain the transcript was knocked down in neurons and oligodendrocytes. This revealed that OLMALINC plays a role in oligodendrocyte maturation. Next transcriptome profiling of MSA brain tissue was carried out. Genes that were differentially expressed between the healthy and MSA brain included. a1-hemoglobin (HBA 1), a2-hemoglobin (HBA2) and 13-hemoglobin (HBB). This suggests that perturbation of iron metabolism may be involved in MSA pathology. A number of differentially expressed lincRNAs between MSA GM and MSA WM were also Identified. One of these lincRNAs. linc00320 was further investigated to establish if it played role in MSA pathology. Together. using next-generation sequencing and bioinformatic tools this thesis provides a comprehensive transcriptional analysis of the human brain, followed by the most detailed transcriptome analysis of MSA. The transcriptome wide profiling analyses are also coupled with comprehensive analyses of OLMALINC and linc00320, detailing their importance In human brain physiology. Declaration relating to disposition of project thesis/dissertation I hereby grant to the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or in part in the University libraries in all forms of media, now or here after known. subject to the provisions of the Copyright Act 1968. I retain all property rights. such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University Microfilms to use the 350 word abstract of my thesis In Dissertation Abstracts International (this is applicable to doctoral theses only, . ..~./.IQ (. \ .~.......... Signature Witness bate The University recognises that there may be exceptional circumstances requiring restrictions on copying or conditions on use. Requests for restriction for a period of up to 2 years must be made in writing. Requests for a longer period of restriction may be considered in exceptional circumstances andre uire the a roval of the Dean of Graduate Research. FOR OFFICE USE ONLY Date of completion of requirements for Award: THIS SHEET IS TO BE GLUED TO THE INSIDE FRONT COVER OF THE THESIS Copyright Statem ent 'I hereby grant the University of New South Wales or its agents the right to archive and to make available my thesis or dissertation in whole or part in t he University libraries in all forms of media, now or here after known, subject to t he provisions of the Copyright Act 1968. I retain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation. I also authorise University :Microfilms to use the 350 word abstract of my thesis in Dissertation Abstract International (this is applicable to doctoral theses only). I have either used no substantial portions of copyright material in my thesis or I have obtnined permission to use copyright material; where perm ission has not been granted I have npplied/ will apply for n partial restriction of the digital copy of my t hesis or dissertation.' Signed Date Authent icity Statem ent 'I certify that the Library deposit digital copy is a direct equivalent of the final offi cially approved version of my thesis. No emendation of content has occurred and if t here are any minor variations in formatting, they arc the result of the conversion to digital format.' Signed Date Originality Statement 'I hereby declare that t his submission is my own work and to the best of my knowl­ edge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSvV or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that t he intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expres­ sion is acknowledged.· Signed Date Contents Acknowledgements IV Abstract V List of figures VIII Abbreviations IX 1 Introduction 1 1.1 The prefrontal cortex of the human brain . 1 1.2 Thetranscriptomeandorganismcomplexity . 3 1.3 Non-codingRNAs............................. 4 1.4 Conservation and tissue-specificity of long non-coding RNAs . 8 1.5 RNA-sequencing ............................. 10 1.6 Multiple system atrophy . 13 1.7 Multiple system atrophy and transcriptomics . 16 1.8 Aimsofthisstudy ............................ 17 1.9 Thesis synopsis . 18 I 1.10 Review article: Strand-specific RNA-Seq provides greater resolution of transcriptome profiling . 19 2 Transcriptome profiling of the healthy human brain using RNA- Seq 30 2.1 Primary research article: Unique transcriptome patterns of the white and grey matter corroborate structural and functional heterogeneity in the human frontal lobe . 