<I>Lepidobatrachus Laevis</I>
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogenetic Analyses Reveal Unexpected Patterns in the Evolution of Reproductive Modes in Frogs
ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2012.01715.x PHYLOGENETIC ANALYSES REVEAL UNEXPECTED PATTERNS IN THE EVOLUTION OF REPRODUCTIVE MODES IN FROGS Ivan Gomez-Mestre,1,2 Robert Alexander Pyron,3 and John J. Wiens4 1Estacion´ Biologica´ de Donana,˜ Consejo Superior de Investigaciones Cientıficas,´ Avda. Americo Vespucio s/n, Sevilla 41092, Spain 2E-mail: [email protected] 3Department of Biological Sciences, The George Washington University, Washington DC 20052 4Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York 11794–5245 Received November 2, 2011 Accepted June 2, 2012 Understanding phenotypic diversity requires not only identification of selective factors that favor origins of derived states, but also factors that favor retention of primitive states. Anurans (frogs and toads) exhibit a remarkable diversity of reproductive modes that is unique among terrestrial vertebrates. Here, we analyze the evolution of these modes, using comparative methods on a phylogeny and matched life-history database of 720 species, including most families and modes. As expected, modes with terrestrial eggs and aquatic larvae often precede direct development (terrestrial egg, no tadpole stage), but surprisingly, direct development evolves directly from aquatic breeding nearly as often. Modes with primitive exotrophic larvae (feeding outside the egg) frequently give rise to direct developers, whereas those with nonfeeding larvae (endotrophic) do not. Similarly, modes with eggs and larvae placed in locations protected from aquatic predators evolve frequently but rarely give rise to direct developers. Thus, frogs frequently bypass many seemingly intermediate stages in the evolution of direct development. We also find significant associations between terrestrial reproduction and reduced clutch size, larger egg size, reduced adult size, parental care, and occurrence in wetter and warmer regions. -
Rampant Tooth Loss Across 200 Million Years of Frog Evolution
bioRxiv preprint doi: https://doi.org/10.1101/2021.02.04.429809; this version posted February 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Rampant tooth loss across 200 million years of frog evolution 2 3 4 Daniel J. Paluh1,2, Karina Riddell1, Catherine M. Early1,3, Maggie M. Hantak1, Gregory F.M. 5 Jongsma1,2, Rachel M. Keeffe1,2, Fernanda Magalhães Silva1,4, Stuart V. Nielsen1, María Camila 6 Vallejo-Pareja1,2, Edward L. Stanley1, David C. Blackburn1 7 8 1Department of Natural History, Florida Museum of Natural History, University of Florida, 9 Gainesville, Florida USA 32611 10 2Department of Biology, University of Florida, Gainesville, Florida USA 32611 11 3Biology Department, Science Museum of Minnesota, Saint Paul, Minnesota USA 55102 12 4Programa de Pós Graduação em Zoologia, Universidade Federal do Pará/Museu Paraense 13 Emilio Goeldi, Belém, Pará Brazil 14 15 *Corresponding author: Daniel J. Paluh, [email protected], +1 814-602-3764 16 17 Key words: Anura; teeth; edentulism; toothlessness; trait lability; comparative methods 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.04.429809; this version posted February 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. -
Biblioteca JORGE D
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by SEDICI - Repositorio de la UNLP Reprinted from Herpetoi.ogica Vol. 24, June 28, 1968, No. 2 pp. 141-146 Made in United States of America biblioteca JORGE D. WILLIAMS NOTES ON THE TADPOLES AND BREEDING ECOLOGY OF LEPIDOB ATRAC HUS (AMPHIBIA: CERATOPHRYIDAE) J. M. Cei BIBLIOTECA JORGE D. WILLIAMS NOTES ON THE TADPOLES AND BREEDING ECOLOGY OF LEPIDOBATRACHUS (AMPHIBIA: CERATOPHRYIDAE) J. M. Cei Lepidobatrachus is a characteristic Chacoan genus of the Ceratophryidae, which we consider to be an independent Neotrop ical phyletic line of leptodactylids. Its earliest known representative is the Miocene Wawelia from Patagonia (Casamiquela, 1963). Since the discovery