Ocular Anti-VEGF Therapy for Diabetic Retinopathy

Total Page:16

File Type:pdf, Size:1020Kb

Ocular Anti-VEGF Therapy for Diabetic Retinopathy 900 Diabetes Care Volume 37, April 2014 Ning Cheung,1,2,3 Ian Y. Wong,1 and Ocular Anti-VEGF Therapy for Tien Y. Wong2,3 BENCH TO CLINIC SYMPOSIA Diabetic Retinopathy: Overview of Clinical Efficacy and Evolving Applications Diabetes Care 2014;37:900–905 | DOI: 10.2337/dc13-1990 Ocular anti-vascular endothelial growth factor (VEGF) therapy represents one of the most significant advances in modern medicine. The introduction and widespread use of ocular anti-VEGF therapy for age-related macular degenera- tion heralded a new era in the treatment of vascular and exudative diseases of the retina. Its expanding indications now include diabetic macular edema and proliferative diabetic retinopathy, two vision-threatening forms of diabetic retinopathy. It is widely anticipated that ocular anti-VEGF therapy could spark a dramatic shift in the treatment paradigm for diabetic retinopathy. However, despite its clear efficacy shown in clinical trials, the dynamic landscape of evolving medical, ethical, and economic issues related to this new treatment suggests significant challenges ahead. In this article, we provide a discussion of this topic as part of this two-part Bench to Clinic narrative. Here, our Clinic contribution provides an overview of the current evidence from clinical trials on anti-VEGF therapy for diabetic retinopathy, and highlights the hopes and fears of this new treatment from clinical and public health standpoints. In the Bench narrative that precedes this contribution, Simo´ et al. provide an overview of the role of VEGF in the pathogenesis of diabetic retinopathy. Ocular anti-vascular endothelial growth factor (VEGF) therapy represents one of the most significant advances in modern medicine. The swift and widespread uptake of this new therapy into clinical practice for treating age-related macular 1 degeneration has saved sight for millions worldwide (1). In fact, national blindness Department of Ophthalmology, The Eye Insti- tute, University of Hong Kong, China Special Ad- registries are already showing declining incidence of blindness related to age- ministrative Region, China related macular degeneration, coinciding with the advent of anti-VEGF therapy 2Singapore Eye Research Institute, Singapore Na- (2). Despite its clear efficacy, however, the safety, cost, and substantial burden tional Eye Centre, National University of Singa- pore, Singapore upon the health care system of this new treatment have generated heated debates 3 in many countries (3). Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Mel- Now, it is widely anticipated that the use of ocular anti-VEGF therapy will be bourne, Melbourne, Australia extended to treat the vision-threatening forms of diabetic retinopathy (4), which Corresponding author: Ning Cheung, affect an estimated 28 million people around the world (5). In this two-part Bench [email protected]. to Clinic narrative, the Bench article by Simo´ et al. (6) reviews the pathophysiological Received 23 August 2013 and accepted 17 role of VEGF in diabetic retinopathy and the molecular characteristics of antiangio- December 2013. genic agents currently used. Here in the Clinic article, we provide an overview of the © 2014 by the American Diabetes Association. current evidence from clinical trials on anti-VEGF therapy for diabetic retinopathy, See http://creativecommons.org/licenses/by- and highlight the hopes and fears of this new treatment from the clinical and public nc-nd/3.0/ for details. health standpoints. See accompanying article, p. 893. care.diabetesjournals.org Cheung, Wong, and Wong 901 EPIDEMIOLOGY AND NATURAL and PDR among patients with recently steroids (e.g., triamcinolone) have dem- HISTORY OF DIABETIC diagnosed diabetes (10). These encour- onstrated ability to reduce DME and RETINOPATHY aging findings reflect improvement in improve vision, these beneficial effects As a global concern, diabetes affects the systemic management of retinopa- appear to be short-lived, and long-term more than 360 million individuals world- thy risk factors over time for a range of visual outcome was generally not better wide. This number is expected to exceed reasons, such as better devices for self- than conventional laser therapy (4). half a billion by 2030 (7). About one in monitoring of glycemic levels and Furthermore, repeated use of intraocu- three individuals with diabetes has administration of insulin, new and lar steroid injections is associated with signs of retinopathy, and among these, effective hypoglycemic medications, significant ocular side effects (e.g., cat- one-third may have diabetic macular and increased public awareness of the aract, glaucoma). Nevertheless, there edema (DME) or