<<

Chapter 25 Zeta and Related Functions T. M. Apostol1

Notation 602 25.12 ...... 610 25.1 Special Notation ...... 602 25.13 Periodic Zeta ...... 612 25.14 Lerch’s Transcendent ...... 612 602 25.15 Dirichlet L-functions ...... 612 25.2 Definition and Expansions ...... 602 25.3 Graphics ...... 603 Applications 613 25.4 Reflection Formulas ...... 603 25.16 Mathematical Applications ...... 613 25.5 Representations ...... 604 25.17 Physical Applications ...... 614 25.6 Integer Arguments ...... 605 25.7 ...... 606 Computation 614 25.8 Sums ...... 606 25.18 Methods of Computation ...... 614 25.9 Asymptotic Approximations ...... 606 25.19 Tables ...... 614 25.10 Zeros ...... 606 25.20 Approximations ...... 615 25.21 Software ...... 615 Related Functions 607 25.11 ...... 607 References 615

1California Institute of Technology, Pasadena, California. Copyright c 2009 National Institute of Standards and Technology. All rights reserved.

601 602 Zeta and Related Functions

∞ Notation 1 X (−1)n 25.2.4 ζ(s) = + γ (s − 1)n, 0, s − 1 n! n n=0 25.1 Special Notation where

m ! (For other notation see pp. xiv and 873.) X (ln k)n (ln m)n+1 25.2.5 γn = lim − . m→∞ k n + 1 k, m, n nonnegative integers. k=1 p prime number. ∞ X x real variable. 25.2.6 ζ0(s) = − (ln n)n−s, 1. a real or complex parameter. n=2 s = σ + it complex variable. 25.2.7 ∞ z = x + iy complex variable. (k) k X k −s γ Euler’s constant (§5.2(ii)). ζ (s) = (−1) (ln n) n , 1, k = 1, 2, 3,... . ψ(x) Γ0(x)/ Γ(x) except in n=2 §25.16. See §5.2(i). For further expansions of functions similar to (25.2.1) () see §27.4. This includes, for Bn,Bn(x) and polynomial (§24.2(i)). example, 1/ ζ(s). Ben(x) periodic Bernoulli function Bn(x − bxc). m | n m divides n. 25.2(iii) Representations by the primes on function symbols: derivatives with Euler–Maclaurin Formula respect to argument. N X 1 N 1−s Z ∞ x − bxc The main function treated in this chapter is the Rie- ζ(s) = + − s dx, 25.2.8 ks s − 1 xs+1 mann zeta function ζ(s). This notation was introduced k=1 N in Riemann(1859). 0, N = 1, 2, 3,... .

The main related functions are the Hurwitz zeta N X 1 N 1−s 1 function ζ(s, a), the dilogarithm Li2(z), the polylog- ζ(s) = + − N −s ks s − 1 2 arithm Lis(z) (also known as Jonqui`ere’s function k=1 φ(z, s)), Lerch’s transcendent Φ(z, s, a), and the Dirich- n   X s + 2k − 2 B2k let L-functions L(s, χ). + N 1−s−2k 25.2.9 2k − 1 2k k=1   Z ∞ s + 2n Be2n+1(x) − s+2n+1 dx, 2n + 1 N x Riemann Zeta Function −2n; n, N = 1, 2, 3,... . n   1 1 X s + 2k − 2 B2k 25.2 Definition and Expansions ζ(s) = + + s − 1 2 2k − 1 2k k=1 25.2(i) Definition 25.2.10   Z ∞ s + 2n Be2n+1(x) − s+2n+1 dx, When 1, 2n + 1 1 x ∞ X 1 −2n, n = 1, 2, 3,... . 25.2.1 ζ(s) = . ns n=1 For B2k see §24.2(i), and for Ben(x) see §24.2(iii). Elsewhere ζ(s) is defined by . It is a whose only singularity in C is 25.2(iv) Infinite Products a simple pole at s = 1, with residue 1. Y 25.2.11 ζ(s) = (1 − p−s)−1, 1, 25.2(ii) Other Infinite Series p product over all primes p. ∞ 1 X 1 s −s−(γs/2)   25.2.2 (2π) e Y s s/ρ ζ(s) = −s s , 1. 25.2.12 1 − 2 (2n + 1) ζ(s) = 1  1 − e , n=0 2(s − 1) Γ s + 1 ρ 2 ρ ∞ n−1 1 X (−1) product over zeros ρ of ζ with <ρ > 0 (see §25.10(i)); γ 25.2.3 ζ(s) = , 0. 1 − 21−s ns n=1 is Euler’s constant (§5.2(ii)). 25.3 Graphics 603

25.3 Graphics

1  Figure 25.3.4: Z(t), 0 ≤ t ≤ 50. Z(t) and ζ 2 + it have the same zeros. See §25.10(i).

Figure 25.3.1: Riemann zeta function ζ(x) and its derivative ζ0(x), −20 ≤ x ≤ 10.

