Lecture 7: Transform Methods
Total Page:16
File Type:pdf, Size:1020Kb
TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Firma xy Systems Herrn Mustermann Beispielstraße 11 12345 Musterstadt Information and Communication Theory Prof. Dr. Giuseppe Caire Berlin, 1. Month 2014 Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Subject: Telefax +49 (0)30 314-28320 [email protected] Text…& Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 Prof. Dr. Giuseppe Caire [email protected] Lecture 7: Transform Methods www.mk.tu-berlin.de Copyright G. Caire (Sample Lectures) 180 Integration TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Firma xy Systems Herrn Mustermann Beispielstraße 11 12345 Musterstadt Information and Communication Theory Prof. Dr. Giuseppe Caire Berlin, 1. Month 2014 Einsteinufer 25 10587 Berlin Recall the definition of expectation: Telefon +49 (0)30 314-29668 Subject: Telefax +49 (0)30 314-28320 [email protected] • Text…& Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 Prof. Dr. Giuseppe Caire [email protected] E[X]= xpX(x),Xdiscrete with pmf pX x X and E[X]= xfX(x)dx, X continuous with pdf fX Z This can be compactly written as www.mk.tu-berlin.de • E[X]= xdFX(x) Z where dFX(x)=FX(x) lim FX(x h) or dFX(x)=fX(x)dx − h 0 − # Copyright G. Caire (Sample Lectures) 181 TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Firma xy Systems Herrn Mustermann Beispielstraße 11 12345 Musterstadt Information and Communication Theory Prof. Dr. Giuseppe Caire Berlin, 1. Month 2014 Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Subject: Telefax +49 (0)30 314-28320 [email protected] Text…& SekretariatThis HFT6 suggests a new notation that unifies the above two (and therefore Patrycja Chudzik • Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 Prof. Dr. Giuseppe Caire [email protected] applies to mixed-type RVs): E[X]= xdFX. R The notation extends to all cases we have seen so far. For example: • [g(X)] = g(x)dF , [g(X) Y ]= g(x)dF E X E X Y www.mk.tu-berlin.de | | Z Z Copyright G. Caire (Sample Lectures) 182 Lebesgue-Stieltjes Integral TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Firma xy Systems Herrn Mustermann Beispielstraße 11 12345 Musterstadt Information and Communication Theory Prof. Dr. Giuseppe Caire Berlin, 1. Month 2014 Einsteinufer 25 10587F Berlin (x) σ X yields a probability measure on the Borel -field on defined by R Telefon +49 (0)30 314-29668 Subject: Telefax +49 (0)30 314-28320 • [email protected] B Text…& Sekretariat HFT6 Patrycja Chudzik Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 Prof. Dr. Giuseppe Caire [email protected] µ((a, b]) = F (b) F (a),µ(B)= dF B X − X X 8 2 B ZB This is particularly simple to understand if you consider that B is a (countable) union of intervals. As already noticed, (R, ,µ) forms a B probability space itself. For any -measurable function g : R R, we write • B ! www.mk.tu-berlin.de E[g(X)] = g(x)dFX Z Let B , and define g(x)=h(x)I x B , then • 2 B { 2 } E[g(X)] = g(x)dFX = h(x)dFX Z ZB Copyright G. Caire (Sample Lectures) 183 Exchanging limits with expectation TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Firma xy Systems Herrn Mustermann Beispielstraße 11 12345 Musterstadt Information and Communication Theory Prof. Dr. Giuseppe Caire Berlin, 1. Month 2014 Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Subject: Telefax +49 (0)30 314-28320 [email protected] X Text…& Consider a sequence of RVs , defined on a common probability space Sekretariat HFT6 n Patrycja Chudzik • Telefon +49 (0)30 314-28459 { } Telefax +49 (0)30 314-28320 Prof. Dr. Giuseppe Caire [email protected] (⌦, , P), such that for all ! ⌦ we have limn Xn(!)