proliferative diabetic ret- need for glycemic and blood pressure are certain advantages in using intraoc- inopathy (PDR), two vision-threatening control through educational and ular steroids (e.g., possibly longer-acting forms of diabetic retinopathy (4). A re- screening programs. Despite these and relatively cheap compared with cent pooled analysis of 35 population- advances in diabetes care, it remains most anti-VEGF agents). Its use might fi based studies in developed countries uncertain whether such a declining thereforebebene cial for selected estimated that more than 90 million trend in the incidence of diabetic patients, such as those who have had individuals have diabetic retinopathy, retinopathy will persist in the context previous cataract surgery, or as an ad- with about 21 million having DME and of expanding diabetes epidemic world- junctive therapy prior to laser (12,13). 17 million having PDR (5). wide, particularly in developing countries OCULAR ANTI-VEGF THERAPY FOR In the Wisconsin Epidemiologic Study where intensive diabetes management DIABETIC RETINOPATHY of Diabetic Retinopathy, about three in and public health resources remain four participants developed retinopa- limited (11). The introduction and widespread use of ocular anti-VEGF therapy for age- thy over a 10-year period, and for CURRENT STRATEGIES FOR related macular degeneration, with participants with retinopathy, about MANAGEMENT OF DIABETIC publication of major clinical trials (1), two-thirds developed more severe RETINOPATHY retinopathy and one in five developed heralded a new era in the treatment of Systemic management of hyperglyce- PDR (4). In terms of progression, dia- vascular and exudative diseases of the mia, hypertension, and dyslipidemia betic retinopathy progresses from retina. The expanding indications for remains the most important and nonproliferative to proliferative reti- ocular anti-VEGF therapy, given via an effective strategy for preventing the nopathy in stages. Nonproliferative di- injection into the vitreal cavity, now development and progression of dia- abetic retinopathy (NPDR) is classified include DME and PDR. betic retinopathy (4). For many decades, as mild, moderate, and severe forms. retinal laser photocoagulation has been Efficacy About 5% mild NPDR, 20% moderate the standard ocular treatment for DME AsshownintheaccompanyingBench NPDR, and 50% severe NPDR may and PDR (4,10). The primary goal for article by Simo´ et al. (6), VEGF has progress to PDR within 1 year (4). most patients receiving laser therapy is long been a therapeutic target for dia- In developed countries, DME has now to preserve any useful vision or to pre- betic retinopathy. In recent years, there overtaken PDR as the more common vent adverse sequalae of PDR. Reversal has been a surge of clinical trials vision-threatening form of diabetic reti- of vision loss is uncommon. In addition, investigating the use of anti-VEGF ther- nopathy, particularly among patients laser therapy is associated with signifi- apy for DME (Table 1) (14–16). These with type 2 diabetes. In the National cant ocular side effects due to its inher- trials provide robust evidence that Health and Nutrition Examination ent destructive nature to the retina. intraocular administration of anti- Survey, DME was shown to be twice as Without timely laser therapy, however, VEGF agents is better than laser therapy commonasPDRintheU.S.(8).The patients may develop blinding neovas- both in preserving and in improving vi- 10-year incidence of DME has been cular complications, such as vitreous sion for patients with DME. Among the reported to be 20% in the Wisconsin hemorrhage and tractional retinal de- four anti-VEGF agents (ranibizumab, Epidemiologic Study of Diabetic Reti- tachment, leading to the need for bevacizumab, pegaptanib, and afliber- nopathy (9). Although DME is usually surgical intervention (vitrectomy). cept), ranibizumab has been the one correlated and accompanied with Over the last decade, intraocular most thoroughly tested. In randomized increasing severity of retinopathy, it administration of pharmacological controlled trials that used ranibizumab may also run an independent course agents (e.g., steroid and anti-VEGF injections, up to 46% of patients and develop even at the early stage of agents) has been evaluated as a new improved vision (vs. 18% with laser diabetic retinopathy. treatment modality for DME and PDR alone; by three lines or more on vision There is evidence to suggest a decline (4,10). Delivery of these agents is chart), and only 4% or less lost more in the incidence and risk of progression achieved by direct injection into the vision (vs. up to 20% with laser alone). for diabetic retinopathy over the last vitreal cavity, a procedure that is usually The studies also suggest that, compared three decades (4,10).