Figure 25.3.5: Z(t), 1000 ≤ t ≤ 1050.

Figure 25.3.2: Riemann zeta function ζ(x) and its derivative ζ0(x), −12 ≤ x ≤ −2.

Figure 25.3.6: Z(t), 10000 ≤ t ≤ 10050.

25.4 Reflection Formulas

For s 6= 0, 1, −s 1  25.4.1 ζ(1 − s) = 2(2π) cos 2 πs Γ(s) ζ(s), s−1 1  25.4.2 ζ(s) = 2(2π) sin 2 πs Γ(1 − s) ζ(1 − s). Figure 25.3.3: Modulus of the Riemann zeta function Equivalently, | ζ(x + iy)|, −4 ≤ x ≤ 4, −10 ≤ y ≤ 40. 25.4.3 ξ(s) = ξ(1 − s), 604 Zeta and Related Functions where ξ(s) is Riemann’s ξ-function, defined by: 1 Z ∞ xs−1 1 1  −s/2 25.5.1 25.4.4 ξ(s) = s(s − 1) Γ s π ζ(s). ζ(s) = x dx, 1. 2 2 Γ(s) 0 e − 1 For s 6= 0, 1 and k = 1, 2, 3,... , 1 Z ∞ exxs 25.5.2 ζ(s) = dx, 1. 25.4.5 x 2 Γ(s + 1) 0 (e − 1) (−1)k ζ(k)(1 − s) Z ∞ s−1 k m    1 x 2 X X k m k−m 1  25.5.3 ζ(s) = dx, 0. = <(c ) cos πs (1 − 21−s) Γ(s) ex + 1 (2π)s m r 2 0 m=0 r=0 1 Z ∞ exxs k−m 1  (r) (m−r) ζ(s) = dx, + =(c ) sin πs Γ (s) ζ (s), 25.5.4 1−s x 2 2 (1 − 2 ) Γ(s + 1) 0 (e + 1) where 0. 1 ∞ 1 25.4.6 c = − ln(2π) − 2 πi. Z x − bxc − 25.5.5 2 ζ(s) = −s s+1 dx, −1 < −1.

n Z ∞ n ! s−1 1 1 X B2m Γ(s + 2m − 1) 1 1 1 1 X B2m x ζ(s) = + + + − + − x2m−1 dx, 25.5.7 2 s − 1 (2m)! Γ(s) Γ(s) ex − 1 x 2 (2m)! ex m=1 0 m=1 −(2n + 1), n = 1, 2, 3,... .

For θ3 see §20.2(i). For similar representations involving 1 Z ∞ xs−1 25.5.8 other theta functions see Erd´elyi et al. (1954a, p. 339). ζ(s) = −s dx, 1. 2(1 − 2 ) Γ(s) 0 sinh x In (25.5.15)–(25.5.19), 0 < 1. Γ(s + 1) 0 (sinh x) (25.5.16) is also valid for 0 <

25.5(iii) Contour Integrals 25.6.5 ∞ ∞ 1 X X 1 25.5.20 ζ(k + 1) = ... , (0+) s−1 k! n1 ··· nk(n1 + ··· + nk) Γ(1 − s) Z z n1=1 nk=1 ζ(s) = dz, s 6= 1, 2,... , −z k = 1, 2, 3,... . 2πi −∞ e − 1 where the integration contour is a loop around the neg- 25.6.6 ative real axis; it starts at −∞, encircles the origin once (−1)k+1(2π)2k+1 Z 1 in the positive direction without enclosing any of the ζ(2k + 1) = B (t) cot(πt) dt, 2(2k + 1)! 2k+1 points z = ±2πi, ±4πi, . . . , and returns to −∞. Equiv- 0 alently, k = 1, 2, 3,... . 25.5.21 Z 1 Z 1 1 Γ(1 − s) Z (0+) zs−1 25.6.7 ζ(2) = dx dy. 1 − xy ζ(s) = 1−s −z dz, s 6= 1, 2,... . 0 0 2πi(1 − 2 ) −∞ e + 1 ∞ X 1 The contour here is any loop that encircles the origin 25.6.8 ζ(2) = 3 . 22k in the positive direction not enclosing any of the points k=1 k k ±πi, ±3πi,.... ∞ 5 X (−1)k−1 25.6.9 ζ(3) = . 25.6 Integer Arguments 2 32k k=1 k k ∞ 25.6(i) Function Values 36 X 1 25.6.10 ζ(4) = . 17 42k 25.6.1 k=1 k k 1 π2 π4 π6 ζ(0) = − , ζ(2) = , ζ(4) = , ζ(6) = . 2 6 90 945 25.6(ii) Derivative Values (2π)2n 25.6.2 ζ(2n) = |B2n| , n = 1, 2, 3,... . 2(2n)! 25.6.11 0 1 ζ (0) = − 2 ln(2π). Bn+1 25.6.3 ζ(−n) = − , n = 1, 2, 3,... . 25.6.12 00 1 2 1 2 1 2 n + 1 ζ (0) = − 2 (ln(2π)) + 2 γ − 24 π + γ1, 25.6.4 ζ(−2n) = 0, n = 1, 2, 3,... . where γ1 is given by (25.2.5).