=X(!), where X F 2 !1 is a well-defined RV defined on the same probability space. We study the continuity of the operation E[ ]: • · a) Monotone convergence. If 0 X X for all n, !, then n n+1 limn E[Xn]=E[X]. !1 b) Dominated convergence. If X Y for all n, ! and [Y ] < , then www.mk.tu-berlin.de n E | | 1 limn E[Xn]=E[X]. !1 c) Bounded convergence. If Xn c for all n, !, then limn E[Xn]=E[X]. | | !1 Since null events do not contribute to the expectation, the conditions of the • above theorems can be relaxed from “for all !” to almost everywhere (also indicated as almost surely). This means that they must hold up to sets of probability measure zero. Copyright G. Caire (Sample Lectures) 184 TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Firma xy Systems Herrn Mustermann Beispielstraße 11 12345 Musterstadt Information and Communication Theory Prof. Dr. Giuseppe Caire Berlin, 1. Month 2014 Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Subject: Telefax +49 (0)30 314-28320 [email protected] Example: sums of non-negative RVs. Consider Z such that Z 0 a.s. Text…& i i Sekretariat HFT6 Patrycja Chudzik n • Telefon +49 (0)30 314-28459 { } ≥ Telefax +49 (0)30 314-28320 Prof. Dr. Giuseppe Caire [email protected] X = Z X (almost surely), and let . Clearly, is a non-decreasing n i=1 i { n} sequence (a.s.). Define X = i1=1 Zi, by the monotone convergence theorem we have P P 1 E[X]= E[Zi] i=1 even though the sum may not converge.X n www.mk.tu-berlin.de Example: suppose that E[ i=1 Xi ] < . Then, E[ i1=1 Xi]= i1=1 E[Xi]. • | | 1 n Proof: Let Y = 1 Xi , and notice that, for any n and ! ⌦, Xi Y i=1 | | P P 2 Pi=1 and that, by assumption, E[Y ] < . Hence, by dominated convergence: P 1 P n n n 1 1 Xi = lim Xi =lim Xi =lim [Xi]= [Xi] E E n n E n E E "i=1 # " !1 i=1 # !1 "i=1 # !1 i=1 i=1 X X X X X Copyright G. Caire (Sample Lectures) 185 Liminf and limsup TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Firma xy Systems Herrn Mustermann Beispielstraße 11 12345 Musterstadt Information and Communication Theory Prof. Dr. Giuseppe Caire Berlin, 1. Month 2014 Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 A a =inf A a x x A Subject: TelefaxFor +49 (0)30 314-28320a set R, is the largest value such that , for all , [email protected] • ⇢ { } 2 Text…& Sekretariat HFT6 Patrycja Chudzik b =sup A b x x A and is the smallest value such that for all . Telefon +49 (0)30 314-28459 Telefax +49 (0)30 314-28320 Prof. Dr. Giuseppe Caire [email protected] { } ≥ 2 Let A denote a sequence of sets (not necessarily nested). We define • { n} 1 lim inf An =lim Am = Am n n 8 9 !1 !1 m n n=1 m n < \≥ = [ \≥ www.mk.tu-berlin.de and : ; 1 lim sup An =lim Am = Am n n 8 9 !1 !1 m n n=1 m n < [≥ = \ [≥ : ; Notice that the new sequence Bn = m n Am is nested, in fact, Bn • ≥ ✓ Bn+1 Bn+2 . Also, Bn = m n Am is nested, in fact, Bn Bn+1 ✓ ··· ≥ T ◆ ◆ Bn+2 . Hence, the limits are well-defined. ··· S Copyright G. Caire (Sample Lectures) 186 TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Firma xy Systems Herrn Mustermann Beispielstraße 11 12345 Musterstadt Information and Communication Theory Prof. Dr. Giuseppe Caire Berlin, 1. Month 2014 Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Subject: Telefax +49 (0)30 314-28320 [email protected] Text…& SekretariatFor HFT6 a sequence of numbers an , we define Patrycja Chudzik • Telefon +49 (0)30 314-28459 { } Telefax +49 (0)30 314-28320 Prof. Dr. Giuseppe Caire [email protected] lim inf an =liminf am : m n n n !1 !1 { ≥ } and lim sup an =limsup am : m n n n { ≥ } !1 !1 www.mk.tu-berlin.de a has a limit if and only if • { n} lim inf an =limsupan =liman n n n !1 !1 !1 Copyright G. Caire (Sample Lectures) 187 TU Berlin | Sekr. HFT 6 | Einsteinufer 25 | 10587 Berlin Faculty of Electrical Engineering and Computer Systems Department of Telecommunication Firma xy Systems Herrn Mustermann Beispielstraße 11 12345 Musterstadt Information and Communication Theory Prof. Dr. Giuseppe Caire Berlin, 1. Month 2014 Einsteinufer 25 10587 Berlin Telefon +49 (0)30 314-29668 Subject: Telefax +49 (0)30 314-28320 [email protected] Text…& SekretariatFatou’s HFT6 Lemma: Let Xn be a sequence of RVs such that Xn Y a.s., Patrycja Chudzik • Telefon +49 (0)30 314-28459 { } ≥ Telefax +49 (0)30 314-28320 Prof. Dr. Giuseppe Caire [email protected] where Y is a RV with well-defined expectation (i.e., such that E[ Y ] < ), | | 1 then E lim inf Xn lim inf E[Xn] n n In particular, if X 0 a.s.,h the!1 inequalityi !1 can be applied with Y =0.