Utilization of a Solar Sail to Perform a Lunar Cubesat Science Mission

Total Page:16

File Type:pdf, Size:1020Kb

Utilization of a Solar Sail to Perform a Lunar Cubesat Science Mission Utilization of a Solar Sail to Perform a Lunar CubeSat Science Mission 2nd Interplanetary CubeSat Workshop Ithaca, New York May 28 -29, 2013 The University of Texas at Austin (UT): Texas Spacecraft Laboratory (TSL) Peter Z. Schulte Undergraduate Research Assistant E. Glenn Lightsey Professor Katharine M. Brumbaugh Graduate Research Assistant Jet Propulsion Laboratory, California Institute of Technology (JPL) Robert L. Staehle Assistant Manager for Advanced Concepts, Instruments Division 1 Overview • Demonstrate use of solar sail propulsion to enable unique lunar science missions • Six-unit (6U) CubeSat configuration with spacecraft mass ≈ 12 kg • Deliver as secondary payload to circular Low-Lunar Orbit (LLO) • Deploy solar sail and raise orbit to accomplish science objectives • Show an example destination: enter an L2 halo orbit 2 Solar Sail Technology • Constant low-thrust propulsion with reduced mass and limited propellant use • Several 400 m 2 sails have been deployed on the ground in demonstrations by NASA and DLR 1 • Recent and upcoming Earth-orbiting solar sail technology demonstration flights 2-4: IKAROS Spacecraft (JAXA) 2 Name Organization Sail Size Date Spacecraft IKAROS JAXA 200 m 2 June 2010 Custom NanoSail-D2 NASA/AFRL 10 m 2 January 2011 3U CubeSat CubeSail NASA/CU 25 m 2 Planned 2013 3U CubeSat Aerospace/ Univ. of Illinois DeOrbitSail Univ. of Surrey 25 m 2 Planned 2014 3U CubeSat LightSail TM -1 Planetary 32 m 2 Planned 2015 3U CubeSat Society NanoSail-D2 Spacecraft (NASA) 3 3 Concept of Operations 1.) Launch 2.) Deliver to Moon 3.) Deploy 6U 4.) Cruise Phase in on MPCV CubeSat from MPCV Lunar Circular Orbit 5.) Deploy Solar Sail 6.) Orbit Raising 7.) Transfer to L2 8.) Halo Orbit at L2 Image Sources: Panels 1,2, and 4 - various public NASA websites. Panel 3 - Canisterized Satellite Dispenser Data Sheet, p. 15, Planetary Systems Corporation website, http://www.planetarysystemscorp.com/#!__downloads 4 Trajectory Study Methodology • Developed numerical simulation in MATLAB to evaluate trajectory • Primary simulation based in Sun-Centered Inertial (SCI) frame • For simplicity of interpretation, input and output values were provided in the Earth-Moon (EM) rotating reference frame 5 Sun-Centered Inertial (SCI) Frame Concept Moon Earth yi Moon Orbit Sun Inclination: 5.145° xi zi *Not to scale Image Source: Oracle Education Foundation ThinkQuest article 6 http://library.thinkquest.org/29033/begin/earthsunmoon.htm Earth-Moon (EM) Frame Concept L4 x Earth L3 L1Moon L2 x x x L5 x Earth-Moon rotating reference frame showing locations of Lagrange Points (L1 through L5) 5 7 z y i i Earth -Moon (EM) Frame Concept T xi θ Sun vector to solar sail zem x z em zi em i ωem yem Moon Orbit Inclination i = 5.145° Image Source: Oracle Education Foundation ThinkQuest article 8 *Not to scale http://library.thinkquest.org/29033/begin/earthsunmoon.htm . Solar Sail Thrust Determination -3 x 10 Solar sail thrust as a function