31 3 The role of long intervening non-coding RNAs in healthy brain development and function 51 3.1 Primary research article: High expression of long intervening non- coding RNA OLMALINC in the human cortical white matter is as- sociated with regulation of oligodendrocyte maturation . 52 4 Transcriptome profiling of multiple system atrophy brain tissue using RNA-Seq 66 4.1 Primary research article: Transcriptome analysis of grey and white matter cortical tissue in multiple system atrophy . 67 5 Investigation of a long intervening non-coding RNA that may be involved in the pathology of multiple system atrophy 85 5.1 Primary research article: Long intervening non-coding RNA 00320 is human brain-specific and highly expressed in the cortical white matter . 86 II 6 Conclusions and future directions 101 6.1 Summary . 101 6.2 The use of post-mortem brain tissue in transcriptome profiling . 104 6.3 Selection of the superior frontal gyrus . 107 6.4 The complexity of the transcriptome of the human brain . 108 6.5 Brain lincRNAs show low levels of sequence and expression conservation . 110 6.6 Insights into the pathology of multiple system atrophy . 111 6.7 Futuredirections ............................. 112 References 116 Appendices 133 A Publications with non-first authorship related to this thesis 133 A.1 The role of transcriptional control in multiple system atrophy . 134 A.2 Pathway analysis of the human brain transcriptome in disease . 142 A.3 Conservation and tissue-specific transcription patterns of long non- codingRNAs ............................... 152 III Acknowledgements First and foremost I o↵er my sincerest gratitude to my supervisor Dr. Michael Janitz. His enthusiasm, commitment and support made the completion of this thesis possible. I could not have asked for a better mentor throughout my PhD. You have had a profound influence on my career path. Next, I would like to thank all of my co-authors who contributed to the papers presented in this thesis including; Prof. Glenda Halliday, Dr. Paul Waters, Dr. Scott Kim, Dr. Yoshihiro Kawahara, Prof. Eleonora Aronica, Bei Jun Chen, Tomas Kavanagh, Jieqiong Chen and Avanita Prabowo. To all of my friends and family throughout Australia and the world, thanks for your support. Last but in no way the least, I would like to thank the donors who made these studies possible. I implore everyone who reads this to donate their body to science. IV Abstract The human brain is a remarkably complex organ. It is a heterogeneous collection of billions of neurons and glial cells that are interconnected to form a finely tuned network capable of higher cognition. It is thought that the transcriptome may hold the key to understanding the complexity seen in the human brain. Next-generation sequencing allows the brain’s transcriptome to be probed at an unmatched resolu- tion. This has uncovered a myriad of RNA elements, including RNA that does not code for protein, known as non-coding RNA (ncRNA).
Recommended publications
  • Highland Park Public Schools Highland Park, New Jersey Mission Statement
    HIGHLAND PARK PUBLIC SCHOOLS HIGHLAND PARK, NEW JERSEY MISSION STATEMENT The mission of the Highland Park School District is to provide the community with the finest educational services through respect for diversity and commitment to collaboration, continuous improvement, and achievement of excellence. The Highland Park Board of Education will hold a REGULAR PUBLIC MEETING on Monday, September 19, 2016, at 6:30 p.m., at the Middle School, 330 Wayne Street, Highland Park, New Jersey. This meeting will be broadcast live on hpschools.net and youtube.com. AGENDA: 1. Call to Order 2. Announcement of Notice The New Jersey Open Public Meetings Act was enacted to ensure the right of the public to have advance notice of and to attend the meetings of the public bodies at which any business affecting their interest is discussed or acted upon. In compliance with the Open Public Meeting Act, the Highland Park Board of Education has caused notice of this meeting setting forth the time, date, and location to be submitted for publication to the Home News Tribune and Star Ledger and posted on the Board’s website at least 48 hours in advance of this meeting. Members of the public who wish to address the Board will be given the opportunity to do so before the Board adjourns for the evening. 3. Roll Call 4. Recess to Executive Session Be It Resolved, pursuant to the Sunshine Act, N.J.S.A. 10:4-12 and 13, the Highland Park Board of Education will now meet in closed session to discuss litigation. This exemption is permitted to be discussed in closed session in accordance with N.J.S.A.