Recommended publications
  • Incidence and Management of Acute Endophthalmitis After Intravitreal
    Eye (2009) 23, 2187–2193 & 2009 Macmillan Publishers Limited All rights reserved 0950-222X/09 $32.00 www.nature.com/eye Incidence and O Artunay, E Yuzbasioglu, R Rasier, A Sengu¨l CLINICAL STUDY and H Bahcecioglu management of acute endophthalmitis after intravitreal bevacizumab (Avastin) injection Abstract recognition and treatment are key in maximizing outcomes in patients who Introduction The aim of this study was to developed endophthalmitis after intravitreal report the incidence and management of acute injection of bevacizumab. endophthalmitis after intravitreal injection of Eye (2009) 23, 2187–2193; doi:10.1038/eye.2009.7; Avastin (bevacizumab), and visual acuity published online 13 February 2009 outcomes of three eyes of three patients who developed acute endophthalmitis following Keywords: intravitreal injection; bevacizumab; intravitreal injection of Avastin. endophthalmitis Methods This clinical retrospective, non-comparative study included 3022 Introduction intravitreal injections of 1.25 mg bevacizumab consecutively performed for 1822 eyes with Intravitreal injection of medications is becoming exudative age-related macular degeneration increasingly accepted for treatment of various and other retinal diseases. Of 3022 injections, retinal disorders, with effective intravitreal 1200 were reinjections. After clinical therapies being commonly administered in the appearance of post-injection endophthalmitis, vitreoretinal clinical or surgical environment. Department of immediate intervention was performed, With the increase in
    [Show full text]
  • Endophthalmitis After Intravitreal Injections in Patients with Self-Reported Iodine Allergy
    Endophthalmitis After Intravitreal Injections in Patients With Self-reported Iodine Allergy BOBECK S. MODJTAHEDI, TAVE´ VAN ZYL, HEMANG K. PANDYA, ROBERT E. LEONARD, II, AND DEAN ELIOTT PURPOSE: To present cases of endophthalmitis IMITING THE RISK OF POSTINJECTION ENDOPHTHAL- following intravitreal injections where povidone-iodine mitis is an area of considerable practical and aca- (PI) was not used as part of the surgical preparation. demic interest, especially in the era of regular L DESIGN: Retrospective case series. intravitreal injections. Although the incidence of postin- METHODS: All cases of presumed injection-related jection endophthalmitis is low (0.056% per injection in a endophthalmitis presenting to the Massachusetts Eye recent meta-analysis),1 the risk to an individual patient is and Ear Infirmary between June 2008 and November magnified by the recurrent nature of the procedure. Using 2014 and Dean McGee Eye Institute between January povidone-iodine (PI) for surgical antisepsis is well estab- 2010 and January 2015 were identified. Patients who lished and is the only preoperative measure shown to did not receive PI preparation owing to documented reduce the risk of endophthalmitis in patients undergoing self-reported allergy to iodine, iodine-containing contrast intraocular surgery.2 The importance of PI application material, or shellfish were identified and their injection prior to intravitreal injection has been observed by histories and clinical courses reviewed. Nentwich and associates,3 Bhavsar and Sandler,4 and Bryn- 5 RESULTS: The combined rate of postinjection endoph- skov and associates, the latter of whom described no cases thalmitis at these 2 centers was 0.019%. Among 42 of endophthalmitis after 20 293 injections.
