A Sixteenth-Order Polylogarithm Ladder Henri Cohen, Leonard Lewin and Don Zagier

Total Page:16

File Type:pdf, Size:1020Kb

A Sixteenth-Order Polylogarithm Ladder Henri Cohen, Leonard Lewin and Don Zagier A Sixteenth-order Polylogarithm Ladder Henri Cohen, Leonard Lewin and Don Zagier CONTENTS Using the LLL algorithm and the second author’s ‘‘ladder’’ 1. Introduction method, we find (conjectural) Z-linear relations among poly- 2. Numerical Computation of Polylogarithms logarithms of order up to 16 evaluated at powers of a single 3. Ladders algebraic number. These relations are in accordance with 4. Climbing the Ladder theoretical predictions and are valid to an accuracy of 300 5. Numerical Results decimal digits, but we cannot prove them rigorously. Appendix: A (Conjectural) Hexadecalogarithm Relation References 1. INTRODUCTION Let m b e a p ositive integer The mth p olyloga rithm function is dened for complex z with jz j by n X z Li z m m n n For m Li z log z while for m the function Li z is a higher transcendental func m tion The functions Li z can b e extended ana m lytically to the whole complex plane if one makes a cut for example the real line from to innity corresp onding for m to the principal branch of the logarithm The function Li z satises the functional equa tion Li xy Li x Li y which implies that any linear combination with in tegral co ecients of Li values of elements of a number eld will again b e an Li value of an el ement of this number eld The corresp onding statement for higher p olylogarithms is not true However the Li satisfy trivial functional equa m P Li y for all inte tions relating Li x to p m m y x gers p and for small orders m they also sat isfy more complicated nontrivial functional equa tions The present record due to H Gangl gives nontrivial functional equations for m In addition these functional equations give relations among p olylogarithm values of elements of a given c A K Peters p er page 26 Experimental Mathematics, Vol. 1 (1992), No. 1 number eld It is conjectured that al l relations The pro of by induction is straightforward We ob among p olylogarithms of algebraic arguments can serve as an amusing remark that the p olyloga b e obtained by sp ecializing functional equations rithm of complex order s dened for jz j like but this is not known for any m Li but with m replaced by s can b e analytically m The main goal of this pap er is to provide an ex extended by the formula ample of ladder relations ie relations among n X z z s Li e s n s z p olylogarithms of p owers of a xed number for s n n the number dened as the unique ro ot outside the unit circle of the selfrecipro cal p olyno for all s N the limit of the righthand side as mial s m N is the expression o ccurring in the prop osition X X X X X X X X i z If x e C and we write x e the condi tion jz j is equivalent to Dilogarithm relations for this number were rst in p p vestigated by G Ray and are given in Chapter of exp exp Lewin The ladder relations we will nd go Since we may assume that j j this region con up to order conrming the general theory as p p e note that tains the annulus e describ ed in Zagier a and recalled in Section p p This is quite p ossibly the highest order o ccur e and e So to compute ring for any algebraic number a prop erty related Li x we use the p ower series if jxj is small say m to the wellknown conjecture of Lehmer that jxj the formula of prop osition if jxj is near has the smallest p ossible Mahler measure for an say jxj and the functional equation re algebraic integer that is not a ro ot of unity the lating Li x to Li x if jxj is large say jxj m m Mahler measure of an algebraic integer is equal to in fact as we will see we will never have to use the pro duct of the mo duli of the numbers con this jugates that are greater than hence here equal There is still one more p oint to treat We will to The computation of the ladder relations need p olylogarithm values to several hundred dec requires b oth highaccuracy computation of p oly imals hence we also need the values of k for logarithms we needed more than decimal dig integers k to such a high accuracy When k its and careful use of linear algebra and lattice or k and even k is given explicitly in terms reduction techniques for fairly large matrices with of Bernoulli numbers B We must also compute n nonexact entries so b oth of these issues will have k for k o dd k We could use the stan to b e addressed in the