<<

Kyushu J. Math. 65 (2011), 15–24 doi:10.2206/kyushujm.65.15

POLYLOGARITHMS AND POLY-BERNOULLI

Abdelmejid BAYAD and Yoshinori HAMAHATA (Received 18 February 2010)

Abstract. In this paper we investigate special generalized that generalize classical Bernoulli polynomials and numbers. We call them poly-Bernoulli polynomials. We prove a collection of extremely important and fundamental identities satisfied by our poly-Bernoulli polynomials and numbers. These properties are of arithmetical nature.

1. Introduction and main results

The classical polylogarithmic functions Lis (x) are ∞ xk Li (x) = . (1.1) s ks k=1 If s is a negative integer, say s =−r, then the polylogarithmic converges for |x| < 1 and equals r  r  r−j j=0 j x Li−r (x) = , (1.2) (1 − x)r+1  r   r  where the j are the Eulerian numbers. The j is the number of of {1,...,r} with j ascents. One has

+ r j 1 r + 1 = (−1) (j − + 1)r . (1.3) j =0

We record Li−r (x) for some r: x x Li0(x) = , Li−1(x) = , 1 − x (1 − x)2 x2 + x x3 + 4x2 + x Li−2(x) = , Li−3(x) = , (1 − x)3 (1 − x)4 x4 + 11x3 + 11x2 + x x5 + 26x4 + 66x3 + 26x2 + x Li− (x) = , Li− (x) = . 4 (1 − x)5 5 (1 − x)6

2000 Subject Classification: Primary 11B73, 11A07. Keywords: ; zeta functions; poly-Bernoulli numbers; poly-Bernoulli polynomials.

c 2011 Faculty of Mathematics, Kyushu University 16 A. Bayad and Y. Hamahata

From (1.2) we immediately deduce that, when k is a negative integer, Lik(x) is a whose denominator is (1 − x)|k|+1. Precisely, for an integer k ∈ Z, the formal power Lik(x) is the kth if k ≥ 1, and a rational function if k ≤ 0. When k = 1,

Li1(x) =−log(1 − x). (1.4)

Using Lik(x), one can introduce (in the natural way) poly-Bernoulli numbers and polynomials. (k) For every integer k, we define a of polynomials (Bn (x))n∈N, which we call poly-Bernoulli polynomials,by −t n Lik(1 − e ) t ext = B(k)(x) . (1.5) 1 − e−t n n! n≥0

(k) xt −xt We remark that Bn (x) are defined in [3] by replacing e by e in the left-hand side of (1.5). (k) (k) The numbers Bn := Bn (0) are the poly-Bernoulli numbers. These numbers are introduced by Kaneko [6], and then investigated in [1, 2, 4, 5, 7–9]. On the other hand, from (1.4) and (1.5), it is easy to see that, for any n ≥ 0, − n (1) − = ( 1) Bn ( x) Bn(x) (1.6) where Bn(x) are the classical Bernoulli polynomials given by their ∞ text tn = Bn(x) . (1.7) et − 1 n! n=0 In this paper, we establish a series of properties, satisfied by our poly-Bernoulli polynomials and numbers, which are important and fundamental. These properties are of arithmetical nature.

THEOREM 1.1. (Explicit formula) For k ∈ Z,n≥ 0, we have n 1 m m B(k)(x) = (−1)j (x − j)n. (1.8) n (m + 1)k j m=0 j=0

THEOREM 1.2. (Recurrence formula 1) For all k ≥ 1, n ≥ 0, we have n m − l (k) m n (k−1) ( 1) m B (x) = (−1) B − Bl(x). (1.9) n m n m n − l + 1 l m=0 l=0 THEOREM 1.3. (Recurrence formula 2) For k ∈ Z,n≥ 2, we have − 1 n 1 n n B(k)(x) = B(k−1)(x) + xB(k)(x) − − x B(k)(x) n n + 1 n 0 m − 1 m m m=1 and (k) = (k) = 1 (k−1) + (k) B0 (x) 1,B1 (x) 2 (B1 (x) xB0 (x)). THEOREM 1.4. () For k ∈ Z,n≥ 0, we have d B(k) (x) = (n + 1)B(k)(x). (1.10) dx n+1 n Polylogarithms and poly-Bernoulli polynomials 17