of tilt angle and reflectivity 1 From Space Mission 0.86 reflectivity 0.9 6 0.97 reflectivity Analysis and Design : 0.8 0.7 -6 RA 2 Tsail = 9.113 x 10 sin (θ (t)) [N] 0.6 D2 0.5 Thrust (N) 0.4 Where: 0.3 – R = fraction of incident light 0.2 reflected by sail 0.1 0 0 20 40 60 80 100 120 140 160 180 (Aluminum ranges 0.86-0.97; Sail tilt angle from Sun-Earth line (deg) absolute max = 1) Example thrust values with – A = sail area (m 2) representative input parameters – D = distance to Sun in AU D = 1.0026; A = 100 m 2 R = 0.86 – Θ(t) = sail tilt angle Max T = 7.80 x 10 -4 N (varies with respect to time) Avg T = 3.90 x 10 -4 N R = 0.97 Max T = 8.7945 x 10 -4 N Avg T = 4.40 x 10 -4 N 9 Inertial Equations of Motion (in SCI frame) *Sail force is along direction of the thrust vector ( ût) Assumes Sun is always visible to entire sail (ignore shadowing) 10 Solar Sail Thrust Control •Thrust off when moving toward Sun •Thrust on when moving away from Sun LightSail-1 Attitude Control System Orbit Raising Mode 7 11 Orbit Raising Maneuver 4 x 10 Earth-Moon System w/ origin at c.m. • Simulation starts with Earth center of mass 6 Moon center of mass Release Trajectory spacecraft in 110 km Final point before sail unfurl Solar sail trajectory L1 circular Low-Lunar Orbit 4 L2 Moon Surface • Solar sail deployed after 2 checkout phase • Sail force causes orbit to 0 Y-axis(km) spiral out slowly from Moon -2 • Orbit remains nearly circular until escape from -4 lunar gravity after 858 days -6 3.2 3.4 3.6 3.8 4 4.2 4.4 5 X-axis (km) x 10 12 Orbit Raising Maneuver 4 x 10 Earth-Moon System w/ origin at c.m. Spiral outward Earth center of mass 6 Moon center of mass from lunar orbit Release Trajectory Final point before sail unfurl Solar sail trajectory L1 4 L2 Moon Surface 2 0 Y-axisY-axis(km) (km) -2 -4 -6 3.2 3.4 3.6 3.8 4 4.2 4.4 13 5 X-axis (km) x 10 Orbit Raising Maneuver 4 x 10 Earth-Moon System w/ origin at c.m. Wide range of Earth center of mass 6 Moon center of mass altitudes is covered Release Trajectory (desired condition) Final point before sail unfurl Solar sail trajectory L1 4 L2 Moon Surface 2 0 Y-axisY-axis(km) (km) -2 Orbit stretches about halfway to Lunar L2 point -4 (desired condition) -6 3.2 3.4 3.6 3.8 4 4.2 4.4 14 5 X-axis (km) x 10 Orbit Raising Maneuver 4 x 10 Earth-Moon System w/ origin at c.m. Earth center of mass 6 Moon center of mass Release Trajectory Final point before sail unfurl Solar sail trajectory L1 4 L2 Moon Surface 2 0 Y-axisY-axis(km) (km) -2 Escapes from lunar gravity and passes near -4 L2 after 858 days (2 years, 4 months) -6 3.2 3.4 3.6 3.8 4 4.2 4.4 15 5 X-axis (km) x 10 Unstable L2 Halo Orbit • Assume optimal transfer trajectory exists orbit raising trajectory to L2 halo orbit • Differential correction procedure used to determine initial conditions for an L2 halo orbit • Uncontrolled Three -Body Motion (Circular Restricted Three - Body Problem) in EM frame (Equations from Ref. 8): 16 Unstable L2 Halo Orbit 1 d.u. = distance from Earth to Moon (384,000 km) Uncontrolled: Uncontrolled: 1 period (11.7 days) 12.5 periods (146.22 days) 17 Unstable L2 Halo Orbit Uncontrolled Trajectory