    [Show full text]
  • Intravitreal Angiogenesis Inhibitors for Retinal Vascular Conditions
    MEDICAL COVERAGE GUIDELINES ORIGINAL EFFECTIVE DATE: 06/01/19 SECTION: DRUGS LAST REVIEW DATE: 04/16/19 LAST CRITERIA REVISION DATE: ARCHIVE DATE: LUCENTIS® (ranibizumab) for intravitreal injection Non-Discrimination Statement and Multi-Language Interpreter Services information are located at the end of this document. Coverage for services, procedures, medical devices and drugs are dependent upon benefit eligibility as outlined in the member's specific benefit plan. This Medical Coverage Guideline must be read in its entirety to determine coverage eligibility, if any. This Medical Coverage Guideline provides information related to coverage determinations only and does not imply that a service or treatment is clinically appropriate or inappropriate. The provider and the member are responsible for all decisions regarding the appropriateness of care. Providers should provide BCBSAZ complete medical rationale when requesting any exceptions to these guidelines. The section identified as “Description” defines or describes a service, procedure, medical device or drug and is in no way intended as a statement of medical necessity and/or coverage. The section identified as “Criteria” defines criteria to determine whether a service, procedure, medical device or drug is considered medically necessary or experimental or investigational. State or federal mandates, e.g., FEP program, may dictate that any drug, device or biological product approved by the U.S. Food and Drug Administration (FDA) may not be considered experimental or investigational and thus the drug, device or biological product may be assessed only on the basis of medical necessity. Medical Coverage Guidelines are subject to change as new information becomes available. For purposes of this Medical Coverage Guideline, the terms "experimental" and "investigational" are considered to be interchangeable.
    [Show full text]
  • Intravitreal Injection Procedure Instructional Outline
    Intravitreal Injection Procedure Instructional Outline Anh-Danh T. Phan, M.D. Indiana University School of Medicine Department of Ophthalmology Intravitreal Injection Procedure Instructional Outline Anh-Danh T. Phan, M.D. Assistant Professor of Ophthalmology Retina and Vitreous Service Indiana University School of Medicine Department of Ophthalmology / Glick Eye Institute Indianapolis, IN Email: [email protected] Background Statement: Intravitreal injection is the most common procedure in ophthalmology, yet carries associated risks. Mastery of the procedure particularly during residency training is critical to address the staggering patient treatment needs. Objectives: To transfer, along with accompanying instructional video, useful knowledge and skills for performing the intravitreal injection during ophthalmology training, enabling residents to understand: (1) the precautions before, during, and after the procedure, including risk of endophthalmitis; (2) the technique performed at a major university medical center; and (3) a method to standardize the procedure across multiple clinical settings. Residents are encouraged to gather instructional input from their supervising retinal specialists during training to develop their own procedural approach most comfortable, while observing the underlying principles and concepts outlined herein. Conflict of Interest The author has no propriety interest in either the outline or its subject matter. Legal Disclaimer The author provides this material for educational purposes only. It is not intended
    [Show full text]
  • Informed Consent for Lucentis Tm (Ranibizumab) Intravitreal Injection
    PATIENT _________________________________________DATE __________________ OD OS INFORMED CONSENT FOR LUCENTIS TM (RANIBIZUMAB) INTRAVITREAL INJECTION INDICATIONS Age-related macular degeneration (AMD) is the leading cause of blindness in people over 50 years of age. There are two types of macular degeneration: dry and wet. In the “wet” form of AMD, abnormal blood vessels grow in the back of the eye. Sometimes these vessels leak blood or fluid that causes blurred or distorted vision. Without treatment, vision loss may be quick and severe. POSSIBLE BENEFITS, LIMITATIONS, AND ADMINISTRATION Lucentis TM works by inhibiting the growth of the abnormal blood vessels that cause AMD. It is also used to treat swelling of the macula due to MAD. The goal of treatment is to prevent further loss of vision. Although some patients have regained vision, the medication may not restore vision that has already been lost, and may not ultimately prevent further loss of vision caused by the disease. After the pupil is dilated and the eye is numbed with anesthesia, the medication is injected into the vitreous or jelly-like substance in the back chamber of the eye. Lucentis TM is administered by an injection into your eye as needed at regular intervals (about every four weeks); your ophthalmologist will tell you how often you will receive the injection, and for how long. ALTERNATIVES You do not have to receive treatment for your condition, although without treatment, AMD can lead to further vision loss and blindness, sometimes very quickly. Other forms of treatment are available. At present, there are two other FDA-approved treatments for neovascular AMD: Photodynamic therapy with a drug called Visudyne TM and injection into the eye of a drug called Macugen TM .