THEOREM 1.5. (Addition formula) For k ∈ Z,n≥ 0, we have n n − B(k)(x + y) = B(k)(x)yn m. (1.11) n m m m=0 For m, n ≥ 0, set m m C(−m)(x, y) = B(−k)(x)ym−k. n k n k=0 Then we have the following result. (−m) THEOREM 1.6. (Symmetric formula) For m, n and Cn (x, y) as above, we have ∞ ∞ ∞ ∞ tn um tn um C(−m)(x, y) = C(−n)(y, x) n n! m! m n! m! n=0 m=0 n=0 m=0 ext+yuet+u = . et + eu − et+u As a corollary, we have the following result.

THEOREM 1.7. (Duality) We have (−m) = (−n) Cn (x, y) Cm (y, x). (1.12) This is a dual relation for addition formula. In particular, for x = y = 0, we obtain (−m) = (−n) Bn Bm , (1.13) the duality property of poly-Bernoulli numbers.

THEOREM 1.8. (Inversion formula) For m, n ≥ 0, we have m − m − − B( m)(x) = C( k)(x, y)(−y)m k. (1.14) n k n k=0

THEOREM 1.9. (Closed formula) For m, n ≥ 0, we have ∞ n m − − n a − m b C( m)(x, y) = (j!)2 (x + 1)n a (y + 1)m b , (1.15) n a j b j j=0 a=0 b=0 where n (−1)m m m = (−1)l ln m m! l l=0 are the so-called Stirling numbers of the second kind. For k ∈ Z we set ∞ ( − e−t ) := 1 Lik 1 −xt s−1 Zk(s, x) −t e t dt, (s) 0 1 − e the Laplace–Mellin . It is defined for Re(s) > 0andx>0ifk ≥ 1, and for Re(s) > 0 and x>|k|+1ifk ≤ 0. 18 A. Bayad and Y. Hamahata

THEOREM 1.10. (Interpolation formula) The function s → Zk(s, x) has analytic continua- tion to an entire function on the whole complex s-plane and − = − n (k) − Zk( n, x) ( 1) Bn ( x) (1.16) holds for n ≥ 0 and x>0. Besides, this zeta function can be rewritten as follows. For k ∈ Z, we have m 1 j m 1 Zk(s, x) = (−1) . (1.17) (m + 1)k j (x + j)s m≥0 j=0 In the case k ≤ 0, we have a more precise expression for this zeta function. For k ≤ 0, |k| | | |k|−j |k|−j − m k m ( 1) Zk(s, x) = . (1.18) j (x + m −|k|−1)s j=0 m=0 It should be noted that the first result of the above theorem has been independently obtained by Coppo and Candelpergher [3] and the present authors. Remark 1.11. We can make the following two remarks. (1) In particular, for k = 1wehave ∞ − −t 1 Lik(1 e ) −xt s−1 Zk(s, x) = e t dt (s) 1 − e−t 0 1 ∞ t = e−xtts−1 dt (s) 1 − e−t 0 (s + ) ∞ ts = 1 1 −xt −t e dt (s) (s + 1) 0 1 − e = sζ(s + 1,x), (1.19) where ζ(s, x)is the . Then, for k = 1, s =−n, we get from (1.6), (1.10) and (1.19) that − = − n (1) − = Z1( n, x) ( 1) Bn ( x) Bn(x) and Z1(−n, x) =−nζ(1 − n, x). Hence, we derive the famous classical interpolation relation:

Bn(x) =−nζ(1 − n, x).