Comparison Uncontrolled: 1 period (11.7 days) Earth-Moon Halo Orbit in x-z plane Earth-Moon Halo Orbit in x-y plane 0.05 Trajectory Trajectory 0.1 L1 L1 L2 L2 0 Moon Moon 0.05 -0.05 0 -0.1 Y location (d.u.) Z location (d.u.) -0.05 -0.15 -0.1 -0.2 0.85 0.9 0.95 1 1.05 1.1 1.15 0.85 0.9 0.95 1 1.05 1.1 1.15 X location (d.u.) X location (d.u.) 18 Uncontrolled: 12.5 periods (146.22 days) Unstable L2 Halo Orbit Uncontrolled trajectory escapes lunar gravity after 175 days Earth-Moon Halo Orbit in x-z plane Trajectory L1 1 L2 Moon 0.5 0 Earth ZZ locationlocation (d.u.) (d.u.) -0.5 -1 -2 -1.5 -1 -0.5 0 0.5 1 X location (d.u.) 19 Stable L2 Halo Orbit (LQR Control Force) • Develop an ideal controller to stabilize L2 halo orbit using an unconstrained, arbitrary control force • Added ideal control acceleration to three-body motion in EM frame: • Linear state feedback controller using gain matrix K obtained via linear quadratic regulator (LQR) method 8 • Compares state at each timestep to reference state (full period solution of uncontrolled L2 halo orbit) 20 Stable L2 Halo Orbit (LQR Control Force) Ideal LQR Control vs. Uncontrolled Trajectory Comparison Earth-Moon Halo Orbit (controlled) Trajectory L1 L2 Moon 0.05 0 -0.05 -0.1 ZZ locationlocation (d.u.) (d.u.) -0.15 0.1 1.1 0 1 -0.1 0.9 Y location (d.u.) X location (d.u.) Controlled: 50 periods (1.6 years) Uncontrolled: 12.5 periods (146.22 days) 21 Candidate Science Mission Applications Enabled • Significant orbital maneuvering capability of an inexpensive s/c in lunar orbits could be used for: – Radio survey and mapping of Moon’s radio shadow 9 – Observations into polar craters 10 – Constellations to measure fields and particles with simultaneous spatial and temporal resolutions 9 – Telecom relay from small science packages emplaced out of Earth view on lunar farside and in some polar craters 10 • If you can raise from 110 km circular orbit to escape, the same propulsion technique can be used to go from incoming V- infinity to any orbit 22 Summary • Developed models to calculate solar sail thrust force based on angle to the sun, inertial position and velocity, sail material properties, and physical area of sail • Created simulation to propagate trajectories in Sun-Centered Inertial (SCI) frame, but provided initial conditions and plotted results in Earth-Moon (EM) rotating reference frame • Assumed 6U CubeSat can be delivered to a lunar circular orbit by another Moon -bound spacecraft • Modeled solar sail propulsion to demonstrate orbit raising • Determined L2 halo orbit can be stabilized; will consider using solar sail for this maneuver • Established proof of concept for a solar sail orbit raising mission at the Moon with low-mass, low-cost spacecraft (time scale 2-3 years) 23 Future Work • Design optimal control laws for solar sail pointing – Orbit raising maneuver – Transfer to L2 halo orbit – L2 halo orbit stabilization • Design optimal transfer trajectory (from orbit raising trajectory to L2 halo orbit) • Implement solar sail visible and radio shadowing functions for increased simulation fidelity 24 Contact Information Primary Author : Peter Z.