pap er dard EulerMcLaurin metho d for doing this but there is a simpler and much faster metho d coming the theory of mo dular forms more precisely 2. NUMERICAL COMPUTATION OF from integrating k times the Fourier expansion of the POLYLOGARITHMS by holomorphic Eisenstein series of weight k these To achieve our goal it is necessary to compute formulas were known to Ramanujan p olylogarithms to a reasonably high accuracy To For k odd k we have this we use the following very simple and pretty do Proposition 2. formula for the p olylogarithm which we could not k k X n nd in the literature k n n k n k n m a natural number and jz j Proposition 1. For k X n n k we have n n e e n X n z z Li e m n m n where denotes B n and for k n n k n n m mo d k for k mo d k m z The ab ove prop ositions give us rapidly conver log z m m gent metho ds for computing p olylogarithms in the Cohen, Lewin and Zagier: A Sixteenth-order Polylogarithm Ladder 27 whole complex plane and in particular near or on So these are our unilogarithm relations the rst the unit circle Of course Prop osition is not re rung of the ladder The main statement of the ally necessary since the values of k for k up to theory is that all relations among mth p olyloga could b e computed just once by a slower metho d rithms are obtained by m fold pseudointegra n and then stored tion that is the formal replacement of P by m n We will actually b e working with a mo died ver n P In other words any ladder rela m sion of the p olylogarithm function which is dened tion at the mth rung should have the form by X c n n P m m r m X n B r r n P x Re log jxj Li x m m mr r Q r N n c n for some cyclotomic relation However not all relations obtained by pseudoin where Re denotes real or imaginary part dep end m tegration will hold The rest of the picture is as ing on whether m is o dd or even and Li has follows First observe that the set of cyclotomic Zagier a In contrast b een set equal to equations forms a group under multiplication so with the original p olylogarithms these mo died the set of p ossible collections of exp onents fc g n functions satisfy clean functional equations ie forms a group under addition obviously the same equations involving only p olylogarithms of a given is true for the linear relations among the p olylog order without lowerorder correction terms In m arithms of any given order Supp ose that we have particular we have P x P x m m found I multiplicatively indep endent cyclotomic relations Then starting with m supp ose in 3. LADDERS ductively that we have I m linearly indep en dent equations at order m say In Ab ouzahra and Lewin and Lewin recip es to obtain linear relations among p olylog i X c n n arithm values of p owers of a single algebraic in S P mi m m n teger are given These recip es which are sp e n cial cases of the theory describing linear relations for i I m We supp ose further that the among p olylogarithm values of arbitrary algebraic same relation remains true if is replaced by any arguments as explained in Zagier a b of its conjugates In practice and according are as follows to conjectures this is automatically true but in Assume that one knows for some algebraic num any case we need it for the inductive setup We b er a certain number of relations of the form write this symbolically as S We then mi consider the pseudointegrated quantities Y n c N n i X c n n n S P mi m m n n for some integers c c c for almost all n n and N and some ro ot of unity Such rela There are r r p ossible embeddings of Q tions are called cyclotomic relations For the sp e into the complex numbers where r and r denote cial number dened in the introduction since is as usual the number of real and complex conju real and greater than we must have more gates of so for each i the collection of num over since is a conjugate of we deduce by b ers fS g can b e considered as a vector in mi r r 1 2 conjugating the equation that N must b e equal to R However b ecause of the functional equa P nc Since the mo died unilogarithm func n tions of the function P x not all of the com n m tion P is given by P x log j xj log jxj p onents of this vector are indep endent so we can the cyclotomic equation can b e rewritten think of it as a vector in a smaller dimensional vec dm tor space R of dimension dm dep ending on X n the parity of m Sp ecically since P x is invari m c P n ant under x x for m o dd and antiinvariant for n 28 Experimental Mathematics, Vol.