    [Show full text]
  • Intravitreal Injections
    Intravitreal Injections This material will help you understand your intravitreal injection treatment and what you can expect. What are intravitreal injections? An intravitreal injection (IVI) is a shot of medicine into your eye using a thin needle. The inside of your eye is filled with a gel-like fluid called the vitreous (vit-ree-us). The doctor or nurse will inject the medicine through the front of the eye into the vitreous, near the retina at the back of the eye (see picture on right). Image courtesy of the Collaborative Ocular Melanoma Study Group The medicine used will depend on your condition being treated. IVIs are used to treat many eye problems, including macular degeneration, diabetic retinopathy, and some cases of eye cancer. What can I expect before my treatment? There are no special preparations for IVI. You should eat normally and take all your regular medicines before you come in. Let your doctor know any medications you are currently taking, as well as any allergies you have. Kellogg Eye Center Intravitreal Injections 1 This treatment is performed in your doctor’s office, so you will be able to go home the same day. If you do not feel comfortable driving after your treatment, you may want to bring a friend or family member with you to drive you home. What can I expect on the day of my treatment? On the day of your IVI, you will come to the Kellogg Eye Center Oncology Clinic. First, you will be given eye drops to dilate (widen) your pupils. Your doctor will then have you lie down in a comfortable face-up position.
    [Show full text]
  • The Role of Topical Antibiotic Prophylaxis to Prevent Endophthalmitis After Intravitreal Injection
    The Role of Topical Antibiotic Prophylaxis to Prevent Endophthalmitis after Intravitreal Injection Philip Storey, MD, MPH,1 Michael Dollin, MD,1 John Pitcher, MD,1 Sahitya Reddy, BA,2 Joseph Vojtko, BA,2 James Vander, MD,1 Jason Hsu, MD,1 Sunir J. Garg, MD,1for the Post-Injection Endophthalmitis Study Team* Objective: To compare the incidence of endophthalmitis after intravitreal injection with and without topical postinjection antibiotic prophylaxis. Design: Retrospective case-control study. Participants: All patients treated with intravitreal injection of ranibizumab, bevacizumab, or aflibercept for a variety of retinal vascular diseases at a single, large retina practice between January 1, 2009, and October 1, 2012, were included. Methods: The total numbers of patients and injections were determined from a review of billing code and practice management records. Endophthalmitis cases were determined from billing records and from an infection log. All cases of endophthalmitis were confirmed with chart review. A 28-month period when topical antibiotics were prescribed after intravitreal injection was compared with a 9-month period when topical antibiotics were not prescribed. Patients treated during an 8-month transition period were excluded to allow for the conversion of antibiotic prescription practices. Main Outcome Measures: Incidence of endophthalmitis, visual acuity outcomes, and microbial spectrum. Results: During the study period, a total of 117 171 intravitreal injections were performed (57 654 injections during the topical antibiotic period, 24 617 during the transition period, and 34 900 during the no-antibiotic period), with a total of 44 cases of suspected endophthalmitis (0.038%; 1 in 2663 injections), 17 of which showed culture-positive results (0.015%; 1 in 6892 injections).