Recommended publications
  • Design of the Alpha Cubesat: Technology Demonstration of a Chipsat-Equipped Retroreflective Light Sail
    AIAA SciTech Forum 10.2514/6.2021-1254 11–15 & 19–21 January 2021, VIRTUAL EVENT AIAA Scitech 2021 Forum Design of the Alpha CubeSat: Technology Demonstration of a ChipSat-Equipped Retroreflective Light Sail Joshua S. Umansky-Castro,∗ João Maria B. Mesquita, † Avisha Kumar, ‡ Maxwell Anderson, § Tan Yaw Tung, ¶ Jenny J. Wen, ‖ V. Hunter Adams ∗∗ and Mason A. Peck †† Cornell University, Ithaca, NY, 14850 Andrew Filo ‡‡ 4Special Projects, Cupertino, CA, 95014 Davide Carabellese§§ Politecnico di Torino, Turin, Italy 10129 C Bangs ¶¶ Brooklyn, NY, 11216 Martina Mrongovius ∗∗∗ HoloCenter, Queens, NY 10004 Gregory L. Matloff ††† City Tech, Brooklyn, NY 11201 This paper provides an overview of Alpha, a rapidly developed, low-cost CubeSat mission to verify the performance of a highly retroreflective material for light-sail propulsion. Designed, integrated, and tested by students of the Space Systems Design Studio at Cornell University, this mission demonstrates a number of key technologies that enable next-generation capabilities for space exploration. In particular, this paper focuses on the novel application of ChipSats (gram scale spacecraft-on-a-chip technology) as a means of verifying Alpha’s sail orbit and attitude dynamics. Other innovations include an entirely 3D-printed structure to enable quick and inexpensive prototyping, an onboard Iridium modem that bypasses the need for ground- station radio equipment, retroreflective sail material that provides more deterministic thrust from laser illumination, and an attitude-control subsystem that provides full attitude and angular-rate control using magnetorquers only. In addition to these near-term technology demonstrations, Alpha is among the first exhibitions of holography in space, a medium that shows longer-term promise in several roles for interstellar travel.
    [Show full text]
  • Sg423finalreport.Pdf
    Notice: The cosmic study or position paper that is the subject of this report was approved by the Board of Trustees of the International Academy of Astronautics (IAA). Any opinions, findings, conclusions, or recommendations expressed in this report are those of the authors and do not necessarily reflect the views of the sponsoring or funding organizations. For more information about the International Academy of Astronautics, visit the IAA home page at www.iaaweb.org. Copyright 2019 by the International Academy of Astronautics. All rights reserved. The International Academy of Astronautics (IAA), an independent nongovernmental organization recognized by the United Nations, was founded in 1960. The purposes of the IAA are to foster the development of astronautics for peaceful purposes, to recognize individuals who have distinguished themselves in areas related to astronautics, and to provide a program through which the membership can contribute to international endeavours and cooperation in the advancement of aerospace activities. © International Academy of Astronautics (IAA) May 2019. This publication is protected by copyright. The information it contains cannot be reproduced without written authorization. Title: A Handbook for Post-Mission Disposal of Satellites Less Than 100 kg Editors: Darren McKnight and Rei Kawashima International Academy of Astronautics 6 rue Galilée, Po Box 1268-16, 75766 Paris Cedex 16, France www.iaaweb.org ISBN/EAN IAA : 978-2-917761-68-7 Cover Illustration: credit A Handbook for Post-Mission Disposal of Satellites
    [Show full text]
  • The Moon Beyond 2002: Next Steps in Lunar Science and Exploration
    The Moon Beyond 2002: Next Steps in Lunar Science and Exploration September 12-14, 2002 Taos, New Mexico Sponsors Los Alamos National laboratory The University of California Institute of Geophysics and Planetary Physics (ICPP) Los Alamos Center for Space Science and Exploration Lunar and Planetary Institute Meeting Organizer David J. Lawrence (Los Alamos National Laboratory) Scientific Organizing Committee Mike Duke (Colorado School of Mines) Sarah Dunkin (Rutherford Appleton Laboratory) Rick Elphic (Los Alamos National Laboratory) Ray Hawke (University of Hawai’i) Lon Hood (University of Arizona) Brad Jolliff (Washington University) David Lawrence (Los Alamos National Laboratory) Chip Shearer (University of New Mexico) Harrison Schmitt (University of Wisconsin) Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Contribution No. 1128 Compiled in 2002 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Contract No. NASW-4574 with the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. Abstracts in this volume may be cited as Author A. B. (2002) Title of abstract. In The Moon Beyond 2002: Next Steps in Lunar Science and Exploration, P. XX. LPI Contribution No. 1128, Lunar and Planetary Institute, Houston. The volume is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113, USA Phone: 281-486-2172 Fax: 281-486-2186 E-mail: [email protected] Mail order requestors will be invoiced for the cost of shipping and handling.