Recommended publications
  • The Lerch Zeta Function and Related Functions
    The Lerch Zeta Function and Related Functions Je↵ Lagarias, University of Michigan Ann Arbor, MI, USA (September 20, 2013) Conference on Stark’s Conjecture and Related Topics , (UCSD, Sept. 20-22, 2013) (UCSD Number Theory Group, organizers) 1 Credits (Joint project with W. C. Winnie Li) J. C. Lagarias and W.-C. Winnie Li , The Lerch Zeta Function I. Zeta Integrals, Forum Math, 24 (2012), 1–48. J. C. Lagarias and W.-C. Winnie Li , The Lerch Zeta Function II. Analytic Continuation, Forum Math, 24 (2012), 49–84. J. C. Lagarias and W.-C. Winnie Li , The Lerch Zeta Function III. Polylogarithms and Special Values, preprint. J. C. Lagarias and W.-C. Winnie Li , The Lerch Zeta Function IV. Two-variable Hecke operators, in preparation. Work of J. C. Lagarias is partially supported by NSF grants DMS-0801029 and DMS-1101373. 2 Topics Covered Part I. History: Lerch Zeta and Lerch Transcendent • Part II. Basic Properties • Part III. Multi-valued Analytic Continuation • Part IV. Consequences • Part V. Lerch Transcendent • Part VI. Two variable Hecke operators • 3 Part I. Lerch Zeta Function: History The Lerch zeta function is: • e2⇡ina ⇣(s, a, c):= 1 (n + c)s nX=0 The Lerch transcendent is: • zn Φ(s, z, c)= 1 (n + c)s nX=0 Thus ⇣(s, a, c)=Φ(s, e2⇡ia,c). 4 Special Cases-1 Hurwitz zeta function (1882) • 1 ⇣(s, 0,c)=⇣(s, c):= 1 . (n + c)s nX=0 Periodic zeta function (Apostol (1951)) • e2⇡ina e2⇡ia⇣(s, a, 1) = F (a, s):= 1 . ns nX=1 5 Special Cases-2 Fractional Polylogarithm • n 1 z z Φ(s, z, 1) = Lis(z)= ns nX=1 Riemann zeta function • 1 ⇣(s, 0, 1) = ⇣(s)= 1 ns nX=1 6 History-1 Lipschitz (1857) studies general Euler integrals including • the Lerch zeta function Hurwitz (1882) studied Hurwitz zeta function.
    [Show full text]
  • Mathematical
    2-12 JULY 2011 MATHEMATICAL HOST AND VENUE for Students Jacobs University Scientific Committee Étienne Ghys (École Normale The summer school is based on the park-like campus of Supérieure de Lyon, France), chair Jacobs University, with lecture halls, library, small group study rooms, cafeterias, and recreation facilities within Frances Kirwan (University of Oxford, UK) easy walking distance. Dierk Schleicher (Jacobs University, Germany) Alexei Sossinsky (Moscow University, Russia) Jacobs University is an international, highly selective, Sergei Tabachnikov (Penn State University, USA) residential campus university in the historic Hanseatic Anatoliy Vershik (St. Petersburg State University, Russia) city of Bremen. It features an attractive math program Wendelin Werner (Université Paris-Sud, France) with personal attention to students and their individual interests. Jean-Christophe Yoccoz (Collège de France) Don Zagier (Max Planck-Institute Bonn, Germany; › Home to approximately 1,200 students from over Collège de France) 100 different countries Günter M. Ziegler (Freie Universität Berlin, Germany) › English language university › Committed to excellence in higher education Organizing Committee › Has a special program with fellowships for the most Anke Allner (Universität Hamburg, Germany) talented students in mathematics from all countries Martin Andler (Université Versailles-Saint-Quentin, › Venue of the 50th International Mathematical Olympiad France) (IMO) 2009 Victor Kleptsyn (Université de Rennes, France) Marcel Oliver (Jacobs University, Germany) For more information about the mathematics program Stephanie Schiemann (Freie Universität Berlin, Germany) at Jacobs University, please visit: Dierk Schleicher (Jacobs University, Germany) math.jacobs-university.de Sergei Tabachnikov (Penn State University, USA) at Jacobs University, Bremen The School is an initiative in the framework of the European Campus of Excellence (ECE).