    [Show full text]
  • Intravitreal Injections Policy Background Anti-VEGF Agents
    Intravitreal Injections Policy Patients undergoing intravitreal injections require the care and judgment of an ophthalmologist experienced in diagnosing and treating retinal diseases as well as potential complications that may necessitate surgical intervention. The Academy strongly supports the position that all intravitreal injections should be performed only by ophthalmologists, which are licensed doctors of medicine or osteopathy. Background Intravitreal injections of air were first used in 1911 for the purpose of repairing retinal detachments.1 Since that time, intravitreal injections have been used to treat a variety of conditions, including endophthalmitis, intraocular lymphoma, cytomegalovirus (CMV) retinitis, submacular hemorrhage, vitreous hemorrhage, retinal vascular occlusive disease, diabetic retinopathy, and neovascular age-related macular degeneration (AMD). The primary benefit of intravitreal injection is the targeting of the therapeutic agent in the eye while minimizing systemic absorption. In 1998, the United States Food and Drug Administration (FDA) approved the use of the first agent for intravitreal injections, fomivirsen sodium (Vitravene®, Isis Pharmaceuticals, Carlsbad, CA), an antiviral used in the treatment of CMV retinitis. Anti-VEGF Agents The frequency of intravitreal injections significantly increased with the introduction of anti-vascular endothelial growth factor (anti-VEGF) medications. In the early 2000s, the use of intravitreal injections accelerated fueled by clinical trials and technology assessments
    [Show full text]
  • Intravitreal Injections/Implants
    Intravitreal Injections/Implants Last Review Date: September 2, 2021 Number: MG.MM.PH.18 Medical Guideline Disclaimer Property of EmblemHealth. All rights reserved. The treating physician or primary care provider must submit to EmblemHealth the clinical evidence that the patient meets the criteria for the treatment or surgical procedure. Without this documentation and information, EmblemHealth will not be able to properly review the request for prior authorization. The clinical review criteria expressed below reflects how EmblemHealth determines whether certain services or supplies are medically necessary. EmblemHealth established the clinical review criteria based upon a review of currently available clinical information (including clinical outcome studies in the peer-reviewed published medical literature, regulatory status of the technology, evidence-based guidelines of public health and health research agencies, evidence-based guidelines and positions of leading national health professional organizations, views of physicians practicing in relevant clinical areas, and other relevant factors). EmblemHealth expressly reserves the right to revise these conclusions as clinical information changes, and welcomes further relevant information. Each benefit program defines which services are covered. The conclusion that a particular service or supply is medically necessary does not constitute a representation or warranty that this service or supply is covered and/or paid for by EmblemHealth, as some programs exclude coverage for services or supplies that EmblemHealth considers medically necessary. If there is a discrepancy between this guideline and a member's benefits program, the benefits program will govern. In addition, coverage may be mandated by applicable legal requirements of a state, the Federal Government or the Centers for Medicare & Medicaid Services (CMS) for Medicare and Medicaid members.
    [Show full text]
  • (ASRS) Statement Compounding Listening Session, June 3, 2016 Food and Drug Administration
    American Society of Retina Specialists (ASRS) Statement Compounding Listening Session, June 3, 2016 Food and Drug Administration Thank you for the opportunity to present during the 2016 listening sessions on drug compounding. On behalf of the American Society of Retina Specialists (ASRS), its members and their patients, we submit the following comments on FDA draft guidance documents. The ASRS is the largest retinal organization in the world, representing over 2700 fellowship-trained members. Retina specialists are board-certified ophthalmologists who have completed fellowship training in the medical and surgical treatment of retinal diseases. Retina patients are treated with a myriad of compounded therapies including injectable antibiotics, anesthetics, dyes used during surgery, and bevacizumab (Avastin). In general, retina doctors have access to these therapies either through 503B outsourcing facilities, or through 503A facilities pursuant to an individual prescription. However, in certain emergencies we have difficulty accessing medications needed for our patients. Limited access to compounded antibiotics for intravitreal injection We would like to thank the FDA for acknowledging the need for retina specialists to have compounded antibiotics on hand to treat emergency infections such as endopthalmitis. This scenario is described in the current draft guidance on the prescription requirement under Section 503A (line 103 – 110): “Sometimes, it is necessary for health care practitioners in hospitals, clinics, offices, or other settings to have certain compounded drug products on hand that they can administer to a patient who presents with an immediate need for the compounded drug product. For example, if a patient presents at an ophthalmologist’s office with a fungal eye infection, timely administration of a compounded antifungal medication may be critical to preventing vision loss.