    [Show full text]
  • Esa Standard Document
    Technology Reference Study Final Report GRL The Gamma Ray Lens SCI-A/2005.058/GRL/CB Craig Brown July 2005 s Page 1 of 172 T ECHNOLOGY R EFERENCE S TUDIES The Science Payload and Advanced Concepts Office (SCI-A) at the European Space Agency (ESA) conducts Technology Reference Studies (TRSs), hypothetical science driven missions that are not currently part of the ESA science programme. Most science missions are in many ways very challenging from a technology point of view. It is critical that these technologies are identified as early as possible in order to ensure their development in a timely manner, as well as allowing the feasibility of a mission to be determined. Technology reference studies are used as a means to identify such technology developments. The Technology Reference Study begins by establishing a series of preliminary scientific requirements. From these requirements, a hypothetical mission is designed that is capable of achieving the scientific goals. Critical issues and mission drivers are identified from the new mission concept and, from these drivers, a series of technology development activities are recommended. One such TRS has been conducted on a Gamma Ray Lens (GRL) mission. The GRL is an ideal candidate for a TRS due to the challenging nature of the technologies involved with focusing gamma rays. Identifying the key areas requiring technology development in this field prepares for any future high-energy astrophysics mission that the science community may propose, as well as establishes common technology development requirements possibly shared by different science missions. s page 2 of 172 A BSTRACT This is the final report for the Gamma Ray Lens (GRL) technology reference study performed by SCI-AM.
    [Show full text]
  • Flynn Creek Crater, Tennessee: Final Report, by David J
    1967010060 ASTROGEOLOGIC STUDIES / ANNUAL PROGRESS REPORT " July 1, 1965 to July 1, 1966 ° 'i t PART B - h . CRATERINVESTIGATIONS N 67_1_389 N 57-" .]9400 (ACCEC_ION [4U _" EiER! (THRU} .2_ / PP (PAGLS) (CO_ w ) _5 (NASA GR OR I"MX OR AD NUMBER) (_ATEGORY) DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOQICAL SURVEY • iri i i i i iiii i i 1967010060-002 ASTROGEOLOGIC STUDIES ANNUAL PROGRESS REPORT July i, 1965 to July I, 1966 PART B: CRATER INVESTIGATIONS November 1966 This preliminary report is distributed without editorial and technical review for conformity with official standards and nomenclature. It should not be quoted without permission. This report concerns work done on behalf of the National Aeronautics and Space Administration. DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY 1967010060-003 • #' C OING PAGE ,BLANK NO/" FILMED. CONTENTS PART B--CRATER INVESTIGATIONS Page Introduction ........................ vii History and origin of the Flynn Creek crater, Tennessee: final report, by David J. Roddy .............. 1 Introductien ..................... 1 Geologic history of the Flynn Creek crater ....... 5 Origin of the Flynn Creek crater ............ ii Conc lusions ...................... 32 References cited .................... 35 Geology of the Sierra Madera structure, Texas: progress report, by H. G. Wilshire ............ 41_ Introduction ...................... 41 Stratigraphy ...................... 41 Petrography and chemical composition .......... 49 S truc ture ....................... 62 References cited ............. ...... 69 Some aspects of the Manicouagan Lake structure in Quebec, Canada, by Stephen H. Wolfe ................ 71 f Craters produced by missile impacts, by H. J. Moore ..... 79 Introduction ...................... 79 Experimental procedure ................. 80 Experimental results .................. 81 Summary ........................ 103 References cited .................... 103 Hypervelocity impact craters in pumice, by H. J. Moore and / F.
