Prepared for submission to JHEP CP3-18-24, CERN-TH-2018-057 HU-Mathematik-2018-03, HU-EP-18/09 SLAC-PUB-17240 Elliptic symbol calculus: from elliptic polylogarithms to iterated integrals of Eisenstein series Johannes Broedela Claude Duhrb;c Falko Dulatd Brenda Penanteb Lorenzo Tancredib aInstitut f¨urMathematik und Institut f¨urPhysik, Humboldt-Universit¨atzu Berlin, IRIS Adlershof, Zum Grossen Windkanal 6, 12489 Berlin, Germany bTheoretical Physics Department, CERN, Geneva, Switzerland cCenter for Cosmology, Particle Physics and Phenomenology (CP3), Universit´eCatholique de Louvain, 1348 Louvain-La-Neuve, Belgium dSLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA E-mail:
[email protected],
[email protected],
[email protected],
[email protected],
[email protected] Abstract: We present a generalization of the symbol calculus from ordinary multiple polylogarithms to their elliptic counterparts. Our formalism is based on a special case of a coaction on large classes of periods that is applied in particular to elliptic polylogarithms and iterated integrals of modular forms. We illustrate how to use our formalism to derive relations among elliptic polylogarithms, in complete analogy with the non-elliptic case. We then analyze the symbol alphabet of elliptic polylogarithms evaluated at rational points, and we observe that it is given by Eisenstein series for a certain congruence subgroup. We apply our formalism to hypergeometric functions that can be expressed in terms of elliptic polylogarithms and show that they can equally be written in terms of iterated integrals of Eisenstein series. Finally, we present the symbol of the equal-mass sunrise integral in two space-time dimensions.