Emerging Concepts in the Management of Acute Retinal Necrosis

Total Page:16

File Type:pdf, Size:1020Kb

Emerging Concepts in the Management of Acute Retinal Necrosis Downloaded from http://bjo.bmj.com/ on January 3, 2016 - Published by group.bmj.com Review Emerging concepts in the management of acute retinal necrosis Robert William Wong,1,2 J Michael Jumper,2 H Richard McDonald,2 Robert N Johnson,2 Arthur Fu,2 Brandon J Lujan,2,3 Emmett T Cunningham, Jr2,4 ▸ Additional files are ABSTRACT now exists on the characteristics, causes and treat- published online only. To view Acute retinal necrosis (ARN), also known as Kirisawa- ment of this condition. these files please visit the journal online (http://dx.doi. type uveitis, is an uncommon condition caused by org/10.1136/bjophthalmol- infection of the retina by one of the herpes family of CLINICAL SIGNS AND SYMPTOMS 2012-301983). viruses, most typically varicella zoster virus or herpes Acutely, ARN may present with eye redness, periorbi- 1Austin Retina Associates, simplex virus and less commonly cytomegalovirus. tal pain, photophobia and/or vision loss. On anterior Austin, Texas, USA Clinical diagnosis can be challenging and is often aided segment examination, patients may show episcleritis, 2The Department of by PCR-based analysis of ocular fluids. Treatment scleritis, keratitis and/or anterior chamber inflamma- Ophthalmology, California typically involves extended use of one or more antiviral tion, which may be either non-granulomatous or Pacific Medical Center, fi San Francisco, California, USA agents. Long term retinal detachment risk is high. We granulomatous ( gure 2). Examination of the poster- 3Department of Vision Science, review the literature on ARN and present an approach to ior segment may reveal vitreous inflammation, arter- School of Optometry, University the diagnosis and management of this serious condition. itis, patchy full thickness necrotising retinitis and, in of California, Berkeley, some cases, involvement of the optic disc. Typically, California, USA the retinitis presents as either confluent or multifocal 4The Department of Ophthalmology, Stanford patches of retinitis involving the peripheral retina University School of Medicine, INTRODUCTION (figure 3). An occlusive periarteritis is often present Stanford, California, USA Acute retinal necrosis (ARN) was first described in (figure 4). Second eye involvement occurs in approxi- 1971 by Akira Urayama and colleagues as a clinical mately a third of patients, typically within 6 weeks,6 Correspondence to syndrome consisting of acute unilateral panuveitis although fellow eye involvement decades following Emmett T Cunningham, Jr, 78 MD, PhD, MPH, West Coast associated with retinal periarteritis progressing to an initial infection has been described. The risk of Retina Medical Group, Inc., diffuse necrotising retinitis and, ultimately, rhegma- bilateral infection may be decreased with prompt 185 Berry Street, Lobby 2, togenous retinal detachment.1 The authors sug- antiviral therapy.9 Suite 130, San Francisco, gested the term Kirisawa–Urayama uveitis in honour With prompt initiation of treatment, progression CA 94107-1739, USA; emmett_cunningham@yahoo. of their teacher Professor Naganori Kirisawa, who of the retinitis can usually be halted within com was then Professor of Ophthalmology at Tohoku 2–4 weeks. As the active retinal infection and inflam- University (figure 1). The term ‘BARN’, for bilateral mation resolve, affected areas develop pigmentary Received 4 May 2012 ARN, was coined by Young and Bird in 1978.2 In changes, retinal thinning and atrophy, often produ- Revised 8 October 2012 Accepted 7 November 2012 1994, the Executive Committee of the American cing a scalloped appearance at the junction of Published Online First Uveitis Society refined the definition of ARN based involved and uninvolved retina. Vitreous organisa- 12 December 2012 on clinical characteristics and disease course to tion and traction may progress during this phase, include: (1) one or more foci of retinal necrosis with producing retinal breaks, retinal detachment and pro- discrete borders located in the peripheral retina; (2) liferative vitreoretinopathy. Rhegmatogenous retinal rapid progression in the absence of antiviral detachment occurs in a half to three-quarters of eyes therapy; (3) circumferential spread; (4) evidence of with ARN and may develop weeks to months after occlusive vasculopathy with arterial involvement; initial presentation of retinitis.10 11 Delayed compli- and (5) a prominent inflammatory reaction in the cations of ARN may include chronic vitritis, macular vitreous and anterior chambers.3 oedema, optic