    [Show full text]
  • 2019 OPSSD York University for Publication 03022020.Xlsx
    Record of employees' 2019 salaries and benefits Registre des traitements et avantages verses aux employes en 2019 Taxable Salary Paid / Cal Year / Employer / Benefits / Sector / Secteur Surname / Nom de famille Given Name / Prenom Position Title / Poste Traitement Avantages Annee Civil Employeur verse imposable 2019 Universities York University Abbruzzese Teresa V.A. Sessional Assistant Professor 104,007.36 573.20 2019 Universities York University Abdel-Shehid Gamal Associate Professor 171,018.74 899.84 2019 Universities York University Abdul Sater Ali Assistant Professor 125,484.66 677.36 2019 Universities York University Abdullah Thabit A J Professor 177,570.47 960.16 2019 Universities York University Ablack Christine Manager, Job Evaluation and Compensation Services 122,465.13 668.04 2019 Universities York University Aboelaze Mokhtar Associate Professor 210,094.66 1,094.64 2019 Universities York University Abouchar Chantal Team Lecturer 105,597.56 0.00 2019 Universities York University Adam Simon Assistant Professor 115,475.96 636.88 2019 Universities York University Adamopoulos Anastasios T Associate Professor 180,491.49 979.00 2019 Universities York University Adegoke Olasunkanmi A J Associate Professor 156,871.90 849.00 2019 Universities York University Adler Daniel A Associate Professor 139,569.20 815.84 2019 Universities York University Adler Scott A. Associate Professor 160,020.20 865.52 2019 Universities York University Adriaen Monique Associate Professor 188,563.18 341.24 2019 Universities York University Agathangelou Anna
    [Show full text]
  • Comparison of Orthologs Across Multiple Species by Various Strategies
    COMPARISON OF ORTHOLOGS ACROSS MULTIPLE SPECIES BY VARIOUS STRATEGIES BY HUI LIU DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biophysics and Computational Biology in the Graduate College of the University of Illinois at Urbana-Champaign, 2014 Urbana, Illinois Doctoral Committee: Professor Eric Jakobsson, Chair, Director of Research Professor Gene E. Robinson Associate Professor Saurabh Sinha Assistant Professor Jian Ma Abstract Thanks to the improvement of genome sequencing technology, abundant multi-species genomic data now became available and comparative genomics continues to be a fast prospering filed of biological research. Through the comparison of genomes of different organisms, we can understand what, at the molecular level, distinguishes different life forms from each other. It shed light on revealing the evolution of biology. And it also helps to refine the annotations and functions of individual genomes. For example, through comparisons across mammalian genomes, we can give an estimate of the conserved set of genes across mammals and correspondingly, find the species-specific sets of genes or functions. However, comparative genomics can be feasible only if a meaningful classification of genes exists. A natural way to do so is to delineate sets of orthologous genes. However, debates exist about the appropriate way to define orthologs. It is originally defined as genes in different species which derive from speciation events. But such definition is not sufficient to derive orthologous genes due to the complexity of evolutionary events such as gene duplication and gene loss. While it is possible to correctly figure out all the evolutionary events with the true phylogenetic tree, the true phylogenetic tree itself is impractical to be inferred.