of the genus by Budgett (1899), Lepidoba trachus has received relatively little comment. Vellard (1948) re described the type-species, and the generic status has been con firmed by Cei (1958), Reig and Cei (1963), and Barrio (1967) utilizing various lines of investigation. The latter author proposes recognizing three species: L. laevis Budgett, L. asper Budgett (L. salinicola Reig and Cei is a synonym), and L. llanensis Reig and Cei, whose distributions are largely allopatric but in part sym patric (Fig. 1). Except for Parker’s (1931) brief description and figures of the tadpole of Lepidobatrachus asper (= either asper or laevis by current concepts), the larvae of the genus have not been described. The tadpoles of L. asper and L. llanensis are described and figured in this paper. These species occur in the shrub-covered flats of the Argentine Central and Western Chacoan provinces. -
3Systematics and Diversity of Extant Amphibians
Systematics and Diversity of 3 Extant Amphibians he three extant lissamphibian lineages (hereafter amples of classic systematics papers. We present widely referred to by the more common term amphibians) used common names of groups in addition to scientifi c Tare descendants of a common ancestor that lived names, noting also that herpetologists colloquially refer during (or soon after) the Late Carboniferous. Since the to most clades by their scientifi c name (e.g., ranids, am- three lineages diverged, each has evolved unique fea- bystomatids, typhlonectids). tures that defi ne the group; however, salamanders, frogs, A total of 7,303 species of amphibians are recognized and caecelians also share many traits that are evidence and new species—primarily tropical frogs and salaman- of their common ancestry. Two of the most defi nitive of ders—continue to be described. Frogs are far more di- these traits are: verse than salamanders and caecelians combined; more than 6,400 (~88%) of extant amphibian species are frogs, 1. Nearly all amphibians have complex life histories. almost 25% of which have been described in the past Most species undergo metamorphosis from an 15 years. Salamanders comprise more than 660 species, aquatic larva to a terrestrial adult, and even spe- and there are 200 species of caecilians. Amphibian diver- cies that lay terrestrial eggs require moist nest sity is not evenly distributed within families. For example, sites to prevent desiccation. Thus, regardless of more than 65% of extant salamanders are in the family the habitat of the adult, all species of amphibians Plethodontidae, and more than 50% of all frogs are in just are fundamentally tied to water. -
BOA5.1-2 Frog Biology, Taxonomy and Biodiversity
The Biology of Amphibians Agnes Scott College Mark Mandica Executive Director The Amphibian Foundation [email protected] 678 379 TOAD (8623) Phyllomedusidae: Agalychnis annae 5.1-2: Frog Biology, Taxonomy & Biodiversity Part 2, Neobatrachia Hylidae: Dendropsophus ebraccatus CLassification of Order: Anura † Triadobatrachus Ascaphidae Leiopelmatidae Bombinatoridae Alytidae (Discoglossidae) Pipidae Rhynophrynidae Scaphiopopidae Pelodytidae Megophryidae Pelobatidae Heleophrynidae Nasikabatrachidae Sooglossidae Calyptocephalellidae Myobatrachidae Alsodidae Batrachylidae Bufonidae Ceratophryidae Cycloramphidae Hemiphractidae Hylodidae Leptodactylidae Odontophrynidae Rhinodermatidae Telmatobiidae Allophrynidae Centrolenidae Hylidae Dendrobatidae Brachycephalidae Ceuthomantidae Craugastoridae Eleutherodactylidae Strabomantidae Arthroleptidae Hyperoliidae Breviceptidae Hemisotidae Microhylidae Ceratobatrachidae Conrauidae Micrixalidae Nyctibatrachidae Petropedetidae Phrynobatrachidae Ptychadenidae Ranidae Ranixalidae Dicroglossidae Pyxicephalidae Rhacophoridae Mantellidae A B † 3 † † † Actinopterygian Coelacanth, Tetrapodomorpha †Amniota *Gerobatrachus (Ray-fin Fishes) Lungfish (stem-tetrapods) (Reptiles, Mammals)Lepospondyls † (’frogomander’) Eocaecilia GymnophionaKaraurus Caudata Triadobatrachus 2 Anura Sub Orders Super Families (including Apoda Urodela Prosalirus †) 1 Archaeobatrachia A Hyloidea 2 Mesobatrachia B Ranoidea 1 Anura Salientia 3 Neobatrachia Batrachia Lissamphibia *Gerobatrachus may be the sister taxon Salientia Temnospondyls -