atrophy, epiretinal membrane forma- Over the past few decades, our knowledge of tion, viral relapse with cessation of antiviral medica- ARN has expanded greatly. Two recently published tion and phthysis.12 Poor visual outcomes have been nationwide surveys from the UK estimated the inci- associated with extensive retinal necrosis at time of dence of ARN to be approximately one case per referral,13 herpes simplex virus 2 (HSV-2) or varicella 2 million population per year.45In addition, zoster virus (VZV) infection, and misuse of genetic and epidemiological studies have identified corticosteroid.12 certain characteristics that may predispose patients to develop ARN. Newer diagnostic modalities, in PATIENT CHARACTERISTICS particular PCR-based assays, have been developed Although historically thought to affect otherwise to quickly and accurately identify causative organ- healthy adults, increasing evidence suggests that isms and to bolster the ophthalmologist’s ability patients who develop ARN may have underlying to discern ARN from other infectious causes of immune characteristics that put them at an retinitis. Treatment has advanced as well, with both increased risk for the infection. It is widely known improved systemic antivirals and the increasing use that immunosuppression induced by exogenous 14–16 To cite: Wong RW, of local therapy via intraocular injection. While the corticosteroid use may predispose to ARN. Jumper JM, McDonald HR, relative rarity of ARN and the lack of randomised While no racial or sexual predilection has been et al. Br J Ophthalmol clinical trials complicate efforts to establish identified, moderate associations with class II – 2013;97:545 552. evidence-based guidelines, an extensive literature human leukocyte antigen (HLA) antigen Wong RW, et al. Br J Ophthalmol 2013;97:545–552. doi:10.1136/bjophthalmol-2012-301983 545 Downloaded from http://bjo.bmj.com/ on January 3, 2016 - Published by group.bmj.com Review Figure 1 Professor Naganori Kirisawa (upper left; 1907–1980), after whom Kirisawas-type uveitis—most commonly known as acute retinal necrosis—was named, and Professor Akira Urayama (upper right; 1918–1993). Below, fundus photographs of the affected eye from Case 6, a 35-year-old man, described in the original report by Urayama and colleagues, showing panuveitis, papillitis, periarteritis and peripheral necrotising retinitis.1 Images courtesy of Dr Nakiyuri Yamada (http://www. nichigan.or.jp/english/ophthalmology. jsp). expression, most notably HLA-DQw7 (phenotype Bw62) and of progressive outer retinal necrosis (PORN), patients displayed DR4 antigens in Caucasian patients in the USA17 and the most severe immune dysfunction of all, specifically profound HLA-Aw33, -B44 and -DRw6 antigens in patients in Japan, immunosuppresion.20 Originally described in patients with HIV/ have suggested a possible genetic contribution.18 Moreover, AIDS, PORN is characterised by the occurrence of multiple areas Herbort and colleagues observed that the clinical presentation of necrotising retinitis with relatively little vitreous inflammation of herpetic retinitis may correlate with the amount of overall (figure 5). While the original description of PORN emphasised immune dysfunction.19 20 Specifically, they found that in milder involvement of the posterior pole, necrotising herpetic retinitis cases of ARN, patients tended to demonstrate more subtle can involve any portion of the retina, regardless of immune immune irregularities; in more classical cases of ARN, patients status, and it is now generally accepted that the presence or typically exhibited increasing immune dysfunction; and in cases absence of overlying vitreous inflammation is determined largely Figure 2 Granulomatous anterior chamber inflammation with large keratic precipitates in a patient with acute retinal necrosis. Courtesy of Figure 3 Extensive peripheral necrotising retinitis and periarteritis in Professor Rubens Belfort, Jr. an immunocompetent patient with acute retinal necrosis. 546 Wong RW, et al. Br J Ophthalmol 2013;97:545–552. doi:10.1136/bjophthalmol-2012-301983 Downloaded from http://bjo.bmj.com/ on January 3, 2016 - Published by group.bmj.com Review Figure 4 (A) Peripheral necrotising retinitis and periarteritis. (B) Fluorescein angiogram showing extensive peripheral non-perfusion with segmental arteriolar occlusion. Nodular arteritis with Kyrieleis plaques is also evident. by the patient’s underlying immune status. The differential diag- studies investigating viral causes of ARN have used a number of nosis of viral retinitis includes syphilitic retinitis, toxoplasmic diagnostic techniques, including antibody-based analysis of – retinochoroiditis, intraocular lymphoma, sarcoidosis, tubercu- serum or intraocular fluid,18 26 31 viral culture32 33 and patho- losis, toxocariasis, fungal or bacterial retinitis/endophthalmitis, logical examination of retinal specimens,34 often in conjunction Behçet’s disease and other retinal vasculitides. with immunocytochemical studies.35 More recently, PCR-based – analysis of intraocular