    [Show full text]
  • Formation of Plastic Creases in Thin Polyimide Films
    B. Yasara Dharmadasa Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO 80309 e-mail: [email protected] Matthew W. McCallum Ann and H.J. Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO 80309 e-mail: [email protected] Formation of Plastic Creases Seyon Mierunalan in Thin Polyimide Films Department of Civil Engineering, University of Moratuwa, We present a combined experimental and analytical approach to study the formation of Katubedda 10400, Sri Lanka creases in tightly folded Kapton polyimide films. In the experiments, we have developed a e-mail: [email protected] robust procedure to create creases with repeatable residual fold angle by compressing ini- tially bent coupons. We then use it to explore the influence of different control parameters, Sahangi P. Dassanayake such as the force applied, and the time the film is being pressed. The experimental results Department of Civil Engineering, are compared with a simplified one-dimensional elastica model, as well as a high fidelity University of Moratuwa, finite element model; both models take into account the elasto-plastic behavior of the Katubedda 10400, Sri Lanka film. The models are able to predict the force required to create the crease, as well as e-mail: [email protected] the trend in the residual angle of the fold once the force is removed. We non-dimensionalize our results to rationalize the effect of plasticity, and we find robust scalings that extend our Chinthaka H. M. Y. findings to other geometries and material properties. [DOI: 10.1115/1.4046002] Mallikarachchi Keywords: constitutive modeling, material properties, thin-films, plastic creases Department of Civil Engineering, University of Moratuwa, Katubedda 10400, Sri Lanka e-mail: [email protected] Francisco Lopeź Jimeneź 1 Ann and H.J.
    [Show full text]
  • The Dynamics and Control of the Cubesail Mission — a Solar Sailing
    © 2010 Andrzej Pukniel. THE DYNAMICS AND CONTROL OF THE CUBESAIL MISSION—A SOLAR SAILING DEMONSTRATION BY ANDRZEJ PUKNIEL DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor in Philosophy in Aerospace Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2010 Urbana, Illinois Doctoral Committee: Professor Victoria Coverstone, Chair Professor John Prussing Professor Rodney Burton Professor Gary Swenson ABSTRACT The proposed study addresses two issues related to the slow emergence of solar sailing as a viable space propulsion method. The low technology readiness level and complications related to stowage, deployment, and support of the sail structure are both addressed by combining the CU Aerospace and University of Illinois-developed UltraSail and CubeSat expertise to design a small-scale solar sail deployment and propulsion experiment in low Earth orbit. The study analyzes multiple aspects of the problem from initial sizing and packaging of the solar sail film into two CubeSat-class spacecraft, through on-orbit deployment dynamics, attitude control of large and flexible space structure, and predictions of performance and orbital maneuvering capability. ii ACKNOWLEDGEMENTS The following work would have not been possible without the continuous support and encouragement of my advisor, Professor Coverstone. Her patience, scientific insight, and enthusiasm are a rare combination that fosters a unique research environment. It allows the students to develop both as highly competent engineers as well as young individuals. Few advisors sincerely care for their students’ personal development as much as Professor Coverstone and I consider myself privileged to be part of her research group. I would also like to thank Professors Rod Burton and Gary Swenson as well as Dr.
    [Show full text]
  • Hybrid Solar Sails for Active Debris Removal Final Report
    HybridSail Hybrid Solar Sails for Active Debris Removal Final Report Authors: Lourens Visagie(1), Theodoros Theodorou(1) Affiliation: 1. Surrey Space Centre - University of Surrey ACT Researchers: Leopold Summerer Date: 27 June 2011 Contacts: Vaios Lappas Tel: +44 (0) 1483 873412 Fax: +44 (0) 1483 689503 e-mail: [email protected] Leopold Summerer (Technical Officer) Tel: +31 (0)71 565 4192 Fax: +31 (0)71 565 8018 e-mail: [email protected] Ariadna ID: 10-6411b Ariadna study type: Standard Contract Number: 4000101448/10/NL/CBi Available on the ACT website http://www.esa.int/act Abstract The historical practice of abandoning spacecraft and upper stages at the end of mission life has resulted in a polluted environment in some earth orbits. The amount of objects orbiting the Earth poses a threat to safe operations in space. Studies have shown that in order to have a sustainable environment in low Earth orbit, commonly adopted mitigation guidelines should be followed (the Inter-Agency Space Debris Coordination Committee has proposed a set of debris mitigation guidelines and these have since been endorsed by the United Nations) as well as Active Debris Removal (ADR). HybridSail is a proposed concept for a scalable de-orbiting spacecraft that makes use of a deployable drag sail membrane and deployable electrostatic tethers to accelerate orbital decay. The HybridSail concept consists of deployable sail and tethers, stowed into a nano-satellite package. The nano- satellite, deployed from a mothership or from a launch vehicle will home in towards the selected piece of space debris using a small thruster-propulsion firing and magnetic attitude control system to dock on the debris.