(2) For k ≤ 0, from the formula (1.18) we derive another new explicit formula:

| | | |− k |k| k j |k|−j B(k)(x) = (−1)m(x + m −|k|−1)n. (1.20) n j m j=0 m=0

2. Proofs of main results

In this section we will give proofs of the theorems mentioned in the previous section. Polylogarithms and poly-Bernoulli polynomials 19

Proof of Theorem 1.1. Since ∞ ( − e−t ) ( − e−t )m−1 Lik 1 = 1 1 − e−t mk m=1 ∞ ( − e−t )m = 1 (m + 1)k m=0 ∞ m 1 m − = (−1)j e jt, (m + 1)k j m=0 j=0 we have −t ∞ m Lik(1 − e ) 1 m − ext = (−1)j e(x j)t 1 − e−t (m + 1)k j m=0 j=0 ∞ ∞ 1 m m tn = (−1)j (x − j)n (m + 1)k j n! m=0 j=0 n=0 ∞ n 1 m m tn = (−1)j (x − j)n . (m + 1)k j n! n=0 m=0 j=0 This completes the proof. 2 Proof of Theorem 1.2. Since − − ( − e t ) et t − ( − e s) Lik 1 = −s Lik 1 1 −t t e −s ds, 1 − e e − 1 0 1 − e we have ∞ tn B(k)(x) n n! n=0 ∞ ∞ ∞ tn−1 t (−s)n sn = B (x) B(k−1) ds n n! n! n n! n=0 0 n=0 n=0 ∞ n−1 t ∞ n n t − n − s = B (x) (−1)n m B(k 1) ds n n! m m n! n=0 0 n=0 m=0 ∞ n−1 ∞ n n+1 t n−m n (k−1) t = Bn(x) (−1) B n! m m (n + 1)! n=0 n=0 m=0 ∞ n l n l−m l (k−1) t = Bn−l (x) (−1) B m m (l + 1)!(n − l)! n=0 l=0 m=0 ∞ n l n Bn−l (x) n − l − t = (−1)l m B(k 1) l + l m m n! n= l= 1 m= 0 0 0 n l n n − m by = l m m n − l 20 A. Bayad and Y. Hamahata ∞ n n − l−m − n (k−1) n ( ) n m t = B Bn−l (x) m m l + 1 n − l n! n=0 m=0 l=m  put l = n − l ∞ n n−m − n−l−m − n (k−1) n ( 1) n m t = B Bl (x) m m n − l + 1 l n! n=0 m=0 l=0  put m = n − m  ∞ n m m+l  n (k−1) n (−1) m t = B  Bl (x) . n−m m n − l + 1 l n! n=0 m=0 l=0 The theorem therefore follows. 2 −t Proof of Theorem 1.3. Put z = 1 − e .Thent = Li1(z). From (1.5), we have ∞ n Li1(z) Li (z)exLi1(z) = z B(k)(x) . (2.1) k n n! n=0 Note that d (1/z)Lik−1(z) (k > 1), Lik(z) = dz 1/(1 − z) (k = 1). Differentiating (2.1) with respect to z,wehave

1 xLi (z) x xLi (z) Lik− (z)e 1 + Lik(z) e 1 z 1 1 − z ∞ ∞ Li (z)n z Li (z)n = B(k)(x) 1 + B(k) (x) 1 . n n! 1 − z n+1 n! n=0 n=0 Using z/(1 − z) = et − 1, we obtain ∞ n ∞ n ∞ n ∞ n − t t t t B(k 1)(x) + x(et − 1) B(k)(x) = B(k)(x) + (et − 1) B(k) (x) . n n! n n! n n! n+1 n! n=0 n=0 n=0 n=0 This yields ∞ ∞ ∞ tn tn n n tn B(k−1)(x) − B(k)(x) + xB(k)(x) n n! n n! m m n! n=0 n=0 n=0 m=0 ∞ ∞ ∞ tn tn n n = B(k)(x) − B(k) (x) + B(k) (x). n n! n+1 n! m m+1 n=0 n=0 n=0 m=0 Comparing both sides of this identity gives n n n n B(k−1)(x) − xB(k)(x) + xB(k)(x) = B(k)(x) − B(k) + B(k) (x). n n m m n n+1 m m+1 m=0 m=0 From this, we obtain n−1 n−1 − n n (n + 1)B(k)(x) = B(k 1)(x) + x B(k)(x) − B(k)(x), n n m m m − 1 m m=0 m=1 which leads to the result. 2 Polylogarithms and poly-Bernoulli polynomials 21