Recommended publications
  • Necrotising Retinopathies Simulating Acute Retinal Necrosis Syndrome B Balansard, B Bodaghi, N Cassoux, C Fardeau, S Romand, F Rozenberg, N a Rao, P Lehoang
    96 Br J Ophthalmol: first published as 10.1136/bjo.2004.042226 on 21 December 2004. Downloaded from EXTENDED REPORT Necrotising retinopathies simulating acute retinal necrosis syndrome B Balansard, B Bodaghi, N Cassoux, C Fardeau, S Romand, F Rozenberg, N A Rao, P LeHoang ............................................................................................................................... Br J Ophthalmol 2005;89:96–101. doi: 10.1136/bjo.2004.042226 Aim: To determine an aetiological diagnosis in patients presenting with necrotising retinopathies that simulate acute retinal necrosis (ARN). Methods: Retrospective non-comparative case series. The charts of 16 patients presenting with a clinical impression of ARN at Pitie´-Salpeˆtrie`re Hospital, Paris, France, between 1994 and 1999, who required initial antiviral therapy were reviewed. All of the patients had extensive laboratory tests. Anterior chamber paracentesis was performed on 14 patients and evaluated by polymerase chain reaction (PCR) and/or the See end of article for Witmer-Goldmann coefficient to determine the cause of retinitis. Three of the 14 cases also had diagnostic authors’ affiliations vitrectomy. Responses to specific treatment, initiated based on laboratory results, and the final outcome ....................... were evaluated. Correspondence to: Results: Seven of the 16 patients were female and nine were male. The retinitis was bilateral in five patients P LeHoang, and unilateral in 11 patients. The average age of the patients at presentation was 53.6 years. 13 patients MD, PhD, Department of were immune deficient for various reasons. Upon initial presentation, the patients’ visual acuities were less Ophthalmology, Pitie´- than 20/200 in 68% of the affected eyes. The final diagnoses, based on laboratory data and therapeutic Salpeˆtrie`re Hospital, 43 bd de l’Hoˆpital, Paris, France; response were toxoplasmic retinochoroiditis (62.5%), syphilitic retinitis (12.5%), aspergillus endophthal- bahram.bodaghi@ mitis (12.5%), Behc¸et’s disease (6.2%), and intraocular lymphoma (6.2%).
    [Show full text]
  • Cytomegalovirus Retinitis: a Manifestation of the Acquired Immune Deficiency Syndrome (AIDS)*
    Br J Ophthalmol: first published as 10.1136/bjo.67.6.372 on 1 June 1983. Downloaded from British Journal ofOphthalmology, 1983, 67, 372-380 Cytomegalovirus retinitis: a manifestation of the acquired immune deficiency syndrome (AIDS)* ALAN H. FRIEDMAN,' JUAN ORELLANA,'2 WILLIAM R. FREEMAN,3 MAURICE H. LUNTZ,2 MICHAEL B. STARR,3 MICHAEL L. TAPPER,4 ILYA SPIGLAND,s HEIDRUN ROTTERDAM,' RICARDO MESA TEJADA,8 SUSAN BRAUNHUT,8 DONNA MILDVAN,6 AND USHA MATHUR6 From the 2Departments ofOphthalmology and 6Medicine (Infectious Disease), Beth Israel Medical Center; 3Ophthalmology, "Medicine (Infectious Disease), and 'Pathology, Lenox Hill Hospital; 'Ophthalmology, Mount Sinai School ofMedicine; 'Division of Virology, Montefiore Hospital and Medical Center; and the 8Institute for Cancer Research, Columbia University College ofPhysicians and Surgeons, New York, USA SUMMARY Two homosexual males with the 'gay bowel syndrome' experienced an acute unilateral loss of vision. Both patients had white intraretinal lesions, which became confluent. One of the cases had a depressed cell-mediated immunity; both patients ultimately died after a prolonged illness. In one patient cytomegalovirus was cultured from a vitreous biopsy. Autopsy revealed disseminated cytomegalovirus in both patients. Widespread retinal necrosis was evident, with typical nuclear and cytoplasmic inclusions of cytomegalovirus. Electron microscopy showed herpes virus, while immunoperoxidase techniques showed cytomegalovirus. The altered cell-mediated response present in homosexual patients may be responsible for the clinical syndromes of Kaposi's sarcoma and opportunistic infection by Pneumocystis carinii, herpes simplex, or cytomegalovirus. http://bjo.bmj.com/ Retinal involvement in adult cytomegalic inclusion manifestations of the syndrome include the 'gay disease (CID) is usually associated with the con- bowel syndrome9 and Kaposi's sarcoma.