    [Show full text]
  • Arithmetic Properties of the Herglotz Function
    ARITHMETIC PROPERTIES OF THE HERGLOTZ FUNCTION DANYLO RADCHENKO AND DON ZAGIER Abstract. In this paper we study two functions F (x) and J(x), originally found by Herglotz in 1923 and later rediscovered and used by one of the authors in connection with the Kronecker limit formula for real quadratic fields. We discuss many interesting properties of these func- tions, including special values at rational or quadratic irrational arguments as rational linear combinations of dilogarithms and products of logarithms, functional equations coming from Hecke operators, and connections with Stark's conjecture. We also discuss connections with 1-cocycles for the modular group PSL(2; Z). Contents 1. Introduction 1 2. Elementary properties 2 3. Functional equations related to Hecke operators 4 4. Special values at positive rationals 8 5. Kronecker limit formula for real quadratic fields 10 6. Special values at quadratic units 11 7. Cohomological aspects 15 References 18 1. Introduction Consider the function Z 1 log(1 + tx) (1) J(x) = dt ; 0 1 + t defined for x > 0. Some years ago, Henri Cohen 1 showed one of the authors the identity p p π2 log2(2) log(2) log(1 + 2) J(1 + 2) = − + + : 24 2 2 In this note we will give many more similar identities, like p π2 log2(2) p J(4 + 17) = − + + log(2) log(4 + 17) 6 2 arXiv:2012.15805v1 [math.NT] 31 Dec 2020 and p 2 11π2 3 log2(2) 5 + 1 J = + − 2 log2 : 5 240 4 2 We will also investigate the connection to several other topics, such as the Kronecker limit formula for real quadratic fields, Hecke operators, Stark's conjecture, and cohomology of the modular group PSL2(Z).
    [Show full text]
  • The Bloch-Wigner-Ramakrishnan Polylogarithm Function
    Math. Ann. 286, 613424 (1990) Springer-Verlag 1990 The Bloch-Wigner-Ramakrishnan polylogarithm function Don Zagier Max-Planck-Insfitut fiir Mathematik, Gottfried-Claren-Strasse 26, D-5300 Bonn 3, Federal Republic of Germany To Hans Grauert The polylogarithm function co ~n appears in many parts of mathematics and has an extensive literature [2]. It can be analytically extended to the cut plane ~\[1, ~) by defining Lira(x) inductively as x [ Li m_ l(z)z-tdz but then has a discontinuity as x crosses the cut. However, for 0 m = 2 the modified function O(x) = ~(Liz(x)) + arg(1 -- x) loglxl extends (real-) analytically to the entire complex plane except for the points x=0 and x= 1 where it is continuous but not analytic. This modified dilogarithm function, introduced by Wigner and Bloch [1], has many beautiful properties. In particular, its values at algebraic argument suffice to express in closed form the volumes of arbitrary hyperbolic 3-manifolds and the values at s= 2 of the Dedekind zeta functions of arbitrary number fields (cf. [6] and the expository article [7]). It is therefore natural to ask for similar real-analytic and single-valued modification of the higher polylogarithm functions Li,. Such a function Dm was constructed, and shown to satisfy a functional equation relating D=(x-t) and D~(x), by Ramakrishnan E3]. His construction, which involved monodromy arguments for certain nilpotent subgroups of GLm(C), is completely explicit, but he does not actually give a formula for Dm in terms of the polylogarithm. In this note we write down such a formula and give a direct proof of the one-valuedness and functional equation.
    [Show full text]
  • A New Family of Zeta Type Functions Involving the Hurwitz Zeta Function and the Alternating Hurwitz Zeta Function
    mathematics Article A New Family of Zeta Type Functions Involving the Hurwitz Zeta Function and the Alternating Hurwitz Zeta Function Daeyeoul Kim 1,* and Yilmaz Simsek 2 1 Department of Mathematics and Institute of Pure and Applied Mathematics, Jeonbuk National University, Jeonju 54896, Korea 2 Department of Mathematics, Faculty of Science, University of Akdeniz, Antalya TR-07058, Turkey; [email protected] * Correspondence: [email protected] Abstract: In this paper, we further study the generating function involving a variety of special numbers and ploynomials constructed by the second author. Applying the Mellin transformation to this generating function, we define a new class of zeta type functions, which is related to the interpolation functions of the Apostol–Bernoulli polynomials, the Bernoulli polynomials, and the Euler polynomials. This new class of zeta type functions is related to the Hurwitz zeta function, the alternating Hurwitz zeta function, and the Lerch zeta function. Furthermore, by using these functions, we derive some identities and combinatorial sums involving the Bernoulli numbers and polynomials and the Euler numbers and polynomials. Keywords: Bernoulli numbers and polynomials; Euler numbers and polynomials; Apostol–Bernoulli and Apostol–Euler numbers and polynomials; Hurwitz–Lerch zeta function; Hurwitz zeta function; alternating Hurwitz zeta function; generating function; Mellin transformation MSC: 05A15; 11B68; 26C0; 11M35 Citation: Kim, D.; Simsek, Y. A New Family of Zeta Type Function 1. Introduction Involving the Hurwitz Zeta Function The families of zeta functions and special numbers and polynomials have been studied and the Alternating Hurwitz Zeta widely in many areas. They have also been used to model real-world problems.