    [Show full text]
  • Celecoxib Treatment Alters the Gene Expression Profile of Normal Colonic Mucosa
    1382 Celecoxib Treatment Alters the Gene Expression Profile of Normal Colonic Mucosa Oleg K. Glebov,1 Luz M. Rodriguez,1 Patrick Lynch,4 Sherri Patterson,4 Henry Lynch,5 Kenneth Nakahara,1 Jean Jenkins,1 Janet Cliatt,1 Casey-Jo Humbyrd,1 John DeNobile,3 Peter Soballe,3 Steven Gallinger,6 Aby Buchbinder,7 Gary Gordon,8 Ernest Hawk,2 and Ilan R. Kirsch1 1Genetics Branch, Center for Cancer Research; 2Division of Cancer Prevention, National Cancer Institute; 3Surgery Department, National Naval Medical Center, Bethesda, Maryland; 4University of Texas M.D. Anderson Cancer Center, Houston, Texas; 5Creighton University, Omaha, Nebraska; 6University of Toronto, Toronto, Ontario, Canada; 7Pharmacia, Peapack, New Jersey; and 8Ovation Pharma, Lincolnshire, Illinois Abstract A clinical trial was recently conducted to evaluate the safety Twenty-three of 25 pairs of colon biopsies taken before and efficacy of a selective inhibitor of cyclooxygenase-2 and after celecoxib treatment can be classified correctly (celecoxib) in hereditary nonpolyposis colon cancer by the pattern of gene expression in a leave-one-out patients. In a randomized, placebo-controlled phase I/II cross-validation. Immune response, particularly T- and B- multicenter trial, hereditary nonpolyposis colon cancer lymphocyte activation and early steps of inflammatory patients and gene carriers received either celecoxib at one reaction, cell signaling and cell adhesion, response to stress, of two doses or placebo. The goal was to evaluate the effects transforming growth factor-B signaling, and regulation of of these treatment arms on a number of endoscopic and apoptosis, are the main biological processes targeted by tissue-based biomarker end points after 12 months of celecoxib as shown by overrepresentation analysis of the treatment.
    [Show full text]
  • El Ferro I Els Ferrers En L'antroponímia Catalana I Europea Trobam Com a Nom De Família Ferrer O Algun Equivalent
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Biblioteca Digital de les Illes Balears EL FERRO I ELS FERRERS EN L’ANTROPONÍMIA CATALANA I EUROPEA Antoni Llull Martí XIX Jornada d’Antroponímia i Toponímia. Muro, 2006 Des que fa prop de tres mil cinc-cents anys, els hitites descobriren la manera de forjar el ferro i utilitzar-lo per fer-ne armes, eines i molts diversos utensilis, crec que podem donar per segur que aquest metall és el que més ha contribuït, i contribueix encara, al desenvo- lupament de la civilització. En els segles següents a aquest descobriment, els pobles que desenvoluparen les tècniques per obrar el ferro tingueren grans avantatges sobre els que les desconeixien, i encara durant l’edat mitjana, l’ofici de ferrer era molt preuat i, per això, quan per devers el segle XII començaren a fer-se usuals als països cristians de l’entorn del Mediterrani occidental els llinatges hereditaris, molts dels qui tenien aqueix ofici adoptaren Ferrer com a nom de família. Un vell nom personal germànic introduït a Catalunya pels visigots i que s’ha conservat al nostre país com a llinatge, és Isern, que en documents catalans dels segles X i XI, escrits en llatí com era usual en aquella època, es troba escrit Isarn i Isarnus, derivat, segons sem- bla, del mateix mot germànic del que procedeix l’alemany modern Eisen ‘ferro’, documen- tat en antic alt alemany amb les formes isarn i isan, i en gòtic eisarn.1 Altres antics noms germànics composts amb aquest mateix mot i un altre que els complementa, són Isanbard, Isanbald, Isenburg, Isenfrid, Isimbert, que han estat molt poc, o no gens, usuals en la nostra antroponímia medieval, i molt menys en la moderna.