    [Show full text]
  • Acute Retinal Necrosis Following Dexamethasone Intravitreal Implant (Ozurdex®) Administration in an Immunocompetent Adult With
    Zhang et al. BMC Ophthalmology (2020) 20:247 https://doi.org/10.1186/s12886-020-01514-w CASE REPORT Open Access Acute retinal necrosis following dexamethasone intravitreal implant (Ozurdex®) administration in an immunocompetent adult with a history of HSV encephalitis: a case report Zhi-Yong Zhang1,2* , Xiu-Yun Liu1,2 and Tao Jiang1,2 Abstract Background: Dexamethasone intravitreal implants (0.7 mg) (Ozurdex®, Allergan Inc., Madison, NJ) are FDA approved for managing macular oedema (ME) of retinal vein occlusion (RVO). The major complications associated with intravitreal Ozurdex® implant include increased intraocular pressure and cataract progression. In regard to the occurrence of retinal complications, we report an unusual intravitreal Ozurdex® implantation-related acute retinal necrosis (ARN). Case presentation: A 45-year-old immunocompetent woman with a history of encephalitis presented with photophobia, redness, floaters, and rapidly decreased vision in her left eye. Three and six months ago, she received two doses of intravitreal Ozurdex® implant for ME of RVO. Clinical evaluation, including slit-lamp biomicroscopy, retinal photography, and fluorescein angiography, revealed anterior chamber cells, granulomatous keratic precipitates, cells in the vitreous, optic disc oedema, occlusive retinal vasculitis, scattered retinal haemorrhages, one quadrant of peripheral white areas with retinal necrosis, optic disc and vessels fluorescein staining, and retinal nonperfusion zones. All the above clinical manifestations showed an ARN. Herpes simplex virus was detected in the aqueous and vitreous humour by quantitative polymerase chain reaction testing. Intravenous acyclovir 500 mg tid for 7 days followed by oral valcyclovir was immediately performed for ARN. At 4 months, the patient’s condition improved without retinal detachment, and the best-corrected visual acuity remained stable at 0.3.
    [Show full text]
  • Incidence and Management of Acute Endophthalmitis After Intravitreal
    Eye (2009) 23, 2187–2193 & 2009 Macmillan Publishers Limited All rights reserved 0950-222X/09 $32.00 www.nature.com/eye Incidence and O Artunay, E Yuzbasioglu, R Rasier, A Sengu¨l CLINICAL STUDY and H Bahcecioglu management of acute endophthalmitis after intravitreal bevacizumab (Avastin) injection Abstract recognition and treatment are key in maximizing outcomes in patients who Introduction The aim of this study was to developed endophthalmitis after intravitreal report the incidence and management of acute injection of bevacizumab. endophthalmitis after intravitreal injection of Eye (2009) 23, 2187–2193; doi:10.1038/eye.2009.7; Avastin (bevacizumab), and visual acuity published online 13 February 2009 outcomes of three eyes of three patients who developed acute endophthalmitis following Keywords: intravitreal injection; bevacizumab; intravitreal injection of Avastin. endophthalmitis Methods This clinical retrospective, non-comparative study included 3022 Introduction intravitreal injections of 1.25 mg bevacizumab consecutively performed for 1822 eyes with Intravitreal injection of medications is becoming exudative age-related macular degeneration increasingly accepted for treatment of various and other retinal diseases. Of 3022 injections, retinal disorders, with effective intravitreal 1200 were reinjections. After clinical therapies being commonly administered in the appearance of post-injection endophthalmitis, vitreoretinal clinical or surgical environment. Department of immediate intervention was performed, With the increase in
    [Show full text]
  • Endophthalmitis After Intravitreal Injections in Patients with Self-Reported Iodine Allergy