    [Show full text]
  • Chow Polylogarithms and Regulators
    Chow polylogarithms and regulators A.B.Goncharov Contents 1 Introduction 1 2 Construction of Chow polylogarithms 2 3 Properties of Chow polylogarithm functions 6 4 Cocycles for all continuous cohomology classes of GLN (C) 9 5 Explicit construction of Beilinson’s regulator 10 6 The Abel-Jacobi map for Higher Chow groups 12 7 The multivalued analytic version of Chow polylogarithms 13 1 Introduction The classical dilogarithm z Li2(z) := − log(1 − t)d log t Z0 is a multivalued analitic function on CP 1\{0, 1, ∞}. It has a single-valued version: the Bloch- Wigner function L2(z) := ImLi2(z) + arg(1 − z) log |z| which satisfies the famous 5-term functional relation. Namely, for any 5 distinct points z1, ..., z5 on CP 1 one has (r is the cross-ratio). 5 i (−1) L2(r(z1, ..., zˆi, ..., z5))=0 i=1 X In this note we show that the Bloch-Wigner function can be naturally extended to the (infinite dimensional) variety of all algebraic curves in CP 3 which are in sufficiently general position with respect to a given simplex L. (By definition a simplex in CP 3 is a collection of 4 hyperplanes in generic position). 1 We call the corresponding function the Chow dilogarithm function. When our curve is a straight line we obtain just the Bloch-Wigner function evaluated at the cross-ratio of the 4 intersection points of this line with the faces of the simplex L. It is interesting that even in this case we get a new presentation of L2(z). Any algebraic surface in CP 4 which is in general position with respect to a given simplex produces a 5-term relation for the Chow dilogarithm function.
    [Show full text]
  • Oberwolfach Jahresbericht Annual Report 2008 Herausgeber / Published By
    titelbild_2008:Layout 1 26.01.2009 20:19 Seite 1 Oberwolfach Jahresbericht Annual Report 2008 Herausgeber / Published by Mathematisches Forschungsinstitut Oberwolfach Direktor Gert-Martin Greuel Gesellschafter Gesellschaft für Mathematische Forschung e.V. Adresse Mathematisches Forschungsinstitut Oberwolfach gGmbH Schwarzwaldstr. 9-11 D-77709 Oberwolfach-Walke Germany Kontakt http://www.mfo.de [email protected] Tel: +49 (0)7834 979 0 Fax: +49 (0)7834 979 38 Das Mathematische Forschungsinstitut Oberwolfach ist Mitglied der Leibniz-Gemeinschaft. © Mathematisches Forschungsinstitut Oberwolfach gGmbH (2009) JAHRESBERICHT 2008 / ANNUAL REPORT 2008 INHALTSVERZEICHNIS / TABLE OF CONTENTS Vorwort des Direktors / Director’s Foreword ......................................................................... 6 1. Besondere Beiträge / Special contributions 1.1 Das Jahr der Mathematik 2008 / The year of mathematics 2008 ................................... 10 1.1.1 IMAGINARY - Mit den Augen der Mathematik / Through the Eyes of Mathematics .......... 10 1.1.2 Besuch / Visit: Bundesministerin Dr. Annette Schavan ............................................... 17 1.1.3 Besuche / Visits: Dr. Klaus Kinkel und Dr. Dietrich Birk .............................................. 18 1.2 Oberwolfach Preis / Oberwolfach Prize ....................................................................... 19 1.3 Oberwolfach Vorlesung 2008 .................................................................................... 27 1.4 Nachrufe ..............................................................................................................