    [Show full text]
  • Emerging Concepts in the Management of Acute Retinal Necrosis
    Downloaded from http://bjo.bmj.com/ on January 3, 2016 - Published by group.bmj.com Review Emerging concepts in the management of acute retinal necrosis Robert William Wong,1,2 J Michael Jumper,2 H Richard McDonald,2 Robert N Johnson,2 Arthur Fu,2 Brandon J Lujan,2,3 Emmett T Cunningham, Jr2,4 ▸ Additional files are ABSTRACT now exists on the characteristics, causes and treat- published online only. To view Acute retinal necrosis (ARN), also known as Kirisawa- ment of this condition. these files please visit the journal online (http://dx.doi. type uveitis, is an uncommon condition caused by org/10.1136/bjophthalmol- infection of the retina by one of the herpes family of CLINICAL SIGNS AND SYMPTOMS 2012-301983). viruses, most typically varicella zoster virus or herpes Acutely, ARN may present with eye redness, periorbi- 1Austin Retina Associates, simplex virus and less commonly cytomegalovirus. tal pain, photophobia and/or vision loss. On anterior Austin, Texas, USA Clinical diagnosis can be challenging and is often aided segment examination, patients may show episcleritis, 2The Department of by PCR-based analysis of ocular fluids. Treatment scleritis, keratitis and/or anterior chamber inflamma- Ophthalmology, California typically involves extended use of one or more antiviral tion, which may be either non-granulomatous or Pacific Medical Center, fi San Francisco, California, USA agents. Long term retinal detachment risk is high. We granulomatous ( gure 2). Examination of the poster- 3Department of Vision Science, review the literature on ARN and present an approach to ior segment may reveal vitreous inflammation, arter- School of Optometry, University the diagnosis and management of this serious condition.
    [Show full text]
  • Treatment of Acute Retinal Necrosis
    Treatment of Acute Retinal Necrosis Michael D. Tibbetts, MD,1 Chirag P. Shah, MD, MPH,2 Lucy H. Young, MD, PhD,3 Jay S. Duker, MD,4 Joseph I. Maguire, MD,2 Michael G. Morley, MD5 Objectives: To compare outcomes from patients with acute retinal necrosis (ARN) treated in the acyclovir- only era with those treated in the era of newer antiviral therapies, identify variables affecting outcomes in ARN, and evaluate strategies for fellow eye prophylaxis. Design: Multicenter, nonrandomized, retrospective, interventional series. Participants: A cohort of 58 patients diagnosed with ARN by a retina specialist at 1 of 4 referral centers between 1981 and 2008. The cohort was divided into 2 subgroups: patients treated during the acyclovir-only era (n ϭ 36) and patients treated during the current era of newer antiviral medications (n ϭ 22). Intervention: Intravenous, oral, or intravitreal antiviral medications, including acyclovir, valacyclovir, famci- clovir, valganciclovir, ganciclovir, and foscarnet; prophylactic laser retinopexy; aspirin; oral steroids. Main Outcome Measures: Visual acuity, retinal detachment, and fellow eye involvement. Results: A wide range and combination of antiviral agents are currently used for initial and long-term treatment of ARN. Outcomes from the newer antivirals era were similar to those achieved during the acyclovir- only era. In both groups, the incidence of 20/200 or worse visual acuity was 24% per person-year (P ϭ 0.91). The prevalence of retinal detachment was approximately 50% in each group (P ϭ 0.59). No variables, including prophylactic laser retinopexy, were associated with risk of retinal detachment. Two patients (3.4%) developed ARN in the initially unaffected eye.
    [Show full text]