    Endophthalmitis After Intravitreal Injections in Patients With Self-reported Iodine Allergy BOBECK S. MODJTAHEDI, TAVE´ VAN ZYL, HEMANG K. PANDYA, ROBERT E. LEONARD, II, AND DEAN ELIOTT PURPOSE: To present cases of endophthalmitis IMITING THE RISK OF POSTINJECTION ENDOPHTHAL- following intravitreal injections where povidone-iodine mitis is an area of considerable practical and aca- (PI) was not used as part of the surgical preparation. demic interest, especially in the era of regular L DESIGN: Retrospective case series. intravitreal injections. Although the incidence of postin- METHODS: All cases of presumed injection-related jection endophthalmitis is low (0.056% per injection in a endophthalmitis presenting to the Massachusetts Eye recent meta-analysis),1 the risk to an individual patient is and Ear Infirmary between June 2008 and November magnified by the recurrent nature of the procedure. Using 2014 and Dean McGee Eye Institute between January povidone-iodine (PI) for surgical antisepsis is well estab- 2010 and January 2015 were identified. Patients who lished and is the only preoperative measure shown to did not receive PI preparation owing to documented reduce the risk of endophthalmitis in patients undergoing self-reported allergy to iodine, iodine-containing contrast intraocular surgery.2 The importance of PI application material, or shellfish were identified and their injection prior to intravitreal injection has been observed by histories and clinical courses reviewed. Nentwich and associates,3 Bhavsar and Sandler,4 and Bryn- 5 RESULTS: The combined rate of postinjection endoph- skov and associates, the latter of whom described no cases thalmitis at these 2 centers was 0.019%. Among 42 of endophthalmitis after 20 293 injections.
    [Show full text]
  • Intravitreal Angiogenesis Inhibitors for Retinal Vascular Conditions
    MEDICAL COVERAGE GUIDELINES ORIGINAL EFFECTIVE DATE: 06/01/19 SECTION: DRUGS LAST REVIEW DATE: 04/16/19 LAST CRITERIA REVISION DATE: ARCHIVE DATE: LUCENTIS® (ranibizumab) for intravitreal injection Non-Discrimination Statement and Multi-Language Interpreter Services information are located at the end of this document. Coverage for services, procedures, medical devices and drugs are dependent upon benefit eligibility as outlined in the member's specific benefit plan. This Medical Coverage Guideline must be read in its entirety to determine coverage eligibility, if any. This Medical Coverage Guideline provides information related to coverage determinations only and does not imply that a service or treatment is clinically appropriate or inappropriate. The provider and the member are responsible for all decisions regarding the appropriateness of care. Providers should provide BCBSAZ complete medical rationale when requesting any exceptions to these guidelines. The section identified as “Description” defines or describes a service, procedure, medical device or drug and is in no way intended as a statement of medical necessity and/or coverage. The section identified as “Criteria” defines criteria to determine whether a service, procedure, medical device or drug is considered medically necessary or experimental or investigational. State or federal mandates, e.g., FEP program, may dictate that any drug, device or biological product approved by the U.S. Food and Drug Administration (FDA) may not be considered experimental or investigational and thus the drug, device or biological product may be assessed only on the basis of medical necessity. Medical Coverage Guidelines are subject to change as new information becomes available. For purposes of this Medical Coverage Guideline, the terms "experimental" and "investigational" are considered to be interchangeable.