Data on Metabolic Rates Across Anurans
Table S3. Species of anurans and outgroups used for the phylogenetic inference and meta-analysis of the metabolic parameters in Anura. Data include accession numbers, metabolic measurements, and references of physiological data. VO2RES VO2RES VO2EX VO2EX (ml/h) Mass (ml/h) Mass (ml/h) Mass (ml/h) Mass Family Genus species 1216S 20°C (g) 25°C (g) 20°C (g) 25°C (g) Ref. Lepidosirenidae Lepidosiren paradoxa NC003342 -- -- -- -- -- -- -- -- Phasianidae Gallus gallus AP003319 -- -- -- -- -- -- -- -- Hominidae Homo sapiens AC000021 -- -- -- -- -- -- -- -- Typhlonectidae Typhlonectes natans NC002471 -- -- -- -- -- -- -- -- Caeciliidae Gegeneophis ramaswamii NC006301 -- -- -- -- -- -- -- -- Rhinatrematidae Rhinatrema bivittatum NC006303 -- -- -- -- -- -- -- -- Hynobiidae Hynobius formosanus NC008084 -- -- -- -- -- -- -- -- Plethodontidae Eurycea bislineata AY728217 -- -- -- -- -- -- -- -- Ambystomatidae Ambystoma mexicanum NC005797 -- -- -- -- -- -- -- -- Alytidae Alytes obstetricans * -- -- -- -- -- -- -- -- Alytidae Discoglossus galganoi NC006690 -- -- -- -- -- -- -- -- Alytidae Discoglossus pictus * 1.142 30.71 -- -- 8.166 30.70 -- -- (1) Arthroleptidae Arthroleptis variabilis DQ283081 -- -- -- -- -- -- -- -- Arthroleptidae Trichobatrachus robustus AY843773 -- -- -- -- -- -- -- -- Batrachophrynidae Caudiverbera caudiverbera DQ283439 -- -- -- -- -- -- -- -- (1) Bombinatoridae Bombina orientalis AY957562 0.149 2.62 0.340 3.79 1.230 2.60 -- -- (2) Brevicipitidae Callulina kreffti AY326068 -- -- -- -- -- -- -- -- Bufonidae Atelopus peruensis AY819329 -
Reproduction and Larval Rearing of Amphibians
Reproduction and Larval Rearing of Amphibians Robert K. Browne and Kevin Zippel Abstract Key Words: amphibian; conservation; hormones; in vitro; larvae; ovulation; reproduction technology; sperm Reproduction technologies for amphibians are increasingly used for the in vitro treatment of ovulation, spermiation, oocytes, eggs, sperm, and larvae. Recent advances in these Introduction reproduction technologies have been driven by (1) difficul- ties with achieving reliable reproduction of threatened spe- “Reproductive success for amphibians requires sper- cies in captive breeding programs, (2) the need for the miation, ovulation, oviposition, fertilization, embryonic efficient reproduction of laboratory model species, and (3) development, and metamorphosis are accomplished” the cost of maintaining increasing numbers of amphibian (Whitaker 2001, p. 285). gene lines for both research and conservation. Many am- phibians are particularly well suited to the use of reproduc- mphibians play roles as keystone species in their tion technologies due to external fertilization and environments; model systems for molecular, devel- development. However, due to limitations in our knowledge Aopmental, and evolutionary biology; and environ- of reproductive mechanisms, it is still necessary to repro- mental sensors of the manifold habitats where they reside. duce many species in captivity by the simulation of natural The worldwide decline in amphibian numbers and the in- reproductive cues. Recent advances in reproduction tech- crease in threatened species have generated demand for the nologies for amphibians include improved hormonal induc- development of a suite of reproduction technologies for tion of oocytes and sperm, storage of sperm and oocytes, these animals (Holt et al. 2003). The reproduction of am- artificial fertilization, and high-density rearing of larvae to phibians in captivity is often unsuccessful, mainly due to metamorphosis. -
Hand and Foot Musculature of Anura: Structure, Homology, Terminology, and Synapomorphies for Major Clades