    [Show full text]
  • The Heliogyro Reloaded
    THE HELIOGYRO RELOADED W. K. Wilkie, J. E. Warren Structural Dynamics Branch NASA Langley Research Center Hampton, VA M. W. Thomson, P. D. Lisman, P. E. Walkemeyer Jet Propulsion Laboratory California Institute of Technology Pasadena, CA D. V. Guerrant, D. A. Lawrence Department of Aerospace Engineering Sciences University of Colorado Boulder, CO ABSTRACT The heliogyro is a high-performance, spinning solar sail architecture that uses long - order of kilometers - reflective membrane strips to produce thrust from solar radiation pressure. The heliogyro’s membrane “blades” spin about a central hub and are stiffened by centrifugal forces only, making the design exceedingly light weight. Blades are also stowed and deployed from rolls; eliminating deployment and packaging problems associated with handling extremely large, and delicate, membrane sheets used with most traditional square-rigged or spinning disk solar sail designs. The heliogyro solar sail concept was first advanced in the 1960s by MacNeal. A 15 km diameter version was later extensively studied in the 1970s by JPL for an ambitious Comet Halley rendezvous mission, but ultimately not selected due to the need for a risk-reduction flight demonstration. Demonstrating system-level feasibility of a large, spinning heliogyro solar sail on the ground is impossible; however, recent advances in microsatellite bus technologies, coupled with the successful flight demonstration of reflectance control technologies on the JAXA IKAROS solar sail, now make an affordable, small-scale heliogyro technology flight demonstration potentially feasible. In this paper, we will present an overview of the history of the heliogyro solar sail concept, with particular attention paid to the MIT 200-meter-diameter heliogyro study of 1989, followed by a description of our updated, low-cost, heliogyro flight demonstration concept.
    [Show full text]
  • Design of Power, Propulsion, and Thermal Sub-Systems for a 3U Cubesat Measuring Earth’S Radiation Imbalance
    Article Design of Power, Propulsion, and Thermal Sub-Systems for a 3U CubeSat Measuring Earth’s Radiation Imbalance Jack Claricoats 1,† and Sam M. Dakka 2,*,† 1 Department of Engineering and Math, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK; [email protected] 2 Department of Mechanical, Materials and Manufacturing Engineering, The University of Nottingham, University Park, Nottingham NG7 2RD, UK * Correspondence: [email protected]; Tel.: +44-115-748-6853 † These authors contributed equally to this work. Received: 22 April 2018; Accepted: 6 June 2018; Published: 11 June 2018 Abstract: The paper presents the development of the power, propulsion, and thermal systems for a 3U CubeSat orbiting Earth at a radius of 600 km measuring the radiation imbalance using the RAVAN (Radiometer Assessment using Vertically Aligned NanoTubes) payload developed by NASA (National Aeronautics and Space Administration). The propulsion system was selected as a Mars-Space PPTCUP -Pulsed Plasma Thruster for CubeSat Propulsion, micro-pulsed plasma thruster with satisfactory capability to provide enough impulse to overcome the generated force due to drag to maintain an altitude of 600 km and bring the CubeSat down to a graveyard orbit of 513 km. Thermal analysis for hot case found that the integration of a black high-emissivity paint and MLI was required to prevent excessive heating within the structure. Furthermore, the power system analysis successfully defined electrical consumption scenarios for the CubeSat’s 600 km orbit. The analysis concluded that a singular 7 W solar panel mounted on a sun-facing side of the CubeSat using a sun sensor could satisfactorily power the electrical system throughout the hot phase and charge the craft’s battery enough to ensure constant electrical operation during the cold phase, even with the additional integration of an active thermal heater.