    [Show full text]
  • Intravitreal Injection Procedure Instructional Outline
    Intravitreal Injection Procedure Instructional Outline Anh-Danh T. Phan, M.D. Indiana University School of Medicine Department of Ophthalmology Intravitreal Injection Procedure Instructional Outline Anh-Danh T. Phan, M.D. Assistant Professor of Ophthalmology Retina and Vitreous Service Indiana University School of Medicine Department of Ophthalmology / Glick Eye Institute Indianapolis, IN Email: [email protected] Background Statement: Intravitreal injection is the most common procedure in ophthalmology, yet carries associated risks. Mastery of the procedure particularly during residency training is critical to address the staggering patient treatment needs. Objectives: To transfer, along with accompanying instructional video, useful knowledge and skills for performing the intravitreal injection during ophthalmology training, enabling residents to understand: (1) the precautions before, during, and after the procedure, including risk of endophthalmitis; (2) the technique performed at a major university medical center; and (3) a method to standardize the procedure across multiple clinical settings. Residents are encouraged to gather instructional input from their supervising retinal specialists during training to develop their own procedural approach most comfortable, while observing the underlying principles and concepts outlined herein. Conflict of Interest The author has no propriety interest in either the outline or its subject matter. Legal Disclaimer The author provides this material for educational purposes only. It is not intended
    [Show full text]
  • Herpetic Viral Retinitis
    American Journal of Virology 2 (1): 25-35, 2013 ISSN: 1949-0097 ©2013 Science Publication doi:10.3844/ajvsp.2013.25.35 Published Online 2 (1) 2013 (http://www.thescipub.com/ajv.toc) Herpetic Viral Retinitis Hidetaka Noma Department of Ophthalmology, Yachiyo Medical Center, Tokyo Women’s Medical University, Chiba, Japan Received 2012-05-30, Revised 2012-07-09; Accepted 2013-07-22 ABSTRACT Human Herpes Virus (HHV) is a DNA virus and is the most important viral pathogen causing intraocular inflammation. HHV is classified into types 1-8. Among these types, HHV-1, HHV-2, HHV-3 Varicella Zoster Virus (VZV) and HHV-5 Cytomegalovirus (CMV) are known to cause herpetic viral retinitis, including acute retinal necrosis and CMV retinitis. Herpes viral retinitis can be diagnosed from characteristic ocular findings and viral identification by PCR of the aqueous humor. Recently, therapy has become more effective than in the past. Herpes viral retinitis gradually progresses if appropriate treatment is not provided with regard to the patient’s immune status. Further advances in diagnostic methods and treatment are required in the future. Keywords: Human Herpes Virus (HHV), Varicella Zoster Virus (VZV), Acute Retinal Necrosis, Polymerase Chain Reaction (PCR), CMV Retinitis, Pathogen Causing Intraocular Inflammation 1. INTRODUCTION by Young and Bird (1978). In the 1980s, the etiology of the disease was shown to be infection by HSV and Human Herpes Virus (HHV) is a DNA virus and VSV. Widespread adoption of the Polymerase Chain the most important viral pathogen causing intraocular Reaction (PCR) method from early the 1990 made it inflammation. It is classified into types 1-8, among possible to easily detect the presence of intraocular which HHV-1, HHV-2, HHV-3 (Varicella Zoster viruses, after which many cases of ARN were Virus: VZV) and HHV-5 Cytomegalovirus (CMV) are diagnosed.
    [Show full text]
  • Ocular HIV/AIDS Related Diseases (Initial and Follow-Up Evaluation)
    Ocular HIV/AIDS Related Diseases (Initial and Follow-up Evaluation) (Ratings: A: Most important, B: Moderately important, C: Relevant but not critical Strength of Evidence: I: Strong, II: Substantial but lacks some of I, III: consensus of expert opinion in absence of evidence for I & II) General - Initial Exam History Age (B:III) Ocular symptoms including laterality (A:III) Systemic symptoms (A:III) Complete review of systems (A:III) Prior ocular history (A:III) Prior medical history (A:III) Prior surgical history (B:III) History of other sexually transmitted diseases (A:III) History of AIDS-defining illnesses or complications (A:III) Method of HIV acquisition (B:III) Duration of HIV infection (A:III) Past and current risk factors – sexual behavior, intravenous drug abuse, transfusion history (A:III) Current anti-HIV regimen – duration and compliance (A:III) Current medications (A:II) Current CD4 count (A:II) Current viral load (A:II) Medication allergies (B:III) General - Initial Physical Exam General appearance (A:III) External examination – face, ocular adnexa (A:III) Lymphatics – preauricular and submandibular nodes (A:III) Visual acuity (A:III) Extraocular motility (A:III) Confrontation visual fields (A:III) Eyelids – lid closure, interpalpebral fissure height (B:III) Lacrimal gland (B:III) Evaluation of tear film – Schirmer, rose bengal and fluorescein staining (A:III) Nasolacrimal function (B:III) Slit-lamp examination o Eyelid margins (A:III) o Conjunctiva (A:III) o Sclera (A:III) o Cornea (A:III) o
    [Show full text]