Proof of Theorem 1.4. Differentiation of both sides of (1.5) with respect to x gives ∞ tLi (1 − e−t ) d tn k ext = B(k)(x) . 1 − e−t dx n n! n=1 From this, we have −t ∞ n Lik(1 − e ) d t ext = (n + 1) B(k)(x) . 1 − e−t dx n n! n=0 This completes the proof. 2 Proof of Theorem 1.5. From the definition in (1.5), we have ∞ tn Li (1 − e−t ) B(k)(x + y) = k e(x+y)t n n! 1 − e−t n=0 Li (1 − e−t ) = k exteyt 1 − e−t ∞ ∞ tm yltl = B(k)(x) m m! l! m=0 l=0 ∞ n n tn = B(k)(x)yn−m . m m n! n=0 m=0 The proof follows from this. 2 (−m) Proof of Theorem 1.6. Using the definition of Cn (x, y), the left-hand side can be rewritten as ∞ ∞ m n m − − t u LHS = B( k)(x)ym k n n! k!(m − k)! n=0 m=0 k=0 put l = m − k ∞ ∞ ∞ tn uk ul = B(−k)(x)yl n n! k! l! n=0 k=0 l=0 ∞ ∞ tn uk = eyu B(−k)(x) n n! k! n=0 k=0 (−k) by definition of Bn (x) ∞ ∞ tn uk = eyu ext B(−k) n n! k! k=0 n=0 ∞ ∞ tn uk = ext+yu B(−k) . n n! k! k=0 n=0 Here, using the expression ∞ ∞ tn uk et+u B(−k) = n n! k! et + eu − et+u k=0 n=0 in Kaneko [6], the proof is completed. 2 22 A. Bayad and Y. Hamahata

(−m) Proof of Theorem 1.8. To prove the theorem, we calculate the generating function Bn . ∞ ∞ m m tn um C(−k)(x, y)(−y)m−k k n n! m! n=0 m=0 k=0 put j = m − k ∞ ∞ ∞ (−yu)j tn uk = C(−k)(x, y) n j! n! k! n=0 j=0 k=0 ∞ ∞ tn uk = e−yu C(−k)(x, y) n n! k! n=0 k=0 by Theorem 1.6 ext+t+u = et + eu − et+u ∞ ∞ tn um = B(−m)(x) . n n! m! n=0 m=0 This completes the proof. 2 Proof of Theorem 1.9. Using Theorem 1.6, we have ∞ ∞ tn um C(−m)(x, y) n n! m! n=0 m=0 ext+yu+t+u = et + eu − et+u e(x+1)t+(y+1)u = 1 − (et − 1)(eu − 1) ∞ + + + = e(x 1)t (y 1)u (et − 1)j (eu − 1)j j=0 ∞ + + = e(x 1)t(et − 1)j e(y 1)u(eu − 1)j j=0 ∞ n un (eu − 1)k by = k n! k n=0 ∞ ∞ ∞ ∞ ∞ (x + 1)ntn m tm (y + 1)nun m um = j! j! n! j m! n! j m! j=0 n=0 m=0 n=0 m=0 ∞ ∞ l l ∞ p p − l m t − p r u = j! (x + 1)l m j! (y + 1)p r m j l! r j p! j=0 l=0 m=0 p=0 r=0 ∞ ∞ l p ∞ l p t u − l m − p r = (j!)2 (x + 1)l m (y + 1)p r , l! p! m j r j l=0 p=0 j=0 m=0 r=0 which proves the theorem. 2 Polylogarithms and poly-Bernoulli polynomials 23