    [Show full text]
  • Polylogarithms and Riemann's Function
    PHYSICAL REVIEW E VOLUME 56, NUMBER 4 OCTOBER 1997 Polylogarithms and Riemann’s z function M. Howard Lee Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602 ~Received 12 March 1997! Riemann’s z function has been important in statistical mechanics for many years, especially for the under- standing of Bose-Einstein condensation. Polylogarithms can yield values of Riemann’s z function in a special limit. Recently these polylogarithm functions have unified the statistical mechanics of ideal gases. Our par- ticular concern is obtaining the values of Riemann’s z function of negative order suggested by a physical application of polylogs. We find that there is an elementary way of obtaining them, which also provides an insight into the nature of the values of Riemann’s z function. It relies on two properties of polylogs—the recurrence and duplication relations. The relevance of the limit process in the statistical thermodynamics is described. @S1063-651X~97!01510-9# PACS number~s!: 05.90.1m, 02.90.1p I. INTRODUCTION standard methods. It also lends an interesting insight into the nature of the values of Riemann’s z function. Riemann’s z function perhaps first appeared in statistical mechanics in 1900 in Planck’s theory of the blackbody ra- II. POLYLOGS AND THEIR PROPERTIES diation and then in 1912 in Debye’s theory of the specific heats of solids @1#. Subsequently, this function has played an To show their relationship to Riemann’s z function, we important role in the statistical theory of the ideal Bose gas, shall introduce a convenient integral representation for poly- especially for the understanding of Bose-Einstein condensa- logs Lis(z) of complex numbers s and z @6#, defined by tion ~BEC!@2#.
    [Show full text]
  • From Elliptic Polylogarithms to Iterated Integrals of Eisenstein Series
    Prepared for submission to JHEP CP3-18-24, CERN-TH-2018-057 HU-Mathematik-2018-03, HU-EP-18/09 SLAC-PUB-17240 Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series Johannes Broedela Claude Duhrb;c Falko Dulatd Brenda Penanteb Lorenzo Tancredib aInstitut f¨urMathematik und Institut f¨urPhysik, Humboldt-Universit¨atzu Berlin, IRIS Adlershof, Zum Grossen Windkanal 6, 12489 Berlin, Germany bTheoretical Physics Department, CERN, Geneva, Switzerland cCenter for Cosmology, Particle Physics and Phenomenology (CP3), Universit´eCatholique de Louvain, 1348 Louvain-La-Neuve, Belgium dSLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA E-mail: [email protected], [email protected], [email protected], [email protected], [email protected] Abstract: We present a generalization of the symbol calculus from ordinary multiple polylogarithms to their elliptic counterparts. Our formalism is based on a special case of a coaction on large classes of periods that is applied in particular to elliptic polylogarithms and iterated integrals of modular forms. We illustrate how to use our formalism to derive relations among elliptic polylogarithms, in complete analogy with the non-elliptic case. We then analyze the symbol alphabet of elliptic polylogarithms evaluated at rational points, and we observe that it is given by Eisenstein series for a certain congruence subgroup. We apply our formalism to hypergeometric functions that can be expressed in terms of elliptic polylogarithms and show that they can equally be written in terms of iterated integrals of Eisenstein series. Finally, we present the symbol of the equal-mass sunrise integral in two space-time dimensions.
    [Show full text]
  • Polylog and Hurwitz Zeta Algorithms Paper
    AN EFFICIENT ALGORITHM FOR ACCELERATING THE CONVERGENCE OF OSCILLATORY SERIES, USEFUL FOR COMPUTING THE POLYLOGARITHM AND HURWITZ ZETA FUNCTIONS LINAS VEPŠTAS ABSTRACT. This paper sketches a technique for improving the rate of convergence of a general oscillatory sequence, and then applies this series acceleration algorithm to the polylogarithm and the Hurwitz zeta function. As such, it may be taken as an extension of the techniques given by Borwein’s “An efficient algorithm for computing the Riemann zeta function”[4, 5], to more general series. The algorithm provides a rapid means of evaluating Lis(z) for¯ general values¯ of complex s and a kidney-shaped region of complex z values given by ¯z2/(z − 1)¯ < 4. By using the duplication formula and the inversion formula, the range of convergence for the polylogarithm may be extended to the entire complex z-plane, and so the algorithms described here allow for the evaluation of the polylogarithm for all complex s and z values. Alternatively, the Hurwitz zeta can be very rapidly evaluated by means of an Euler- Maclaurin series. The polylogarithm and the Hurwitz zeta are related, in that two evalua- tions of the one can be used to obtain a value of the other; thus, either algorithm can be used to evaluate either function. The Euler-Maclaurin series is a clear performance winner for the Hurwitz zeta, while the Borwein algorithm is superior for evaluating the polylogarithm in the kidney-shaped region. Both algorithms are superior to the simple Taylor’s series or direct summation. The primary, concrete result of this paper is an algorithm allows the exploration of the Hurwitz zeta in the critical strip, where fast algorithms are otherwise unavailable.