    [Show full text]
  • Supplementary Data
    Supplementary Fig. 1 A B Responder_Xenograft_ Responder_Xenograft_ NON- NON- Lu7336, Vehicle vs Lu7466, Vehicle vs Responder_Xenograft_ Responder_Xenograft_ Sagopilone, Welch- Sagopilone, Welch- Lu7187, Vehicle vs Lu7406, Vehicle vs Test: 638 Test: 600 Sagopilone, Welch- Sagopilone, Welch- Test: 468 Test: 482 Responder_Xenograft_ NON- Lu7860, Vehicle vs Responder_Xenograft_ Sagopilone, Welch - Lu7558, Vehicle vs Test: 605 Sagopilone, Welch- Test: 333 Supplementary Fig. 2 Supplementary Fig. 3 Supplementary Figure S1. Venn diagrams comparing probe sets regulated by Sagopilone treatment (10mg/kg for 24h) between individual models (Welsh Test ellipse p-value<0.001 or 5-fold change). A Sagopilone responder models, B Sagopilone non-responder models. Supplementary Figure S2. Pathway analysis of genes regulated by Sagopilone treatment in responder xenograft models 24h after Sagopilone treatment by GeneGo Metacore; the most significant pathway map representing cell cycle/spindle assembly and chromosome separation is shown, genes upregulated by Sagopilone treatment are marked with red thermometers. Supplementary Figure S3. GeneGo Metacore pathway analysis of genes differentially expressed between Sagopilone Responder and Non-Responder models displaying –log(p-Values) of most significant pathway maps. Supplementary Tables Supplementary Table 1. Response and activity in 22 non-small-cell lung cancer (NSCLC) xenograft models after treatment with Sagopilone and other cytotoxic agents commonly used in the management of NSCLC Tumor Model Response type
    [Show full text]
  • Urzędu Patentowego
    BIULETYN URZĘDU PATENTOWEGO Wydawnictwo Urzędu Patentowego Polskiej Rzeczypospolitej Ludowej 4 (136) Warszawa 1979 Urząd Patentowy PRL - na podstawie art. 33 1 art. 78 ustawy z dnia 18 października 1972 r. o wynalaz- czości (Dz. U. PRL Nr 43, poz. 272) - dokonuje ogłoszenia w „Biuletynie Urzędu Patentowego" o zgłoszo- nych wynalazkach i wzorach użytkowych. Ogłoszenia o zgłoszeniach drukowane w „Biuletynie" podane są w układzie klasowym według symboli Int. CL« i zgodnie z § 26 ust. 4 zarządzenia Prezesa Urzędu Patento- wego PRL z dnia 21 XII 1972 r. w sprawie ochrony wynalazków i wzorów użytkowych (MP z 1973 r. nr 1 poz. 4) zawierają następujące dane: - oznaczenie klasy i podklasy według symboli II edycji międzynarodowej klasyfikacji patentowej, tj. Int. CL1 - numer zgłoszenia wynalazku lub wzoru użytkowego, - datę zgłoszenia wynalazku lub wzoru użytkowego, - datę i kraj uprzedniego pierwszeństwa oraz numer zgłoszenia dokonanego za granicą lub oznaczenie wy- stawy - jeżeli zastrzeżono pierwszeństwo, - imię i nazwisko lub nazwę zgłaszającego, - miejsce zamieszkania lub siedzibę oraz kraj zgłaszającego, - imię i nazwisko wynalazcy (wynalazców), - tytuł wynalazku lub wzoru użytkowego, - skrót opisu wynalazku lub wzoru użytkowego wraz z figurą rysunku najlepiej obrazującą wynalazek lub wzór użytkowy, - liczbę zastrzeżeń. Po wykazie ogłoszeń w układzie klasowym według symboli Int. Cl.f podaje się wykaz zgłoszeń opubliko- wanych w danym numerze w układzie numerowym. Ogłoszenia dotyczące zgłoszeń o udzielenie patentów tymczasowych zostały oznaczone
    [Show full text]
  • Record of Employees' 2020 Salaries and Benefits Registre Des Traitements Et Avantages Verses Aux Employes En 2020