HAND AND FOOT MUSCULATURE OF ANURA: STRUCTURE, HOMOLOGY, TERMINOLOGY, AND SYNAPOMORPHIES FOR MAJOR CLADES BORIS L. BLOTTO, MARTÍN O. PEREYRA, TARAN GRANT, AND JULIÁN FAIVOVICH BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY HAND AND FOOT MUSCULATURE OF ANURA: STRUCTURE, HOMOLOGY, TERMINOLOGY, AND SYNAPOMORPHIES FOR MAJOR CLADES BORIS L. BLOTTO Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil; División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires, Argentina MARTÍN O. PEREYRA División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires, Argentina; Laboratorio de Genética Evolutiva “Claudio J. Bidau,” Instituto de Biología Subtropical–CONICET, Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina TARAN GRANT Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil; Coleção de Anfíbios, Museu de Zoologia, Universidade de São Paulo, São Paulo, Brazil; Research Associate, Herpetology, Division of Vertebrate Zoology, American Museum of Natural History JULIÁN FAIVOVICH División Herpetología, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”–CONICET, Buenos Aires, Argentina; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Research Associate, Herpetology, Division of Vertebrate Zoology, American -
1704632114.Full.Pdf
Phylogenomics reveals rapid, simultaneous PNAS PLUS diversification of three major clades of Gondwanan frogs at the Cretaceous–Paleogene boundary Yan-Jie Fenga, David C. Blackburnb, Dan Lianga, David M. Hillisc, David B. Waked,1, David C. Cannatellac,1, and Peng Zhanga,1 aState Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China; bDepartment of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611; cDepartment of Integrative Biology and Biodiversity Collections, University of Texas, Austin, TX 78712; and dMuseum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720 Contributed by David B. Wake, June 2, 2017 (sent for review March 22, 2017; reviewed by S. Blair Hedges and Jonathan B. Losos) Frogs (Anura) are one of the most diverse groups of vertebrates The poor resolution for many nodes in anuran phylogeny is and comprise nearly 90% of living amphibian species. Their world- likely a result of the small number of molecular markers tra- wide distribution and diverse biology make them well-suited for ditionally used for these analyses. Previous large-scale studies assessing fundamental questions in evolution, ecology, and conser- used 6 genes (∼4,700 nt) (4), 5 genes (∼3,800 nt) (5), 12 genes vation. However, despite their scientific importance, the evolutionary (6) with ∼12,000 nt of GenBank data (but with ∼80% missing history and tempo of frog diversification remain poorly understood. data), and whole mitochondrial genomes (∼11,000 nt) (7). In By using a molecular dataset of unprecedented size, including 88-kb the larger datasets (e.g., ref. -
Frog Eat Frog: Exploring Variables Influencing Anurophagy
Frog eat frog: exploring variables influencing anurophagy G. John Measey1, Giovanni Vimercati1, F. Andre´ de Villiers1, Mohlamatsane M. Mokhatla1, Sarah J. Davies1, Shelley Edwards1 and Res Altwegg2,3 1 Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Stellenbosch, South Africa 2 Statistics in Ecology, Environment and Conservation, Department of Statistical Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa 3 African Climate and Development Initiative, University of Cape Town, South Africa ABSTRACT Background. Frogs are generalist predators of a wide range of typically small prey items. But descriptions of dietary items regularly include other anurans, such that frogs are considered to be among the most important of anuran predators. However, the only existing hypothesis for the inclusion of anurans in the diet of post-metamorphic frogs postulates that it happens more often in bigger frogs. Moreover, this hypothesis has yet to be tested. Methods. We reviewed the literature on frog diet in order to test the size hypothesis and determine whether there are other putative explanations for anurans in the diet of post-metamorphic frogs. In addition to size, we recorded the habitat, the number of other sympatric anuran species, and whether or not the population was invasive. We controlled for taxonomic bias by including the superfamily in our analysis. Results. Around one fifth of the 355 records included anurans as dietary items of populations studied, suggesting that frogs eating anurans is not unusual. Our data showed a clear taxonomic bias with ranids and pipids having a higher proportion of anuran prey than other superfamilies. Accounting for this taxonomic bias, we found that size in addition to being invasive, local anuran diversity, and habitat produced a model that best fitted our data. -