    [Show full text]
  • 34 6 ISSUE.Indd
    Volume 34 Issue 6 IMS Bulletin July 2005 Iain Johnstone elected to NAS Iain M Johnstone was elected ce airs Offi UC Berkeley Aff Photo: Public foray to Berkeley, has been CONTENTS to the US National Academy his scientifi c base ever since. 1 Iain Johnstone of Sciences on May 3 2005. Initially appointed in the Th e NAS elects 72 members Statistics Department, since 2 Members’ News & contacts each year over every branch 1989 his joint appointment 4 Obituary: William Kruskal of science. Of these, typically in Statistics and Biostatistics 5 New UK Statistics Centre fi ve or fewer work in the refl ects the duality of his mathematical sciences, so Iain research. His work in medical 6 Terence’s Stuff : A Toast to should be proud of this recognition. statistics is wide-ranging: he is the model Posters Iain was born in Melbourne, Australia versatile statistician, able to contribute 7 Donate/request IMS and took his BSc and MSc degrees at the right across theory, methodology and journals Australian National University in the late applications, showing how the diff erent 8 Abel Prize for Mathematics 1970s. His Master’s thesis led to his fi rst aspects of our fi eld should support one published paper, joint with his advisor another seamlessly. 9 Mu Sigma Rho Chris Heyde; more unusually his under- Iain’s wider contributions to the 11 Medallion Lecture preview graduate dissertation was itself published profession are prodigious. His term as 13 Minneapolis Events in a monograph series. He then moved to President of IMS (2001–2) was the cul- the USA for his PhD at Cornell, where mination of a remarkable and prolonged 14 IMS Meetings his advisor was Larry Brown.
    [Show full text]
  • Series Representation of the Riemann Zeta Function and Other Results: Complements to a Paper of Crandall
    MATHEMATICS OF COMPUTATION Volume 83, Number 287, May 2014, Pages 1383–1395 S 0025-5718(2013)02755-X Article electronically published on July 29, 2013 SERIES REPRESENTATION OF THE RIEMANN ZETA FUNCTION AND OTHER RESULTS: COMPLEMENTS TO A PAPER OF CRANDALL MARK W. COFFEY Abstract. We supplement a very recent paper of R. Crandall concerned with the multiprecision computation of several important special functions and numbers. We show an alternative series representation for the Riemann and Hurwitz zeta functions providing analytic continuation throughout the whole complex plane. Additionally, we demonstrate some series representations for the initial Stieltjes constants appearing in the Laurent expansion of the Hur- witz zeta function. A particular point of elaboration in these developments is the hypergeometric form and its equivalents for certain derivatives of the incomplete Gamma function. Finally, we evaluate certain integrals including ζ(s) η(s) Res=c s ds and Res=c s ds,withζ the Riemann zeta function and η its alternating form. 1. Introduction and statement of results Very recently R. Crandall has described series-based algorithms for computing multiprecision values of several important functions appearing in analytic number theory and the theory of special functions [9]. These functions include the Lerch ∞ n s transcendent Φ(z,s,a)= n=0 z /(n + a) , and many of its special cases, and Epstein zeta functions. In the following we let Bn(x)andEn(x) be the Bernoulli and Euler polynomials, respectively, Γ the Gamma function, and Γ(x, y) the incomplete Gamma function (e.g., [1, 2, 13]). An example series representation from [9, (27)] is that for the Hurwitz zeta function ζ(s, a), ∞ ∞ 1 Γ[s, λ(n + a)] 1 B (a) λm+s−1 (1.1) ζ(s, a)= + (−1)m m , Γ(s) (n + a)s Γ(s) m! (m + s − 1) n=0 m=0 with free parameter λ ∈ [0, 2π).
    [Show full text]