With c defined by (25.4.6) and n = 1, 2, 3,..., k m 2(−1)n X X  k m 25.6.13 (−1)k ζ(k)(−2n) = =(ck−m)Γ(r)(2n + 1) ζ(m−r)(2n + 1), (2π)2n+1 m r m=0 r=0 k m 2(−1)n X X  k m 25.6.14 (−1)k ζ(k)(1 − 2n) = <(ck−m)Γ(r)(2n) ζ(m−r)(2n), (2π)2n m r m=0 r=0 (−1)n+1(2π)2n 25.6.15 ζ0(2n) = (2n ζ0(1 − 2n) − (ψ(2n) − ln(2π)) B ) . 2(2n)! 2n

25.6(iii) Recursion Formulas 25.6.18 n 1  1 2 X n + 4 ζ(4n) + 2 (ζ(2n)) = ζ(2k) ζ(4n − 2k), k=1 n−1 25.6.16 1  X n ≥ 1. n + 2 ζ(2n) = ζ(2k) ζ(2n − 2k), n ≥ 2. k=1 3  m + n + 2 ζ(2m + 2n + 2) m n ! 25.6.17 25.6.19 X X n = + ζ(2k) ζ(2m + 2n + 2 − 2k), 3  X k=1 k=1 n + 4 ζ(4n + 2) = ζ(2k) ζ(4n + 2 − 2k), n ≥ 1. k=1 m ≥ 0, n ≥ 0, m + n ≥ 1. 606 Zeta and Related Functions

25.6.20 25.9 Asymptotic Approximations n−1 1 2n X 2n−2k 2 (2 − 1) ζ(2n) = (2 − 1) ζ(2n − 2k) ζ(2k), If x ≥ 1, y ≥ 1, 2πxy = t, and 0 ≤ σ ≤ 1, then as k=1 t → ∞ with σ fixed, n ≥ 2. X 1 X 1 For related results see Basu and Apostol(2000). ζ(σ + it) = + χ(s) ns n1−s 25.9.1 1≤n≤x 1≤n≤y  1  −σ σ−1 2 −σ 25.7 Integrals + O x + O y t , where s = σ + it and For definite integrals of the Riemann zeta function see s− 1 1 1 1 25.9.2 2   Prudnikov et al. (1986b, §2.4), Prudnikov et al. (1992a, χ(s) = π Γ 2 − 2 s / Γ 2 s . §3.2), and Prudnikov et al. (1992b, §3.2). 1 p If σ = 2 , x = y = t/(2π), and m = bxc, then (25.9.1) becomes

m 25.8 Sums X 1 ζ 1 + it = 2 1 +it n 2 ∞ 25.9.3 n=1 X m 25.8.1 (ζ(k) − 1) = 1. 1  X 1  −1/4 + χ 2 + it 1 + O t . k=2 2 −it n=1 n ∞ X Γ(s + k) (ζ(s + k) − 1) For other asymptotic approximations see Berry and 25.8.2 (k + 1)! k=0 Keating(1992), Paris and Cang(1997); see also Paris = Γ(s − 1), s 6= 1, 0, −1, −2,... . and Kaminski(2001, pp. 380–389).

∞ X Γ(s + k) ζ(s + k) 25.8.3 = (1 − 2−s) ζ(s), s 6= 1. k! Γ(s)2s+k 25.10 Zeros k=0 25.8.4 25.10(i) Distribution ∞ n−1  X (−1)k Y   (ζ(nk) − 1) = ln Γ 2 − e(2j+1)πi/n , The product representation (25.2.11) implies ζ(s) 6= 0 k   k=1 j=0 for 1. Also, ζ(s) 6= 0 for