    Record of employees' 2020 salaries and benefits Registre des traitements et avantages verses aux employes en 2020 Taxable Calendar Salary Paid Sector Last Name First Name Position Title Organization Benefits Year Traitement Secteur Nom de famille Prénom Poste Organisation Avantages Année Civil verse imposable 2020 Universities Abbruzzese Teresa V.A. Assistant Professor Teaching York University 119,434.92 577.23 2020 Universities Abdel-Shehid Gamal Associate Professor York University 177,761.42 895.52 2020 Universities Abdul Sater Ali Assistant Professor York University 128,168.92 678.12 2020 Universities Abdullah Thabit A J Professor York University 177,778.58 940.22 2020 Universities Abdullah Shamim Course Director York University 113,914.24 - 2020 Universities Ablack Christine Manager Job Evaluation and Compensation Services York University 129,479.63 446.13 2020 Universities Aboelaze Mokhtar Associate Professor York University 206,764.44 1,057.56 2020 Universities Abouchar Chantal Course Director York University 114,914.18 - 2020 Universities Abou-Hanna Mireille Director Recruitment Admissions and Applicant Relations York University 106,002.25 551.77 2020 Universities Abu Sabaa Sally Manager English for Academic Purposes York University 104,161.96 541.59 2020 Universities Adam Simon Assistant Professor York University 120,688.28 639.36 2020 Universities Adamopoulos Anastasios T Associate Professor York University 183,927.20 973.72 2020 Universities Adegoke Olasunkanmi A J Associate Professor York University 159,874.36 846.20 2020 Universities
    [Show full text]
  • Nº Ref Uniprot Proteína Péptidos Identificados Por MS/MS 1 P01024
    Document downloaded from http://www.elsevier.es, day 26/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Nº Ref Uniprot Proteína Péptidos identificados 1 P01024 CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 por 162MS/MS 2 P02751 FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 131 3 P01023 A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 128 4 P0C0L4 CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1 95 5 P04275 VWF_HUMAN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=4 81 6 P02675 FIBB_HUMAN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 78 7 P01031 CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 66 8 P02768 ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 66 9 P00450 CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 64 10 P02671 FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 58 11 P08603 CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 56 12 P02787 TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 54 13 P00747 PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 48 14 P02679 FIBG_HUMAN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 47 15 P01871 IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 41 16 P04003 C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 37 17 Q9Y6R7 FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP PE=1 SV=3 30 18 O43866 CD5L_HUMAN CD5 antigen-like OS=Homo
    [Show full text]
  • Target Gene Gene Description Validation Diana Miranda
    Supplemental Table S1. Mmu-miR-183-5p in silico predicted targets. TARGET GENE GENE DESCRIPTION VALIDATION DIANA MIRANDA MIRBRIDGE PICTAR PITA RNA22 TARGETSCAN TOTAL_HIT AP3M1 adaptor-related protein complex 3, mu 1 subunit V V V V V V V 7 BTG1 B-cell translocation gene 1, anti-proliferative V V V V V V V 7 CLCN3 chloride channel, voltage-sensitive 3 V V V V V V V 7 CTDSPL CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase-like V V V V V V V 7 DUSP10 dual specificity phosphatase 10 V V V V V V V 7 MAP3K4 mitogen-activated protein kinase kinase kinase 4 V V V V V V V 7 PDCD4 programmed cell death 4 (neoplastic transformation inhibitor) V V V V V V V 7 PPP2R5C protein phosphatase 2, regulatory subunit B', gamma V V V V V V V 7 PTPN4 protein tyrosine phosphatase, non-receptor type 4 (megakaryocyte) V V V V V V V 7 EZR ezrin V V V V V V 6 FOXO1 forkhead box O1 V V V V V V 6 ANKRD13C ankyrin repeat domain 13C V V V V V V 6 ARHGAP6 Rho GTPase activating protein 6 V V V V V V 6 BACH2 BTB and CNC homology 1, basic leucine zipper transcription factor 2 V V V V V V 6 BNIP3L BCL2/adenovirus E1B 19kDa interacting protein 3-like V V V V V V 6 BRMS1L breast cancer metastasis-suppressor 1-like V V V V V V 6 CDK5R1 cyclin-dependent kinase 5, regulatory subunit 1 (p35) V V V V V V 6 CTDSP1 CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase 1 V V V V V V 6 DCX doublecortin V V V V V V 6 ENAH enabled homolog (Drosophila) V V V V V V 6 EPHA4 EPH receptor A4 V V V V V V 6 FOXP1 forkhead box P1 V