Proof of Theorem 1.10. Since the proof of the first part of the theorem is the same as that of Theorem 2 of Coppo and Candelpergher [3], we omit it. We now prove (1.17) of Theorem 1.10. We have ∞ 1 ∞ (1 − e−t )m−1 Z (s, x) = e−xtts−1 dt. k (s) nk 0 n=1 For k ≥ 1, it is easy to see that, for all N ≥ 1andt>0, ∞ ∞ ( − e−t )n−1 ( − e−t )n−1 1 ≤ 1 k n=N n n=N n ∞ ( − e−t )n−1 ≤ 1 n n=1 t = , 1 − e−t which ensures the convergence of the integral absolutely. Then we can invert and . Hence ∞ ∞ 1 1 − − − − Z (s, x) = (1 − e t )n 1e xtts 1 dt k (s) nk n=1 0 ∞ ∞ n 1 1 n − + = (−1)j e (x j)tts dt (s) (n + 1)k j n=0 0 j=0 ∞ n ∞ 1 n 1 − + − = (−1)j e (x j)tts 1 dt. (n + 1)k j (s) n=0 j=0 0 We thus obtain (1.17). We prove the case k ≤ 0. Since |k| | | 1 k |k|−j Lik(x) = x , ( − x)|k|+1 j 1 j=0 we have |k| ∞ 1 |k| − | |− | |+ − − Z (s, x) = (1 − e t ) k j e( k 1)te xtts 1 dt k (s) j j=0 0 |k| |k|−j ∞ 1 |k| |k|−j − + −| |− − = (−1)m e (x m k 1)tts 1 dt. (s) j m j=0 m=0 0 This yields (1.18) for all k ≤ 0, Re(x) > |k|+1. 2

Acknowledgement. We would like to thank the referee for informing us of the existence of [3]. The second named author is supported by a Grant-in-Aid for Scientific Research (No. 20540026), from the Japan Society for the Promotion of Science. 24 A. Bayad and Y. Hamahata

REFERENCES [1] T. Arakawa and M. Kaneko. Multiple zeta values, poly-Bernoulli numbers, and related zeta functions. Nagoya Math. J. 153 (1999), 1–21. [2] T. Arakawa and M. Kaneko. On poly-Bernoulli numbers. Comment. Math. Univ. St. Pauli 48 (1999), 159–167. [3] M.-A. Coppo and B. Candelpergher. The Arakawa–Kaneko zeta function. Ramanujan J. 22 (2010), 153–162. [4] Y. Hamahata and H. Masubuchi. Recurrence formulae for multi-poly-Bernoulli numbers. Integers 7 (2007), A46. [5] Y. Hamahata and H. Masubuchi. Special multi-poly-Bernoulli numbers. J. Integer 10 (2007), 07.4.1. [6] M. Kaneko. Poly-Bernoulli numbers. J. Th´eor. Nombres 9 (1997), 221–228. [7] M. Kaneko. Multiple Zeta Values and Poly-Bernoulli Numbers. Tokyo Metropolitan University Seminar Report, 1997. [8] M.-S. Kim and T. Kim. An explicit formula on the generalized with order n. Indian J. Pure Appl. Math. 31 (2000), 1455–1461. [9] R. S´anchez-Peregrino. Closed formula for poly-Bernoulli numbers. Fibonacci Quart. 40 (2002), 362–364.

Abdelmejid Bayad Departement´ de Mathematiques´ Universited’´ Evry´ Val d’Essone Boulevard F. Mitterrand 91025 Evry´ Cedex France (E-mail: [email protected])

Yoshinori Hamahata Graduate School of Mathematical Sciences The University of Tokyo 3-8-1 Komaba, Meguro, Tokyo 153-8914 Japan (E-mail: [email protected])