  • Advances in the Diagnosis and Management of Acute Retinal Necrosis
    8 Review Article Page 1 of 8 Advances in the diagnosis and management of acute retinal necrosis Casey L. Anthony, J. Clay Bavinger, Steven Yeh Department of Ophthalmology, Emory Eye Center, Atlanta, GA, USA Contributions: (I) Conception and design: All authors; (II) Administrative support: S Yeh; (III) Provision of study materials or patients: All authors; (IV) Collection and assembly of data: All authors; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors Correspondence to: Steven Yeh, MD. Department of Ophthalmology, Emory Eye Center, 1365 Clifton Road, Atlanta, GA 30322, USA. Email: [email protected]. Abstract: Acute retinal necrosis (ARN) is a devastating syndrome characterized by panuveitis, retinal necrosis, and a high rate of retinal detachment that may result in poor visual outcomes if not promptly diagnosed and treated. ARN is most commonly caused by viruses within the herpesvirus family. Etiologies include varicella-zoster virus, herpes simplex virus, and cytomegalovirus, and may be promptly diagnosed by polymerase chain reaction testing of aqueous or vitreous fluid. The true incidence of ARN is not known due to its rarity; as a result, clinical treatment is often guided by retrospective case series, case reports, and expert opinion. Standard of care has evolved over time but currently includes a combination of systemic and intravitreal antiviral in conjunction with topical or oral steroids and surgical therapy as needed. Combination therapy may reduce the rate of severe vision loss and increase the rate of visual acuity gain, although further studies are needed in this area. In particular for patients with mild to moderate disease, combination therapy may reduce the rate of retinal detachment.
    [Show full text]
  • Informed Consent for Lucentis Tm (Ranibizumab) Intravitreal Injection
    PATIENT _________________________________________DATE __________________ OD OS INFORMED CONSENT FOR LUCENTIS TM (RANIBIZUMAB) INTRAVITREAL INJECTION INDICATIONS Age-related macular degeneration (AMD) is the leading cause of blindness in people over 50 years of age. There are two types of macular degeneration: dry and wet. In the “wet” form of AMD, abnormal blood vessels grow in the back of the eye. Sometimes these vessels leak blood or fluid that causes blurred or distorted vision. Without treatment, vision loss may be quick and severe. POSSIBLE BENEFITS, LIMITATIONS, AND ADMINISTRATION Lucentis TM works by inhibiting the growth of the abnormal blood vessels that cause AMD. It is also used to treat swelling of the macula due to MAD. The goal of treatment is to prevent further loss of vision. Although some patients have regained vision, the medication may not restore vision that has already been lost, and may not ultimately prevent further loss of vision caused by the disease. After the pupil is dilated and the eye is numbed with anesthesia, the medication is injected into the vitreous or jelly-like substance in the back chamber of the eye. Lucentis TM is administered by an injection into your eye as needed at regular intervals (about every four weeks); your ophthalmologist will tell you how often you will receive the injection, and for how long. ALTERNATIVES You do not have to receive treatment for your condition, although without treatment, AMD can lead to further vision loss and blindness, sometimes very quickly. Other forms of treatment are available. At present, there are two other FDA-approved treatments for neovascular AMD: Photodynamic therapy with a drug called Visudyne TM and injection into the eye of a drug called Macugen TM .
    [Show full text]
  • Intravitreal Injections
    Intravitreal Injections This material will help you understand your intravitreal injection treatment and what you can expect. What are intravitreal injections? An intravitreal injection (IVI) is a shot of medicine into your eye using a thin needle. The inside of your eye is filled with a gel-like fluid called the vitreous (vit-ree-us). The doctor or nurse will inject the medicine through the front of the eye into the vitreous, near the retina at the back of the eye (see picture on right). Image courtesy of the Collaborative Ocular Melanoma Study Group The medicine used will depend on your condition being treated. IVIs are used to treat many eye problems, including macular degeneration, diabetic retinopathy, and some cases of eye cancer. What can I expect before my treatment? There are no special preparations for IVI. You should eat normally and take all your regular medicines before you come in. Let your doctor know any medications you are currently taking, as well as any allergies you have. Kellogg Eye Center Intravitreal Injections 1 This treatment is performed in your doctor’s office, so you will be able to go home the same day. If you do not feel comfortable driving after your treatment, you may want to bring a friend or family member with you to drive you home. What can I expect on the day of my treatment? On the day of your IVI, you will come to the Kellogg Eye Center Oncology Clinic. First, you will be given eye drops to dilate (widen) your pupils. Your doctor will then have you lie down in a comfortable face-up position.
    [Show full text]