    [Show full text]
  • The Disintegration of the Wolf Creek Meteorite and the Formation of Pecoraite, the Nickel Analog of Clinochrysotile
    The Disintegration of the Wolf Creek Meteorite and the Formation of Pecoraite, the Nickel Analog of Clinochrysotile GEOLOGICAL SURVEY PROFESSIONAL PAPER 384-C 1 mm ^^ 5 -fc;- Jj. -f->^ -J^' ' _." ^P^-Arvx^B^ »""*- 'S y^'ir'*'*'/?' trK* ^-7 A5*^v;'VvVr*'^**s! ^^^^V'^"^"''"X^^i^^?l^"%^ - ! ^ Pecoraite, Wolf Creek meteorite of Australia. Upper, Pecoraite grains separated by hand picking from crack fillings in the meteorite (X 25). Lower, Pecoraite grains lining the walls of some cracks in the meteorite. The extent of disintegration of the original metal­ lic phases into new phases, chiefly goethite and maghemite, is apparent (X 2.3). THE DISINTEGRATION OF THE WOLF CREEK METEORITE AND THE FORMATION OF PECORAITE, THE NICKEL ANALOG OF CLINOCHRYSOTILE The Disintegration of the Wolf Creek Meteorite and the Formation of Pecoraite, the Nickel Analog of Clinochrysotile By GEORGE T. FAUST, JOSEPH J. FAHEY, BRIAN H. MASON and EDWARD J. DWORNIK STUDIES OF THE NATURAL PHASES IN THE SYSTEM MgO-SiO2 -H2O AND THE SYSTEMS CONTAINING THE CONGENERS OF MAGNESIUM GEOLOGICAL SURVEY PROFESSIONAL PAPER 384-C Origin of pecoraite elucidated through its properties and in terms of the geochemical balance in its desert environment UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1973 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 73-600160 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price $1.30 Stock
    [Show full text]
  • Deployable Propulsion, Power and Communication Systems for Solar System Exploration Les Johnson John A
    Deployable Propulsion, Power and Communication Systems for Solar System Exploration Les Johnson John A. Carr NASA George C. Marshall Space NASA George C. Marshall Space Flight Center Flight Center Huntsville, AL 35812 Huntsville, AL 35812 256-544-7824 256.544.7114 [email protected] [email protected] Darren Boyd NASA George C. Marshall Space Flight Center Huntsville, AL 35812 256.544.6466 [email protected] Abstract— NASA is developing thin-film based, deployable ACKNOWLEDGEMENTS .............................................. 5 propulsion, power, and communication systems for small REFERENCES ............................................................... 5 spacecraft that could provide a revolutionary new capability allowing small spacecraft exploration of the solar system. By BIOGRAPHY ................................................................. 6 leveraging recent advancements in thin films, photovoltaics, and miniaturized electronics, new mission-level capabilities will be enabled aboard lower-cost small spacecraft instead of their 1. INTRODUCTION more expensive, traditional counterparts, enabling a new generation of frequent, inexpensive deep space missions. The Near Earth Asteroid (NEA) Scout reconnaissance Specifically, thin-film technologies are allowing the mission will demonstrate solar sail propulsion on a 6U development and use of solar sails for propulsion, small, CubeSat interplanetary spacecraft and lay the groundwork for lightweight photovoltaics for power, and omnidirectional their future use in deep space science and exploration antennas for communication. missions. Solar sails use sunlight to propel vehicles through space by reflecting solar photons from a large, mirror-like sail Like their name implies, solar sails ‘sail’ by reflecting sunlight made of a lightweight, highly reflective material. This from a large, lightweight reflective material that resembles the continuous photon pressure provides propellantless thrust, sails of 17th and 18th century ships and modern sloops.
    [Show full text]