    [Show full text]
  • 2019 SSG Rowing Participation List
    Florida Sports Foundation Sunshine State Games Participant Listing 2019 SSG Rowing Participation List # First Name Last Name Hometown City State 1 Jorge Acosta Miami FL 2 Dragos Alexandru Osprey FL 3 Mario Alonso Miami FL 4 Raul Arellano Miami FL 5 Vladimir Banjanac Serbia SRB 6 Sarah Barlow Orlando FL 7 Facundo Barrera Miami FL 8 Robert Bauer Gainesville FL 9 Mary Benedict Gainesville FL 10 Britton Bertram Orlando FL 11 Rebecca Bolletti Osprey FL 12 Debbie Brazill Inverness FL 13 David Brizzi 14 Victoria Brooks Orlando FL 15 Julie Brown Osprey FL 16 Jonathan Campana Osprey FL 17 John Carter Osprey FL 18 Yamile Castella Miami FL 19 julian chauhan Osprey FL 20 Larry Chlebina Osprey FL 21 Tyler Cirillo Orlando FL 22 Matthew Coble Tampa FL 23 Lindsey Collins Orlando FL 24 Liam Collins Osprey FL 25 Maureen Condiotte Osprey FL 26 Laura Corbett Osprey FL 27 Tamara Currey Osprey FL 28 Don Davis Gainesville FL 29 Amanda Davis Orlando FL 30 Kerri Davis Osprey FL 31 Joao Eduardo de Sousa 32 Jesus Devesa Orlando FL 33 Constance Dodds Osprey FL 34 MaryEl Duncan Gainesville FL 35 Morgan Earp Osprey FL 36 Thomas Edwards Osprey FL 37 Carl Eierle Plantation FL 38 Jon Einsidler Osprey FL Quarterly DEO Report: June 30, 2019 Page 1 of 5 Florida Sports Foundation Sunshine State Games Participant Listing 2019 SSG Rowing Participation List # First Name Last Name Hometown City State 39 John Eisnor Osprey FL 40 Lisa Elkins Orlando FL 41 Leslie Evans Osprey FL 42 Jennifer Figueroa Gainesville FL 43 John Fischer Osprey FL 44 Matthew Freeburg Osprey FL 45 Frank
    [Show full text]
  • Candidate Genes for Alcohol Preference Identified by Expression
    Liang et al. Genome Biology 2010, 11:R11 http://genomebiology.com/2010/11/2/R11 RESEARCH Open Access Candidate genes for alcohol preference identified by expression profiling in alcohol-preferring and -nonpreferring reciprocal congenic rats Tiebing Liang1*, Mark W Kimpel2, Jeanette N McClintick3, Ashley R Skillman1, Kevin McCall4, Howard J Edenberg3, Lucinda G Carr1 Abstract Background: Selectively bred alcohol-preferring (P) and alcohol-nonpreferring (NP) rats differ greatly in alcohol preference, in part due to a highly significant quantitative trait locus (QTL) on chromosome 4. Alcohol consumption scores of reciprocal chromosome 4 congenic strains NP.P and P.NP correlated with the introgressed interval. The goal of this study was to identify candidate genes that may influence alcohol consumption by comparing gene expression in five brain regions of alcohol-naïve inbred alcohol-preferring and P.NP congenic rats: amygdala, nucleus accumbens, hippocampus, caudate putamen, and frontal cortex. Results: Within the QTL region, 104 cis-regulated probe sets were differentially expressed in more than one region, and an additional 53 were differentially expressed in a single region. Fewer trans-regulated probe sets were detected, and most differed in only one region. Analysis of the average expression values across the 5 brain regions yielded 141 differentially expressed cis-regulated probe sets and 206 trans-regulated probe sets. Comparing the present results from inbred alcohol-preferring vs. congenic P.NP rats to earlier results from the reciprocal congenic NP.P vs. inbred alcohol-nonpreferring rats demonstrated that 74 cis-regulated probe sets were differentially expressed in the same direction and with a consistent magnitude of difference in at least one brain region.
    [Show full text]