DNA Barcoding for Identification of Anuran Species in the Central Region of South America
DNA barcoding for identification of anuran species in the central region of South America Ricardo Koroiva1, Luís Reginaldo Ribeiro Rodrigues2 and Diego José Santana3 1 Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil 2 Instituto de Ciências da Educacão,¸ Universidade Federal do Oeste do Pará, Santarém, Pará, Brazil 3 Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil ABSTRACT The use of COI barcodes for specimen identification and species discovery has been a useful molecular approach for the study of Anura. Here, we establish a comprehensive amphibian barcode reference database in a central area of South America, in particular for specimens collected in Mato Grosso do Sul state (Brazil), and to evaluate the applicability of the COI gene for species-level identification. Both distance- and tree- based methods were applied for assessing species boundaries and the accuracy of specimen identification was evaluated. A total of 204 mitochondrial COI barcode sequences were evaluated from 22 genera and 59 species (19 newly barcoded species). Our results indicate that morphological and molecular identifications converge for most species, however, some species may present cryptic species due to high intraspecific variation, and there is a high efficiency of specimen identification. Thus, we show that COI sequencing can be used to identify anuran species present in this region. Subjects Conservation Biology, Genetics, Molecular Biology, Zoology Keywords Anura, Frog, Mato Grosso do Sul, DNA Barcode, COI, Brazil Submitted 26 June 2020 INTRODUCTION Accepted 24 September 2020 Published 21 October 2020 Anurans (Amphibia: Anura), commonly known as frogs and toads, are an extremely Corresponding author endangered group, with 30% of their species threatened (Vitt & Caldwell, 2014). -
July to December 2019 (Pdf)
2019 Journal Publications July Adelizzi, R. Portmann, J. van Meter, R. (2019). Effect of Individual and Combined Treatments of Pesticide, Fertilizer, and Salt on Growth and Corticosterone Levels of Larval Southern Leopard Frogs (Lithobates sphenocephala). Archives of Environmental Contamination and Toxicology, 77(1), pp.29-39. https://www.ncbi.nlm.nih.gov/pubmed/31020372 Albecker, M. A. McCoy, M. W. (2019). Local adaptation for enhanced salt tolerance reduces non‐ adaptive plasticity caused by osmotic stress. Evolution, Early View. https://onlinelibrary.wiley.com/doi/abs/10.1111/evo.13798 Alvarez, M. D. V. Fernandez, C. Cove, M. V. (2019). Assessing the role of habitat and species interactions in the population decline and detection bias of Neotropical leaf litter frogs in and around La Selva Biological Station, Costa Rica. Neotropical Biology and Conservation 14(2), pp.143– 156, e37526. https://neotropical.pensoft.net/article/37526/list/11/ Amat, F. Rivera, X. Romano, A. Sotgiu, G. (2019). Sexual dimorphism in the endemic Sardinian cave salamander (Atylodes genei). Folia Zoologica, 68(2), p.61-65. https://bioone.org/journals/Folia-Zoologica/volume-68/issue-2/fozo.047.2019/Sexual-dimorphism- in-the-endemic-Sardinian-cave-salamander-Atylodes-genei/10.25225/fozo.047.2019.short Amézquita, A, Suárez, G. Palacios-Rodríguez, P. Beltrán, I. Rodríguez, C. Barrientos, L. S. Daza, J. M. Mazariegos, L. (2019). A new species of Pristimantis (Anura: Craugastoridae) from the cloud forests of Colombian western Andes. Zootaxa, 4648(3). https://www.biotaxa.org/Zootaxa/article/view/zootaxa.4648.3.8 Arrivillaga, C. Oakley, J. Ebiner, S. (2019). Predation of Scinax ruber (Anura: Hylidae) tadpoles by a fishing spider of the genus Thaumisia (Araneae: Pisauridae) in south-east Peru.